

C#	for	Beginners:	Learn	in	1	Day
By	Krishna	Rungta

Copyright	2016	-	All	Rights	Reserved	–	Krishna	Rungta

ALL	RIGHTS	RESERVED.	No	part	of	this	publication	may	be	reproduced	or
transmitted	in	any	form	whatsoever,	electronic,	or	mechanical,	including
photocopying,	recording,	or	by	any	informational	storage	or	retrieval	system
without	express	written,	dated	and	signed	permission	from	the	author.

Table	of	Contents

Chapter	1:	What	is	.NET	Framework

1.	 What	is	the	.NET	Framework
2.	 Different	versions	of	the	.Net	framework

Chapter	2:	Download	and	Install	Visual	Studio

Chapter	3:	Data	Types

1.	 Building	the	first	console	application
2.	 Basic	Data	Types
3.	 Enumeration
4.	 Variables	and	Operators
5.	 Flow	Control	and	conditional	statements
6.	 Arrays

Chapter	4:	Class	and	Object

1.	 What	are	classes	and	objects
2.	 Fields	and	methods
3.	 Access	Modifiers
4.	 Constructors
5.	 Inheritance
6.	 Polymorphism
7.	 Abstract	classes
8.	 Interfaces

Chapter	5:	Collections

1.	 ArrayList
2.	 Stack
3.	 Queues
4.	 Hashtable

Chapter	6:	Windows	Forms	Application

1.	 Windows	Forms	Basics
2.	 Hello	World	in	Windows	Forms

3.	 Adding	Controls	to	a	form
4.	 Event	Handling	for	Controls
5.	 Other	Controls

Chapter	7:	Database	Access

1.	 Fundamentals	of	Database	connectivity
2.	 Connections	in	.Net
3.	 Accessing	data
4.	 Inserting	Records
5.	 Updating	Records
6.	 Deleting	Records
7.	 Connecting	Controls	to	Data
8.	 Using	DataGrids

Chapter	8:	File	Operations

1.	 Basic	File	I/O	Commands
2.	 Streams	–	Reading	and	Writing	to	files
3.	 Serialization

Chapter	1:	What	is	.NET	Framework
The	.Net	framework	is	a	software	development	platform	developed	by	Microsoft.
The	framework	was	meant	to	create	applications,	which	would	run	on	the
Windows	Platform.	The	first	version	of	the	.Net	framework	was	released	in	the
year	2000.

The	version	was	called	.Net	framework	1.0.	The	.Net	framework	has	come	a	long
way	since	then,	and	the	current	version	is	4.6.1.

The	.Net	framework	can	be	used	to	create	both	-	Form	based	andWeb
based	applications.	Web	services	can	also	be	developed	using	the	.Net
framework.

The	framework	also	supports	various	programming	languages	such	as	Visual
Basic	and	C#.	So	developers	can	choose	and	select	the	language	to	develop	the
required	application.	In	this	chapter,	you	will	learn	some	basics	of	the	.Net
framework.

.Net	Framework	Architecture
The	basic	architecture	of	the	.Net	framework	is	as	shown	below.

The	architecture	of	the	.Net	framework	is	based	on	the	following	key	components;

1.	 Common	Language	Runtime	-	The	“Common	Language	Infrastructure”
or	CLI	is	a	platform	on	which	the	.Net	programs	are	executed.

The	CLI	has	the	following	key	features:

Exception	Handling	-	Exceptions	are	errors	which	occur	when	the
application	is	executed.
Examples	of	exceptions	are:

If	an	application	tries	to	open	a	file	on	the	local	machine,	but	the	file	is	not
present.
If	the	application	tries	to	fetch	some	records	from	a	database,	but	the
connection	to	the	database	is	not	valid.

Garbage	Collection	-	Garbage	collection	is	the	process	of	removing
unwanted	resources	when	they	are	no	longer	required.
Examples	of	garbage	collection	are

A	File	handle	which	is	no	longer	required.	If	the	application	has	finished	all
operations	on	a	file,	then	the	file	handle	may	no	longer	be	required.
The	database	connection	is	no	longer	required.	If	the	application	has
finished	all	operations	on	a	database,	then	the	database	connection	may	no

longer	be	required.
Working	with	Various	programming	languages	–

As	noted	in	an	earlier	section,	a	developer	can	develop	an	application	in	a	variety
of	.Net	programming	languages.

1.	 Language	-	The	first	level	is	the	programming	language	itself,	the	most
common	ones	are	VB.Net	and	C#.

2.	 Compiler	–	There	is	a	compiler	which	will	be	separate	for	each
programming	language.	So	underlying	the	VB.Net	language,	there	will	be	a
separate	VB.Net	compiler.	Similarly	for	C#,	you	will	have	another	compiler.

