
 TOPICS COVERED

D SQL VIEWS

2 CASE STATEMENTS

3 COMMON TABLE Expressions CTE's

4 SUB QUERIES

5 STORED PROCEDURES

G DELIMITER

7 DECLARE

8 TRIGGERS

9 TYPE CASTING

10 WINDOWS FUNCTIONS

11 SQL Hosting

12 SQL INJECTION



SQL Views

In SQL a view is a virtual table based

on the result set of a SQL statement

A view contains rows and columns just

like a real table The fields in a view are

fields from one or more real tables in a

database

we can add SQL functions WHERE and Join

statements to a view and present the data

as if the data were coming from one single

table

Views allow to encapsulate or hide

complexitiesor allow limited read access to part

of the data

A view always shows up to date data The

database engine recreates the data using
the view's soc statement every time a

user queries a view

CREATE VIEW Syntax

CREATE VIEW View name AS

SELECT Column 1 columns

FROM C table name



WHERE Condition

Examples

A view to show only Products with category 1

CREATE VIEW Cat 1 Product AS

SELECT

FROM PRODUCTS

WHERE Category 1

If we want to query this view we can say

SELECT

FROM Cat 1 Product

A view to limit read access only to certain

columns

CREATE VIEW basic cat prod As

SELECT name category Price

FROM Products

from this view we can query

SELECT

FROM basic cat prod

WHERE category 1



UPDATING A VIEW

CREATE OR REPLACE VIEW Syntax

CREATE OR REPLACE VIEW View name AS

SELECT Column 1 Column 2

FROM C table name

WHERE Condition

Example If we want to add quantity

to basic cat prod view

CREATE OR REPLACE VIEW basic Cat Prod AS

SELECT name category Price quantity
FROM Products

WHERE quantity 10

DROP A VIEW

we can delete a view with DROP VIEW Command

DROP VIEW Syntax

DROP VIEW View name



CASE statements

CASE statements in MySQL allow us to perform

conditional logic within our query

They are useful when we need to perform

different actions or calculations based on

Certain conditions

1 Simple CASE Statement

The simple CASE statement compares an

expression to a set of conditions and returns

a result based on the first condition that

evaluates to true

Syntax
CASE expression

WHEN condition I THEN result 1

WHEN Condition 2 THEN result 2

ELSE else result

END

Example consider a table called employees

with columns employee id first name and



salary If we want to categorize Employees

based on salary range

SELECT employee id first name salary

CASE

WHEN Salary 5000 THEN Low

WHEN Salary 3 5000 AND

salary 10000 THEN Medium

ELSE High

END AS Salary category
FROM Employees

In simple case statement condition is checked

on only one field or column exit salary in the

above example

2 Searched CASE statement

9h Searched case each condition could be

combination of multiple conditions using logical

operators or relationship operator and such

Syntax

CASE expression



WHEN Condition 1 THEN result 1

WHEN Condition 2 THEN result 2

ELSE else result

END

Even though the syntax looks same as above

the condition here evaluates multiple expressions

and can be on different fields see below

example

Example
SELECT employee name salary

CASE

WHEN Salary 5000 AND

department IT Then High IT

WHEN salary 5000 AND

department HR Then High HR

WHEN salary 3000 AND

department IT THEN Medium IT

WHEN salary 3000 AND

department HR THEN medium HR

ELSE Cow

END AS Salary Category



FROM employees

there both salary and department are

evaluated with logical operator and between

them for each condition inside WHEN



Common Table Expressions TEs

TEs in MySQL allow us to define temporary

named result sets that can be used within

a query
CTE s provide a way to breakdown complex

queries into smaller more manageable parts

Syntax

WITH Cte name column't columns As

Query that defines the CTE

SELECT

FROM

WHERE

Main Query that uses CTE

SELECT

FROM Cte name

Explanation
1 Define the CTE

Start with the with keyword followed

by name we want to assign to the CTE



Cte name

Optionally Specify the column names column

column 21 for CTE

use keyword As followed by paranthesis

C to enclose the query that defines the

CTE

This query can include filtering joining
aggregation and any other SQL operations