3.	 Common	Language	Interpreter	–	This	is	the	final	layer	in	.Net	which
would	be	used	to	run	a	.net	program	developed	in	any	programming
language.	So	the	subsequent	compiler	will	send	the	program	to	the	CLI	layer
to	run	the	.Net	application.

2.	 Class	Library	-	The	.NET	Framework	includes	a	set	of	standard	class
libraries.	A	class	library	is	a	collection	of	methods	and	functions	that	can	be

used	for	the	core	purpose.
For	example,	there	is	a	class	library	with	methods	to	handle	all	file	level
operations.	So	there	is	a	method	which	can	be	used	to	read	the	text	from	a
file.	Similarly,	there	is	a	method	to	write	text	to	a	file.
Most	of	the	methods	are	split	into	either	the	System.*	or	Microsoft.*
namespaces.	(The	asterisk	*	just	means	a	reference	to	all	of	the	methods	that
fall	under	the	System	or	Microsoft	namespace)
A	namespace	is	a	logical	separation	of	methods.	We	will	learn	these
namespaces	more	in	detail	in	the	subsequent	chapters.

3.	 Languages	-	The	types	of	applications	that	can	be	built	in	the	.Net
framework	are	classified	broadly	into	the	following	categories.

WinForms	–	This	is	used	for	developing	Forms-based	applications,	which
would	run	on	an	end	user	machine.	Notepad	is	an	example	of	a	client-based
application.
ASP.Net	–	This	is	used	for	developing	web	based	applications,	which	are
made	to	run	on	any	browser	such	as	Internet	Explorer,	Chrome	or	Firefox.

The	Web	application	would	be	processed	on	a	server,	which	would	have
Internet	Information	Services	Installed.
Internet	Information	Services	or	IIS	is	a	Microsoft	component	which	is
used	to	execute	an	ASP.net	application.
The	result	of	the	execution	is	then	sent	to	the	client	machines,	and	the
output	is	shown	in	the	browser.

ADO.Net	–	This	technology	is	used	to	develop	applications	to	interact	with
Databases	such	as	Oracle	or	Microsoft	SQL	Server.

Different	versions	of	the	.Net	framework
Below	is	the	table	of	.Net	framework	versions,	which	have	been	released	with	their
release	dates.	Every	version	has	relevant	changes	to	the	framework.

For	example,	in	framework	3.5	and	onwards	a	key	framework	called	the	Entity
framework	was	released.	This	framework	is	used	to	change	the	approach	in
which	the	applications	are	developed	while	working	with	databases.

Version	number CLR	version Release	date

1.0 1.0 2002-02-13

1.1 1.1 2003-04-24

2.0 2.0 2005-11-07

3.0 2.0 2006-11-06

3.5 2.0 2007-11-19

4.0 4 2010-04-12

4.5 4 2012-08-15

4.5.1 4 2013-10-17

4.5.2 4 2014-05-05

4.6 4 2015-07-20

4.6.1 4 2015-11-17

The	biggest	advantage	of	the	.Net	framework	is	that	it	supports	Windows
platform.	Almost	everyone	works	with	Windows	machines.

Microsoft	always	ensures	that	.Net	frameworks	are	in	compliance	with	all	the
supported	Windows	operating	systems.

The	following	design	principles	of	the	.Net	framework	is	what	makes	it	very
relevant	to	create	.Net	based	applications.

1.	 Interoperability	-	The	.Net	framework	provides	a	lot	of	backward	support.
Suppose	if	you	had	an	application	built	on	an	older	version	of	the	.Net
framework,	say	2.0.	And	if	you	tried	to	run	the	same	application	on	a
machine	which	had	the	higher	version	of	the	.Net	framework,	say	3.5.	The
application	would	still	work.	This	is	because	with	every	release,	Microsoft
ensures	that	older	framework	versions	gel	well	with	the	latest	version.

2.	 Portability-	Applications	built	on	the	.Net	framework	can	be	made	to	work
on	any	Windows	platform.	And	now	in	recent	times,	Microsoft	is	also
envisioning	to	make	Microsoft	products	work	on	other	platforms,	such	as	iOS
and	Linux.

3.	 Security	-	The	.NET	Framework	has	a	good	security	mechanism.	The	in-
built	security	mechanism	helps	in	both	validation	and	verification	of
applications.	Every	application	can	explicitly	define	their	security
mechanism.	Each	security	mechanism	is	used	to	grant	the	user	access	to	the
code	or	to	the	running	program.

4.	 Memory	management	-	The	Common	Language	runtime	does	all	the	work
or	memory	management.	The	.Net	framework	has	all	the	capability	to	see
those	resources,	which	are	not	used	by	a	running	program.	It	would	then
release	those	resources	accordingly.	This	is	done	via	a	program	called	the
“Garbage	Collector”	which	runs	as	part	of	the	.Net	framework.
The	garbage	collector	runs	at	regular	intervals	and	keeps	on	checking	which
system	resources	are	not	utilized,	and	frees	them	accordingly.

5.	 Simplified	deployment	-	The	.Net	framework	also	have	tools,	which	can
be	used	to	package	applications	built	on	the	.Net	framework.	These	packages
can	then	be	distributed	to	client	machines.	The	packages	would	then
automatically	install	the	application.

Summary

.Net	is	a	programming	language	developed	by	Microsoft.	It	was	designed	to
build	applications	which	could	run	on	the	Windows	platform.
The	.Net	programming	language	can	be	used	to	develop	Forms	based
applications,	Web	based	applications	and	Web	services.
Developers	can	choose	from	a	variety	of	programming	languages	available	on
the	.Net	platform.	The	most	common	one’s	are	VB.Net	and	C#.

Chapter	2:	Download	and	Install
Visual	Studio

Microsoft	Visual	Studio	is	an	integrated	development	environment	(IDE)	from
Microsoft.	It	is	used	to	develop	computer	programs	for	Microsoft	Windows.	Visual
Studio	is	one	stop	shop	for	all	applications	built	on	the	.Net	platform.	One	can
develop,	debug	and	run	applications	using	Visual	Studio.

Both	Forms	based	and	web	based	applications	can	be	designed	and	developed
using	this	IDE.	The	Visual	Studio	has	the	below-mentioned	features

1.	 Creation	of	an	application	in	any	.Net	language	–	The	Visual	Studio
IDE	can	be	used	to	create	an	application	in	any	.Net	language.	Hence,	a
developer	can	use	C#,	VB.Net	or	even	F#	to	develop	an	application.

2.	 Creation	of	any	application	type	–	The	Visual	Studio	IDE	can	be	used	to
create	an	application	of	any	type.	(Web-based	application	or	Windows	Forms
based	application).

3.	 Debug	Applications	on	the	fly	–	Applications	can	be	tested	as	they	are
being	built.	The	IDE	allows	one	to	run	the	program	at	any	point	of	time
during	the	development	process.	Hence,	a	developer	can	check	for	any	errors
during	the	development	phase	itself.

4.	 Extensions	–	The	IDE	has	the	facility	to	install	third-party	extensions.	An
example	can	be	Subversion,	which	is	used	for	source	code	repository
management.	Subversion	is	used	to	upload	code	to	a	central	repository.	This
is	done	so	that	a	copy	of	the	code	will	always	exist.	Visual	Studio	has	the
facility	to	integrate	with	such	software	from	the	IDE	itself.	Hence,	a	developer
can	work	with	code	repositories	from	the	IDE	itself.

Let’s	look	at	the	installation	of	this	IDE,	so	that	we	can	work	with	creating
programs	in	the	subsequent	chapters.	Visual	Studio	can	be	downloaded	from	the
following	link	-	https://www.visualstudio.com/en-
us/downloads/download-visual-studio-vs.aspx

Once	you	have	the	Visual	Studio	Installer,	you	can	install	it	using	the	below
mentioned	steps

Step	1)	The	first	steps	involves	choosing	the	location	for	the	installation.	In	this
step	one	also	has	to	accept	the	License	Terms	and	conditions.

1.	 Choose	the	location	where	Visual	Studio	should	be	installed.	Ensure	you	have
enough	hard	disk	space	on	your	machine	for	the	setup.

2.	 Agree	to	the	License	Terms	and	Privacy	policy.
3.	 Click	the	Next	button	to	Proceed.

Step	2)	The	next	steps	involves	choosing	the	require	components	as	part	of	the
installation.

1.	 Choose	only	the	required	components.	This	can	save	on	the	amount	of	space
required	for	the	Installation.	Below	are	the	important	components	which
should	be	installed

Microsoft	Foundation	Classes	for	C++
Microsoft	SQL	Server	Data	Tools
Microsoft	Web	Developer	Tools

2.	 After	that,	click	on	the	Install	button	to	start	the	installation.

Once	the	installation	is	complete,	you	will	get	the	below	screen	showing	the
success	of	the	installation

Chapter	3:	Data	Types
C#	is	one	of	the	languages	provided	by	Microsoft	to	work	with	.Net.	This	language
encompasses	a	rich	set	of	features,	which	allows	developing	different	types	of
applications.

C#	is	an	object-oriented	programming	language	and	resembles	several	aspects	of
the	C++	Language.	In	this	tutorial,	we	see	how	to	develop	our	first	application.

This	will	be	a	basic	console	application,	we	will	then	explore	different	data	types
available	in	the	C#	language	as	well	as	the	control	flow	statements.

Building	the	first	console	application
A	console	application	is	an	application	that	can	be	run	in	the	command	prompt	in
Windows.	For	any	beginner	on	.Net,	building	a	console	application	is	ideally	the
first	step	to	begin	with.