2 Use the CTE

After defining the CTE we can refer

to it as a table in the subsequent query

Here we can do any operation on the

result set of Cte that we could do on a

table using SQL queries

After the parenthesis enclosed CTE query

there is no semi colon The result of the

CTE can be used in the main query until

it ends with a semi colon

Example Consider a database with two tables

employees and departments The employees

table has columns employee id first name's



last name and department id while the

departments table has columns department id

and department name

WITH employee department AS

SELECT e employee id e first name e Last name

d department name

default FROM employee e

TIN
JOIN departments dis

INNER
torn ON e department id d department id

SELECT

FROM employee department

In this example a CTE named employee

department is defined which joins the

employee and departments tables based

on department Id column The CTE selects

necessarycolumns from both tables The main table

then selects all the columns from the CTE

effectively retaining the employee information

along with their department names



CTE's are especially useful when dealing with

complex queries involving multiple joins aggregations

or recursive queries They help improve query

readability maintainability and performance

by breaking down logic into smaller logical

units

CTE's are supported in MYSQL 8 o and above



Sub queries in MySQL

Subqueries in MySQL allow us to nest one

query inner query inside another query outer

query The result of inner query is used by

the outer query to perform further operations

Syntax
SELECT Columns Column 2

FROM table 1

WHERE Column 1 IN SELECT Column 1

FROM table 2

WHERE

Explanation
1 Define the sub query

The sub query is enclosed with paranthesis

C

It can be used in various parts of the outer

query such as the SELECT FROM WHERE

or Havin a clauses

2 use the sub query

The result of the sub query is treated as

temporary table or dataset

It can be used in conjunction with operators



Like IN NOT IN Exists Not Exists or

compassion operators s etc to filter

or join data in outer query

Example Consider a database with two tables

customers and orders The customers table

has columns customer Id customer name and

country while the orders table has columns

order Id customer id and order date we

want to retreive a list of customers who have

placed an order in the year 2022

SELECT Customer name

FROM Customers

WHERE Customer ed IN SELECT Customer Jd

FROM orders

WHERE YEAR order date 2022

In this example a sub query is used to

filter the orders table and retreire the

customer sd values for orders placed in 2022

The outer query then uses the In operator
to select the customer name from the



customers table for those specific customer sd's

sub queries can be used in various scenarios

such as

Filtering based on a condition using a

sub query in the WHERE clause to filter

data based on a specific condition

Joining tables using a sub query in the

FROM clause to join tables based on a

common column

calculating aggregate values using a sub

query in the select or Havin a clause to

calculate aggregate values like counts

sums averages etc

Subqueries impact performance so it's important

to optimize and ensure that indexes are

appropriately applied to improve execution time



MySQl stored procedures
stored procedures are a set of SQL statements

that are stored in the database and can be

executed repeatedly

They provide a way to encapsulate and reuse

SQL logic
They can accept input parameters and return

Output parameters

Creating a stored procedure
Use the CREATE PROCEDURE statement to create

a stored procedure

set the delimiter to something other than a

semi colon to avoid conflicts

Define the procedure name input output

Parameters and the procedure body

Use the BEG in and END keywords to enclose

the procedure statements

Finally set the delimiter back to semicolon

Syntax

DELIMITER 8
this can be anything
other than that is

used inside



CREATE PROCEDURE procedure name Parameter list

characteristics

BEGIN

procedure body
END

DELIMITER

Example
DELIMITER 11

CREATE PROCEDURE get customer details

IN customer id INT

BEGIN

SELECT

FROM Customers

WHERE id customer id

END A

DELIMITER

calling a stored procedure

use the call statement to execute a

stored procedure

Provide the necessary arguments for input



Parameters

Example this idler
CALL Set Customer details s sing

a valve

stored procedure parameters

stored procedures can have input output

or input output parameters

Input parameters are used to pass values

into the procedure

Output parameters are used to return values

from the procedure

Input output parameters can be used for

both passing and returning values

Example

DELIMITER 11

CREATE PROCEDURE Calculate total IN price INT

IN quantity INT OUT total INT

BEGIN

SET total price quantity

END A

DELIMITER



Conditional statements and Loops

stored procedures can include conditional

statements like IF CASE etc

They can also include loops such as WHILE

or REPEAT

Example

DELIMITER 11

CREATE PROCEDURE Check grade
IN score INT

BEGIN

DECLARE grade CHARCD

IF score 7 90 THEN

SET grade A

ELSE IF Score 7 80 THEN