In	our	example,	we	are	going	to	use	Visual	Studio	to	create	a	console	type	project.
Next,	we	are	going	to	use	the	console	application	to	display	a	message	“Welcome
to	.Net”.	We	will	then	see	how	to	build	and	run	the	console	application.

Let’s	follow	the	below-mentioned	steps	to	get	this	example	in	place.

Step	1)	The	first	step	involves	the	creation	of	a	new	project	in	Visual	Studio.	For
that,	once	the	Visual	Studio	is	launched,	you	need	to	choose	the	menu	option
New->Project.

Step	2)	The	next	step	is	to	choose	the	project	type	as	a	Console	application.	Here,
we	also	need	to	mention	the	name	and	location	of	our	project.

1.	 In	the	project	dialog	box,	we	can	see	various	options	for	creating	different
types	of	projects	in	Visual	Studio.	Click	the	Windows	option	on	the	left-hand
side.

2.	 When	we	click	the	Windows	options	in	the	previous	step,	we	will	be	able	to
see	an	option	for	Console	Application.	Click	this	option.

3.	 We	then	give	a	name	for	the	application	which	in	our	case	is
DemoApplication.	We	also	need	to	provide	a	location	to	store	our	application.

4.	 Finally,	we	click	the	‘OK’	button	to	let	Visual	Studio	to	create	our	project.

If	the	above	steps	are	followed,	you	will	get	the	below	output	in	Visual	Studio.

Output:-

1.	 A	project	called	‘DemoApplication‘	will	be	created	in	Visual	Studio.	This
project	will	contain	all	the	necessary	artifacts	required	to	run	the	Console
application.

2.	 The	Main	program	called	Program.cs	is	default	code	file	which	is	created
when	a	new	application	is	created	in	Visual	Studio.	This	code	will	contain	the
necessary	code	for	our	console	application.

Step	3)	Now	let’s	write	our	code	which	will	be	used	to	display	the	string
“Welcome	to	.Net”	in	the	console	application.

All	the	below	code	needs	to	be	entered	in	the	Program.cs	file.	The	code	will	be
used	to	write	“Welcome	to	.Net”	when	the	console	application	runs.

Code	Explanation:-

1.	 The	first	lines	of	code	are	default	lines	entered	by	Visual	Studio.	The	‘using’
statement	is	used	to	import	existing	.Net	modules	in	our	console	application.
These	modules	are	required	for	any	.Net	application	to	run	properly.	They
contain	the	bare	minimum	code	to	make	a	code	work	on	a	Windows	machine.

2.	 Every	application	belongs	to	a	class.	C#	is	an	object-oriented	language,	and
hence,	all	code	needs	to	be	defined	in	a	self-sustaining	module	called	a
‘Class.’	In	turn,	every	class	belongs	to	a	namespace.	A	namespace	is	just	a
logically	grouping	of	classes.

3.	 The	Main	function	is	a	special	function	which	is	automatically	called	when	a
console	application	runs.	Here	you	need	to	ensure	to	enter	the	code	required
to	display	the	required	string	in	the	console	application.

4.	 The	Console	class	is	available	in	.Net	which	allows	one	to	work	with	console
applications.	Here	we	are	using	an	inbuilt	method	called	‘Write’	to	write	the
string	“Welcome	to	.Net”	in	the	console.

5.	 We	then	use	the	Console.ReadKey()	method	to	read	any	key	from	the
console.	By	entering	this	line	of	code,	the	program	will	wait	and	not	exit
immediately.	The	program	will	wait	for	the	user	to	enter	any	key	before
finally	exiting.	If	you	don’t	include	this	statement	in	code,	the	program	will
exit	as	soon	as	it	is	run.

Step	4)	Run	your	.Net	program.	To	run	any	program,	you	need	to	click	the	Start
button	in	Visual	Studio.

If	the	above	code	is	entered	properly	and	the	program	is	executed	successfully,	the
following	output	will	be	displayed.

Output:

From	the	output,	you	can	clearly	see	that	the	string	“Welcome	to	.Net”	is	displayed
properly.	This	is	because	the	Console.write	statement	causes	this	string	to	be	sent
to	the	console.

C#	Data	Types
The	C#	language	comes	with	a	set	of	Basic	data	types.	These	data	types	are	used	to
build	values	which	are	used	within	an	application.	Let’s	explore	the	basic	data
types	available	in	C#.	For	each	example,	we	will	modify	just	the	main	function	in
our	Program.cs	file.

1.	 Integer	–	An	Integer	data	types	is	used	to	work	with	numbers.	In	this	case,
the	numbers	are	whole	numbers	like	10,	20	or	30.	In	C#,	the	datatype	is
denoted	by	the	Int32	keyword.	Below	is	an	example	of	how	this	datatype
can	be	used.	In	our	example,	we	will	define	an	Int32	variable	called	num.	We
will	then	assign	an	Integer	value	to	the	variable	and	then	display	it
accordingly.