SET grade B

ELSE IF Score 7 70 THEN

SET grade c

ELSE

SET grade D

END IF

SELECT grade



END A

DELIMITER



MYSQL DELIMITER

In MySQL the DELIMITER statement is

used to change the default delimiter used in

SQL statements It is particularly useful when

defining stored procedures triggers or functions

that contain multiple soc statements

By default MySQl uses semicolon as the

statement delimiter but when with complex

routines it becomes necessary to change the

delimiter to avoid conflicts

syntax

DELIMITER new delimiter

new delimiter is the new delimiter to be set

Example SQL stored procedure with multiple

SQL statements with out DELIMITER

CREATE PROCEDURE example procedure

BEGIN

SELECT from table 1

update table 2

SET column I Value 1

DELETE FROM tables



WHERE Cond1

END

Above example gives syntax error In

above example we have a stored procedure

example procedure that contains multiple SQL

statements By default My son uses the semi

colon C as the delimiter to separate the

statements However when executing this code

directly my son interprets each semicolon as

the end of the entire procedure resulting in

a syntax error

To avoid this issue we need to change the

delimiter using the DELIMITER statement

DELIMITER N

CREATE PROCEDURE example procedure

BEGIN

SELECT from table 1

update table 2

SET column I Value 1

DELETE FROM tables

WHERE and 1



END A

DELI MITER

In the above example we set the new

delimiter to 11 can be anything like

using the DELIMITER 11 statement before

defining the stored procedure This allows us to

use the semicolon within the procedure

without conflicting with the statement delimiter

Finally we end the procedure definition with

END Il this symbol has to be same as we

used when defining the delimiter Then we

reset the delimiter back to semicolon i

using DELIMITERS

Notes

1 The DELIMITER statement is not an sad

statement itself It is a command used to

change the delimiter used for parsing SQL

statements

2 Changing the delimiter is necessary when



working with complex routines that contain

multiple statements

3 The new delimiter can be any valid character

or string that is not part of the SQL

statementswith in the routine

4 After changing the delimiter the new

delimiteris used to separate the statements

with in the routine

5 once the routine definition is complete it is

essential to reset the delimiter back to the

default semicolon using DELIMITER

The DELIMITER tool in MySQL is a helpful

tool for managing complex stored procedures

triggers or functions that involve multiple Sdl

statements By changing the delimiter we

can ensure that the individual statements

within the routine are correctly interpreted

by MySQL



DECLARE Statement

In MySQL the DECLARE statement is used

with in the stored procedures to declare and

define variables It allows you to create

variables that can be used to store and

manipulate data during the execution of the

stored procedure

Syntax
DECLARE Variable name datatype DEFAULT

default value

variable name is the name of the variable

to be declared

datatype is the datatype of the variable such

as I NT VARCHAR DATE etc

DEFAULT default value optional specifies

the default value for the variable if it is

not explicity assigned

Example



DELIMITER

CREATE PROCEDURE Calculate far IN

invoice amount DECIMAL 10,23

BEGIN

DECLARE tax rate DECIMAL 5,27

DECLARE tan amount DECIMAL 10,27

SET tax rate 0.15

SET tax amount invoice amount

tan rate

SELECT tax amount

END

DELI MILER

In this example we define a stored

procedurenamed calculated tan that takes an

input parameter invoice amount within the

Procedure we declare two variables

fan rate of type Decomal 5,2 and

tax amount of type DECOMAL 10,2

we then assign a value of o is to the

tan rate variable using the SET statement

The tan amount variable is calculated



by multiplying the invoice amount with

the tan rate

Finally we select and display fan amount

Notes

D The DECLARE statement is used to define

variables within a stored procedure

2 Variables declared using DECLARE are

local to the stored procedure and cannot

be accessed outside of it

3 Each variable must have a unique name

within the scope of the stored procedure

4 variables can be assigned default values

using DEFAULT Clause

5 variables can be used to store and

manipulatedata during the execution of the

stored procedure enabling calculations com

parisions and other operations

6 MySQL supports various data types for

variables including numeric types string

types data and time types and more



The DECLARE statement is a fundamental

aspect of working with variables within

MySQL stored procedure It allows us to

create and use variables to held and

manipulate data enhancing flexibility and

functionality of our stored procedures

Example with default value

DELIMITER

CREATE PROCEDURE Calculate discount IN

product price DECIMAL 10,23

BEGIN

DECLARE discount rate DECIMAL 5,27

DEFAULT O l

DECLARE discount amount DECIMAL 10,2

DEFAULT Product Price discount rate

SELECT discount amount

END

DELI MILER



Triggers in MySQL

Triggers in MySQL are database objects that

are associated with a table and automatically
executed when a specific event occurs They are