Code	Explanation:-

1.	 The	Int32	data	type	is	specified	to	declare	an	Integer	variable	called	num.	The
variable	is	then	assigned	a	value	of	30.

2.	 Finally	the	console.write	function	is	used	to	display	the	number	to	the
console.

If	the	above	code	is	entered	properly	and	the	program	is	executed	successfully,
following	output	will	be	displayed.

Output:

From	the	output,	you	can	clearly	see	that	the	Integer	variable	called	num	was
displayed	in	the	console

2.	 Double	-	A	double	data	type	is	used	to	work	with	decimals.	In	this	case,	the
numbers	are	whole	numbers	like	10.11,	20.22	or	30.33.	In	C#,	the	datatype	is
denoted	by	the	keyword	“Double“.	Below	is	an	example	of	this	datatype	.

In	our	example,	we	will	define	a	double	variable	called	num.	We	will	then	assign	a
Double	value	to	the	variable	and	then	display	it	accordingly.

Code	Explanation:-

1.	 The	double	data	type	is	specified	to	declare	a	double	type	variable	called	num.
The	variable	is	then	assigned	a	value	of	30.33.

2.	 Finally	the	console.write	function	is	used	to	display	the	number	to	the
console.
If	the	above	code	is	entered	properly	and	the	program	is	executed
successfully,	following	output	will	be	displayed.
Output:

From	the	output,	you	can	clearly	see	that	the	double	variable	called	num	was
displayed	in	the	console

3.	 Boolean	-	A	boolean	data	type	is	used	to	work	with	Boolean	values	of	true
and	false.	In	C#,	the	datatype	is	denoted	by	the	Boolean	keyword.	Below	is
an	example	of	this	datatype	can	be	used.

In	our	example,	we	will	define	a	Boolean	variable	called	‘status.’	We	will	then
assign	a	boolean	value	to	the	variable	and	then	display	it	accordingly.

Code	Explanation:-

1.	 The	boolean	data	type	is	specified	to	declare	a	Boolean	variable	called	‘status.’
The	variable	is	then	assigned	a	value	of	true/false.

2.	 Finally	the	console.write	function	is	used	to	display	the	Boolean	value	to	the
console.

If	the	above	code	is	entered	properly	and	the	program	is	executed	successfully,	the
output	will	be	displayed.

Output:

From	the	output,	you	can	clearly	see	that	the	Boolean	variable	which	equals	true
was	displayed	in	the	console

4.	 String	-	A	String	data	type	is	used	to	work	with	String	values.	In	C#,	the
datatype	is	denoted	by	the	keyword	‘String’.	Below	is	an	example	of	this
datatype.

In	our	example,	we	will	define	a	String	variable	called	‘message.’	We	will	then
assign	a	String	value	to	the	variable	and	then	display	it	accordingly.

Code	Explanation:-

1.	 The	String	data	type	is	specified	to	declare	a	string	variable	called	message.
The	variable	is	then	assigned	a	value	of	“Hello”.

2.	 Finally,	the	console.write	function	is	used	to	display	the	string	value	to	the
console.

If	the	above	code	is	entered	properly	and	the	program	is	executed	successfully,	the
output	will	be	displayed.

Output:

From	the	output,	you	can	clearly	see	that	the	String	variable	called	message	was
displayed	in	the	console

C#	Enumeration
An	enumeration	is	used	in	any	programming	language	to	define	a	constant	set	of
values.	For	example,	the	days	of	the	week	can	be	defined	as	an	enumeration	and
used	anywhere	in	the	program.	In	C#,	the	enumeration	is	defined	with	the	help	of
the	keyword	‘enum‘.

Let’s	see	an	example	of	how	we	can	use	the	‘enum‘	keyword.

In	our	example,	we	will	define	an	enumeration	called	days,	which	will	be	used	to
store	the	days	of	the	week.	For	each	example,	we	will	modify	just	the	main
function	in	our	Program.cs	file.

Code	Explanation:-

1.	 The	‘enum‘	data	type	is	specified	to	declare	an	enumeration.	The	name	of	the
enumeration	is	Days.	All	the	days	of	the	week	are	specified	as	values	of	the
enumeration.

2.	 Finally	the	console.write	function	is	used	to	display	one	of	the	values	of	the
enumeration.

If	the	above	code	is	entered	properly	and	the	program	is	executed	successfully,	the
following	output	will	be	displayed.

Output:

From	the	output,	you	can	clearly	see	that	the	‘Sun’	value	of	the	enumeration	is
displayed	in	the	console.

C#	Operators	and	Variables
A	variable	is	a	name	given	to	a	storage	area	that	is	used	to	store	values	of	various
data	types.	Each	variable	in	C#	needs	to	have	a	specific	type,	which	determines	the
size	and	layout	of	the	variable’s	memory.

For	example,	a	variable	can	be	of	the	type	String,	which	means	that	it	will	be	used
to	store	a	string	value.	Based	on	the	data	type,	specific	operations	can	be	carried
out	on	the	variable.

For	instance,	if	we	had	an	Integer	variable,	then	operations	such	as	addition	and
subtraction	can	be	carried	out	on	the	variable.	One	can	declare	multiple	variables
in	a	program.

Let’s	look	at	a	quick	example	on	the	declaration	of	multiple	variables	of	different
data	types.

In	our	example,	we	will	define	2	variables,	one	of	the	type	‘string’	and	the	other	of
the	type	‘Integer’.	We	will	then	display	the	values	of	these	variables	to	the	console.
For	each	example,	we	will	modify	just	the	main	function	in	our	Program.cs	file.

Code	Explanation:-

1.	 A	variable	of	the	data	type	String	is	declared.	The	name	of	the	variable	is
‘message’.	The	value	of	the	variable	is	“The	value	is	“.

2.	 A	variable	of	the	data	type	Integer	(Int32)	is	declared.	The	name	of	the
variable	is	‘val‘.	The	value	of	the	variable	is	30.

3.	 Finally	the	Console.write	statement	is	used	to	output	both	the	value	of	the
String	and	Integer	variable.

If	the	above	code	is	entered	properly	and	the	program	is	executed	successfully,	the
following	output	will	be	displayed.

Output:

From	the	output,	you	can	clearly	see	that	the	values	of	both	the	string	and	integer
variable	are	displayed	to	the	console.

Operators	are	used	to	perform	operations	on	values	of	various	data	types.	For
example,	to	perform	the	addition	of	2	numbers,	the	+	operator	is	used.

Let’s	see	the	table	of	operators	available	for	the	various	data	types

1.	 Arithmetic	Operators	–	These	are	operators	used	for	performing
mathematic	operations	on	numbers.	Below	is	the	list	of	operators	available	in
C#.

Operator Description

+ Adds	two	operands

- Subtracts	second	operand	from	the	first

* Multiplies	both	operands

/ Divides	numerator	by	de-numerator

% Modulus	Operator	and	remainder	of	after	an	integer	division

++ Increment	operator	increases	integer	value	by	one

— Decrement	operator	decreases	integer	value	by	one

2.	 Relational	Operators	–	These	are	operators	used	for	performing
Relational	operations	on	numbers.	Below	is	the	list	of	relational	operators
available	in	C#.

Opera
tor

Description

== Checks	if	the	values	of	two	operands	are	equal	or	not,	if	yes	then	condition	becomes	true.

!= Checks	if	the	values	of	two	operands	are	equal	or	not,	if	values	are	not	equal	then	condition
becomes	true.

> Checks	if	the	value	of	left	operand	is	greater	than	the	value	of	right	operand,	if	yes	then
condition	becomes	true.

< Checks	if	the	value	of	left	operand	is	less	than	the	value	of	right	operand,	if	yes	then
condition	becomes	true.

>= Checks	if	the	value	of	left	operand	is	greater	than	or	equal	to	the	value	of	right	operand,	if
yes	then	condition	becomes	true.

<= Checks	if	the	value	of	left	operand	is	less	than	or	equal	to	the	value	of	right	operand,	if	yes
then	condition	becomes	true.

3.	 Logical	Operators	–	These	are	operators	used	for	performing	Logical
operations	on	values.	Below	is	the	list	of	operators	available	in	C#.

Operator Description

&& This	is	the	Logical	AND	operator.	If	both	the	operands	are	true,	then	condition	becomes	true.

|| This	is	the	Logical	AND	operator.	If	any	of	the	operands	are	true,	then	condition	becomes	true.

! This	is	the	Logical	NOT	operator.

Let’s	look	at	a	quick	example	of	how	the	operators	can	be	used	in	.Net.

In	our	example,	we	will	define	2	Integer	variables	and	one	Boolean	variable.	We
will	then	perform	the	following	operations

Code	Explanation:-

1.	 Two	Integer	variables	are	defined,	one	being	val1	and	the	other	being	val2.
These	will	be	used	to	showcase	relational	and	arithmetic	operations.	A
Boolean	variable	is	defined	to	showcase	logical	operations.

2.	 An	example	of	the	arithmetic	operation	is	shown	wherein	the	addition
operator	is	carried	out	on	val1	and	val2.	The	result	is	written	to	the	console.

3.	 An	example	of	the	relational	operation	is	shown	wherein	the	less	than
operator	is	carried	out	on	val1	and	val2.	The	result	is	written	to	the	console.