useful for enforcing business miles maintaining

data integrity performing auditing or

automatingcertain actions in response to data

changes
Notes

D triggers are defined using SQL statements

and are attached to tables

2 They are executed in response to specific events

such as INSERT UPDATE DELETE or a combination

of these events

3 Triggers are defined at the database level

and operate on a per row basis meaning

they are executed for each affected now

Types of Triggers

1 BEFORE Triggers
These triggers are executed both before

the specified event occurs



They are commonly used to modify the

data being inserted updated or deleted or

perform validations

Useful for enforcing data integrity rules or

Performing calculations before the actual change

happens

Syntax BEFORE INSERT Trigger

CREATE TRIGGER before insert trigger

BEFORE INSERT ON table name

FOR EACH ROW

BEGIN

logic steps

END

Example

CREATE TRIGGER before insert trigger

BEFORE INSERT ON employees

FOR EACH ROW

BEGIN

SET NEW Created at Now Cl

END



this trigger is executed before inserting a

row in to the employee table It sets the

created at column to the current timestamp

2 AFTER Triggers

These triggers are executed after the specified

event occurs

They are used for tasks such as logging

generating reports updating related tables or

sending notifications

useful for performing actions based on the

changes made to the data

Syntax AFTER UPDATE Trigger

CREATE TRIGGER after update trigger
AFTER UPDATE ON table name

FOR EACH ROW

BEGIN

logic steps

END

Example



CREATE TRIGGER after update trigger
AFTER UPDATE ON orders

FOR EACH ROW

BEGIN

INSERT INTO order loss order id action updated at

VALUES New id updated Nowe

END

This trigger is executed after updating a row

in the orders table It logs the update action

in to the order logs table

3 INSTEAD OF Triggers

These triggers are executed instead of the

default action associated with the event

They are primarily used with views to enable

performing operations on views that involve

multiple underlying tables

useful for implementing complex view

modificationsor custom handling of data changes

Suntan INSTEAD OF INSERT Trigger
CREATE TRIGGER instead of insert trigger



INSTEAD OF INSERT on View name

FOR EACH ROW

BEGIN

logic goes here

END

Example

CREATE TRIGGER instead of insert trigger
INSTEAD OF INSERT on View sales

FOR EACH ROW

BEGIN

INSERT INTO Sales Product id quantity

VALUES NEW product id NEW quantity

END

This trigger is executed instead of the default

insert action on the view sales view It

redirects the insert operation to the sales

table

4 COMPOUND Triggers

Compound triggers combine BEFORE AFTER

or INSTEAD of triggers to define multiple



trigger actions for the same event

They allow you to perform different actions at

different stages of the event execution

Useful for implementing complex business rules

or performing multiple operations based on

the event

Syntax COMPOUND TRIGGER BEFORE AND AFTER
INSERT

CREATE TRIGGER Compound insert trigger

BEFORE INSERT ON table name

FOR EACH ROW

BEGIN

logic sees here

END

AFTER INSERT ON table name

FOR EACH ROW

BEGIN

logic sees here

END

Example



CREATE TRIGGER Compound insert trigger

BEFORE INSERT ON Customers

FOR EACH ROW

BEGIN

SET NEW Created at NOW C

END

AFTER INSERT ON

FOR EACH ROW

BEGIN

INSERT INTO Customer Legs Customer ed action updated

VALUES New id I Nowe

END

This compound trigger consists of a BEFORE

INSERT and an AFTER INSERT trigger for the

customers table It sets the created at

timestamp before insertion and logs the insertion

action in to the customer legs table after

insertion

when to use triggers

use triggers to enforce data integrity

constraints such as validating data before



insertion or update

Use triggers for auditing purposes such as

logging changes made to specific tables

use triggers to automate certain actions or

calculations based on data changes

Use triggers to maintain consistency across

related tables or views

use triggers when we need to perform complex

operations involving multiple tables or views



Type casting in MySQL

type casting in MySQL allows us to convert

values from one data type to another It is

useful when we need to ensure data

compatibilityPerform calculations involving different

datatypes or format data in a specific way

MySQL provides various functions and

techniquesfor type casting

D CASTCI function

The caste I function is used to explicitly
convert a valve to a specified data type

Syntax CAST value As datatype

Example

SELECT CAST C 42 AS INT

converts the string 42 to an integer

2 CONVERT C function

The CONVERTL function is another way to

convert a valve to a specified data type

Its syntax is similar to caste

Syntax CONVERT Value As datatype



Example

SELECT CONVERT 3.14 DECIMAL S2

Converts the string 3.14 to a decimal with

Precision sand scale 2

3 Numeric Conversion functions

MySQL Provides various functions for numeric

Conversion Such as ROUND CI CE ILC FLOOR C

ABSCI etc These functions allow us to

manipulateand convert numeric values as needed

Example

SELECT ROUND 3.7

converts decimal valve 37 to the nearest

integer 4

4 Date and Time Conversion Functions

MySQL Offers functions like DATE FORMAT C

DATE ADD C DATE SUB C etc which can be

used to convert or manipulate date and

time values

Example

SELECT DATE FORMAT C 2622 12 31 f Y f Mad



Converts the date 2022 12 31 to format

12022 12 31

5 Implicit Type casting

MySQL also performs implicit typecasting in

some cases For example when we perform

arithmetic operations involving different data

types MySQL automatically converts them to

a common datatype based on a set of rules

known as type coercion

Example

SELECT St no

Implicitly converts the string no to an integer

and performs the addition operation

Notes

It is important to be aware of the datatypes

involved and the potential implications of type

casting

Improper use of type casting can lead to data

less unexpected results or performance issues

make sure to understand the characteristics



and limitations of different datatypes in MySQL



Windows function in MySQL

Windows functions also known as windowing
or analytic functions are a powerful feature

in MySQl that allow us to perform calculations

on a specific window or subset of rows within

a result set

These functions operate on a group of rows

and return a result for each now based on

the values of other rows within the same

window

windows functions are often used for tasks

such as ranking aggregation and moving

averages

Syntax General syntax

function name expression OVER

PARTITION BY Partition expression

ORDER BY Order expression Asc Desc

frame specification

Explanation

function name is the name of the windows



function we want to use such as ROW NUMBER

I RANK DENSE RANK LEAD CAG etc

expression is the column or expression on

which function will be applied

Partition By optional clause that defines
the partitioning of the result set in to subset