4.	 An	example	of	the	logical	operation	is	shown,	wherein	the	logical	operator	(!)
is	applied	to	the	status	variable.	The	logical	NOT	operator	reverses	the
current	value	of	any	Boolean	value.	So	if	a	Boolean	value	is	‘true’,	the	logical
NOT	will	return	the	value	‘false’	and	vice	versa.	In	our	case	since	the	value	of
the	status	variable	is	‘true’,	the	result	will	show	‘false’.	The	result	is	written	to
the	console.

If	the	above	code	is	entered	properly	and	the	program	is	executed	successfully,	the
output	will	be	displayed.

Output:

Flow	Control	and	conditional	statements
Flow	control	and	conditional	statements	are	available	in	any	programming
language	to	alter	the	flow	of	a	program.

For	example,	if	someone	want	to	execute	only	a	particular	set	of	statements	based
on	some	certain	logic,	then	Flow	control	and	conditional	statements	will	be	useful.

You	will	get	a	better	understanding	as	we	go	through	the	various	statements	which
are	available	in	C#.

Please	note	that	all	the	code	below	is	made	to	the	Program.cs	file.

1.	 If	statement	–	The	if	statement	is	used	to	evaluate	a	boolean	expression
before	executing	a	set	of	statements.	If	an	expression	evaluates	to	true,	then	it
will	run	one	set	of	statements	else	it	will	run	another	set	of	statements.

In	our	example	below,	a	comparison	is	made	for	a	variable	called	value.	If	the
value	of	the	variable	is	less	than	10	,then	it	will	run	one	statement	,	or	else	it	will
run	on	another	statement.

Code	Explanation:-

1.	 We	first	define	a	variable	called	value	and	set	it	to	the	value	of	11.
2.	 We	then	use	the	‘if’	statement	to	check	if	the	value	is	less	than	10	of	the

variable.	The	result	will	either	be	true	or	false.
3.	 If	the	if	condition	evaluates	to	true,	we	then	send	the	message	“Value	is	less

than	10”	to	the	console.
4.	 If	the	if	condition	evaluates	to	false,	we	then	send	the	message	“Value	is

greater	than	10”	to	the	console.

If	the	above	code	is	entered	properly	and	the	program	is	executed	successfully,	the
following	output	will	be	displayed.

Output:

We	can	clearly	see	that	the	‘if’	statement	was	evaluated	to	false.	Hence	the
message	“Value	is	greater	than	10”	was	sent	to	the	console.

2.	 Switch	statement	–	The	switch	statement	is	an	enhancement	to	the	‘if’
statement.	If	you	have	multiple	expressions	that	need	to	be	evaluated	in	one
shot,	then	writing	multiple	‘if’	statements	becomes	an	issue.

The	switch	statement	is	used	to	evaluate	an	expression	and	run	different
statements	based	on	the	result	of	the	expression.	If	one	condition	does	not
evaluate	to	true,	the	switch	statement	will	then	move	to	the	next	condition	and	so
forth.

Let’s	see,	how	this	works	with	the	below	example.	Here,	we	are	again	comparing
the	value	of	a	variable	called	‘value.’	We	then	check	if	the	value	is	equal	to	1,	or	2,
or	something	totally	different.

Code	Explanation:-

1.	 We	first	define	a	variable	called	‘value’	and	set	it	to	the	value	of	11.
2.	 We	then	use	the	‘switch’	statement	to	check	the	value	of	the	variable	‘value.’
3.	 Case	statements	are	used	to	set	different	conditions.	Based	on	the	conditions,

a	set	of	statements	can	be	executed.	A	switch	statement	can	have	multiple
case	conditions.	The	first	case	statement	checks	to	see	if	the	value	of	the
variable	is	equal	to	1.

4.	 If	the	first	case	statement	is	true,	then	the	message	“Value	is	1”	is	written	to
the	console.

5.	 The	break	statement	is	used	to	break	from	the	entire	switch	statement,	once	a
condition	is	true.

6.	 The	default	condition	is	a	special	condition.	This	just	means	that	if	no	case
expression	evaluates	to	true,	then	run	the	set	of	statements	for	the	default
condition.

If	the	above	code	is	entered	properly	and	the	program	is	executed	successfully,	the
following	output	will	be	displayed.	The	output	prints	the	default	value	“Value	is
different”,	since	no	condition	is	satisfied.

Output:

3.	While	loop	–	The	while	loop	is	used	for	iterative	purposes.	Suppose	if	you
want	to	repeat	a	certain	set	of	statements	for	a	particular	number	of	times,
then	while	loop	is	used.

In	our	example	below,	we	use	the	while	statement	to	display	the	value	of	a	variable
‘i‘.	The	while	statement	is	used	to	display	the	value	3	times.

Code	Explanation:-

1.	 Two	Integer	variables	are	defined,	one	being	value	and	the	other	being	‘i‘.	The
value	variable	is	used	as	the	upper	limit	to	which	we	should	iterate	our	while
statement.	And	‘i‘	is	the	variable	which	will	be	processed	during	the	iteration.