based on one or more columns The function is

applied separately to each partition

ORDER BY optional clause that specifies the

ordering of the rows within each partition The

function will be calculated based on this order

frame specification optional clause that

defines the window frame or range of rows

within the partition to include in the calculation

It determines which rows are considered when

performing the function

Few functions

D ROW NUMBERS

Returns the sequential number of a now within

a partitioned result set based on the specific

order



Syntax

SELECT

ROW NUMBER C OVER CORDER BY Column name

As row number column name

FROM C table name

Example
SELECT

ROW NUMBER C OVER CORDER BY Salary DESC

As row number employee name salary

FROM employees

Assigns a unique sequential order to the

result set based on the salary column in

descending order

2 RAN KC

Assigns a unique rank to each row within a

partitioned result set based on specific order

Ties receive the same rank and the next rank

is skipped

Syntax



SELECT

RANKS OVER CORDER BY Column name

As rank column name

FROM C table name

Example

SELECT

RANKS OVER CORDER BY Score DESC

As rank student name score

FROM students

3 DENSE RAN KC

Assigns a unique rank to each row within a

partitioned result set based on the specified

order Ties receive the same rank and the

next rank is not skipped

Syntax

SELECT

DENSE RANK C OVER CORDER BY Column name

As rank column name

FROM C table name



Example

SELECT

DENSE RANK C OVER CORDER BY price Asc

As rank product name price

FROM products

4 SUM C

calculates the sum of a column within a window

defined by the Partition and order clauses

Syntax

SELECT

column name sum column name OVER

PARTITION BY Partition Column ORDER BY

order Column As sum value

FROM table name

Example

SELECT Order id order date order total

SUM order total OVER PARTITION BY

order date As daily total



FROM orders

5 AVG C

calculates the average of a column within a

window defined by the Partition and order clauses

Syntax

SELECT

column name Ava column name OVER

PARTITION BY Partition Column ORDER BY

order Column As arg value

FROM table name

Example

SELECT product id product name product price

Ava product price OVER PARTITION BY

category id As category avg

FROM products

G LEAD Cl

Retreives the value of a column from the

next now within the window defined by the



order clause

Syntax

SELECT Column name LEAD Column name

OVER CORDER BY order Column As rent value

FROM table name

Example

SELECT employee name salary LEAD Salan

OVER ORDER BY Salary DESC AS

next highest salary

FROM employees

Useful for calculating differences or comparing

adjacent values

7 LAG C

Retreives the value of a column from the

previousnow within the window defined by the

order clause

Syntax



SELECT Column name LAG Column name

OVER CORDER BY Order Column As previous value

FROM table name

Example

SELECT Product name Price LEAD paid

OVER ORDER BY PNL DESC AS

previous price

FROM products

Useful for calculating differences or comparing

adjacent values

when to use windows functions

Calculating running totals averages or

aggregateswithin specific partitions or groups

Obtaining new numbers or rankings based on certain

criteria

Analyzing trends or patterns in data by comparing
Current and previous neat values

Performing complex calculations that require

access to multiple rows within a window



windows functions are particularly useful

when we need to perform calculation on subsets

of data within a result without resorting to complen

sub queries or temporary tables They provide a concise

and efficient way to handle such scenarios



SQL Hosting

SQL hosting refers to the practice of hosting
a MySQL database on a remote server or a

hosting provider's infrastructure

It allows users to store their database and

access it from anywhere with an internet connection

when to use SQL Hosting

1 web Applications sac hosting is commonly

used for web applications that require a

reliableand accessible database Hosting the

database on a specific server ensures scalability

performance and ease of management

2 Collaboration SQL hosting enables multiple users

or teams to collaborate on a shared database

It allows them to access modify and rebeive

data concurrently Promoting efficient teamwork

3 Data Security Hosting the database on a secure

server provided by a reputable hosting provider

ensures data security Hosting providers typically

employ various security measures including fire

walls encryption and backup systems to protect



the database

a Scalability SQL hosting allows for easy

scalabilityas the application's data storage needs

Snow Hosting providers offer flexible plans and

resources allowing users to scale up or down

based on their requirements

If we want the web application to connect to

a remote MySQL database we need to specify

the host port database name username and

password

Benefits of SQL testing

Accessibility sac hosting allows access to the

database from anywhere with an internet

connection enabling remote work and collaboration

Reliability Hosting providers ensure high uptime

and reliability mimizing the risk of data loss

or service interruption

Scalability Hosting providers offer scalable

solutionsallowing users to easily expand their

database resources are needed



Data security Reputable hosting providers implement
robust security measures such as encryption

firewalls and regular backups to protect data

from unauthorized access and ensure its integrity

It is important to choose a reliable and secure

hosting provider that meets your applications

requirements for performance scalability and

data security



SQL Injection

SQL Injection is a common security vulnerability
that occurs when an attacker is able to

manipulateuser input in an application that interacts

with a Myscel database

The attacker injects malicious soc code in to

the applications input fields exploiting vulnerabilities

in the applications handling of user input When

the application executes the sac query it

unintentionallyexecutes the injected code as well

leading to unauthorized access data theft or

other malicious actions

How SQL Injection works

user input Sac injection occurs when an

application allows user input to be directly

concatenated with sac queries without

proper validation or sanitization

Malicious SQL code An attacker can input

specially crafted strings that contain SQL

code fragments in to the applications input

fields



Concatenation The application combines the

user input with the sole query treating the

injected SQL code as a legitimate part

of the query

unauthorized Actions when the query is

executed the injected code is executed

along with the original query allowing the

attacker to perform unauthorized actions

on the database

Types of SQL Injection

D union Based SQL Injection The attacker

exploits the union operator to combine the

results of a malicious query with the

original query's results

Example

SELECT username password
FROM users

WHERE username admin UNION ALL

SELECT table name column name

FROM information schema columns

In this example the attacker appends a



UNION ALL statement to retrieve information

from the information schema columns table

2 Boolean Based SQL Injection The attacker

exploits boolean expressions to infer

informationabout the database

Example

SELECT Product name Price

FROM products

WHERE product id L AND 1 1

UNION ALL

SELECT Username Password

FROM users

WHERE a a

In this example the attacker injects

a condition that always evaluates to true

to retreive data from the users table

3 Time Based SQL Injection The attacker uses

time delays in SQL queries to extract

information based on the application's

response time



Example

SELECT Product name Price

FROM Products

WHERE product id 1

IF 1 1 SLEEP S

In this example the attacker injects a sleep

function to delay the query execution and

infer information based on the response

time

4 Error Based SQL Injection The attacker

triggers specific errors in SQL queries to

extract information from error messages

Example

SELECT Product name price

FROM Products

WHERE Product id 1

SELECT 110

On this example the attacker injects a

division by zero operation to generate an

error and retreive information from the error

message



5 Blind SQL Injection The attacker exploits

boolean based or time based techniques to

extract information without receiving explicit

results

Example

SELECT Product name Price

FROM Products

WHERE product id 1 AND 1 1

SELECT SLEEP S

In this example the attacker injects a sleep

function to delay the query execution inferring

information based on the applications response

time

Impact of SQL Injection

Unauthorized Data Access Attackers

can retreive sensitive information such as

usernames passwords credit card details

or other confidential data

Data manipulation Attackers can modify

delete or insert data in to the database

altering the application's behavior or Compro



mising the integrity of the data

Remote Code Execution In severe cases

attackers can execute arbitary code on the

server gaining complete control over the

application and underlying system

Preventing SQL Injection

prepared statements use parameterized queries

or prepared statements with placeholders to

separate SQL code from user input

Input validation and sanitization Implement

strong input validation and sanitization

techniquesto filter out or escape special

charactersin user input

Least Privilege principle Assign the minimum

required privileges to the application's database

user to limit the potential impact of an SQL

Injection attack

Regular security Audits conduct regular

security audits and penetration testing to identify
and address any vulnerabilities in the

application



It is crucial to be aware of SQL Injection

Vulnerabilities and implement proper security
measures to prevent them By validating and

sanitizing the user input using parameterized

queries and following secure coding practices

the risk of SQL Injection can be significantly
reduced