2.	 In	the	while	statement,	the	value	of	‘i‘	is	constantly	checked	against	the	upper
limit.

3.	 Here	we	display	the	value	of	‘i‘	to	the	console.	We	also	increment	the	value	of
‘i‘.

If	the	above	code	is	entered	properly	and	the	program	is	executed
successfully,	the	following	output	will	be	displayed.
Output:

Here	you	can	see	that	the	while	statement	is	executed	3	times	and	incremented	at
the	same	time.	And	each	time,	it	displayed	the	current	value	of	the	variable	‘i‘.
4.	 For	loop	-	The	‘for’	loop	is	also	used	for	iterative	purposes.	Suppose	if	you

want	to	repeat	a	certain	set	of	statements	for	a	particular	number	of	times,
then	for	loop	is	used.

In	our	example	below,	we	use	the	‘for’	statement	to	display	the	value	of	a	variable
‘i‘.	The	‘for’	statement	is	used	to	display	the	value	3	times.

Code	Explanation:-

1.	 The	‘for’	keyword	is	used	to	start	off	the	‘for	loop’	statement.

2.	 In	the	‘for	loop’,	we	define	3	things.	The	first	is	to	initialize	the	value	of	a
variable,	which	will	be	used	in	the	‘for	loop’.

3.	 The	second	is	to	compare	the	value	of	the	‘i‘	against	an	upper	limit.	In	our
case,	the	upper	limit	is	the	value	of	3	(i<3).

4.	 Finally,	we	increment	the	value	of	‘i‘	accordingly.
5.	 Here	we	display	the	value	of	‘i‘	to	the	console.

If	the	above	code	is	entered	properly	and	the	program	is	executed	successfully,	the
following	output	will	be	displayed.

Output:

Here	you	can	see	that	the	‘for’	statement	is	executed	3	times.	And	each	time,	it
displayed	the	current	value	of	the	variable	‘i‘.

C#	Arrays
An	array	is	used	to	store	a	collection	or	series	of	elements.	These	elements	will	be
of	the	same	type.

So	for	example,	if	you	had	an	array	of	Integer	values,	the	array	could	be	a
collection	of	values	such	as	[1,	2,	3,	4].	Here	the	number	of	elements	in	the	array	is
4.

Arrays	are	useful	when	you	want	to	store	a	collection	of	values	of	the	same	type.	So
instead	of	declaring	a	variable	for	each	and	every	element,	you	can	just	declare	one
variable.

This	variable	will	point	to	an	array	or	list	of	elements,	which	will	be	responsible
for	storing	the	elements	of	the	array.

Let’s	look	at	how	we	can	work	with	arrays	in	C#.	In	our	example,	we	will	declare
an	array	of	Integers	and	work	with	them	accordingly.

Note	that	all	of	the	below	code	is	being	made	to	the	Program.cs	file.

Step	1)	Declaring	an	array	–	The	first	step	is	to	declare	an	array.	Let’s	see	how	we
can	achieve	this	by	the	below	code	example.

Code	Explanation:-

1.	 The	first	part	is	the	datatype.	It	specifies	the	type	of	elements	used	in	the
array.	So	in	our	case,	we	are	creating	an	array	of	Integers.

2.	 The	second	part	[],	which	specifies	the	rank	of	the	array.	(The	rank	is	a
placeholder	which	specifies	the	number	of	elements	the	array	will	contain)

3.	 Next	is	the	Name	of	the	array	which	in	our	case	is	‘values’.	Note	you	are
seeing	a	green	squiggly	underline,	don’t	worry	about	that.	That	is	just	.Net
saying	that	you	have	declared	an	array,	but	not	using	it	anywhere.

Step	2)	The	next	step	is	to	initialize	the	array.	Here	we	are	going	to	specify	the
number	of	values	the	array	will	hold.	We	are	also	going	to	assign	values	to	each
element	of	the	array.

Code	Explanation:-

1.	 First,	we	are	setting	the	number	of	elements	the	array	will	hold	to	3.	So	in	the
square	brackets,	we	are	saying	that	the	array	will	hold	3	elements.

2.	 Then	we	are	assigning	values	to	each	individual	element	of	the	array.	We	can
do	this	by	specifying	the	variable	name	+	the	index	position	in	the	array.

So	values[0]	means	that	we	are	storing	a	value	in	the	first	position	of	the	array.
Similarly	to	access	the	second	position,	we	use	the	notation	of	values[1]	and	so	on
and	so	forth.

Note:	-	In	Arrays,	the	index	position	starts	from	.

Step	3)	Let’s	now	display	the	individual	elements	of	the	array	in	the	Console.
Let’s	add	the	below	code	to	achieve	this.

Code	Explanation:-

This	is	the	simple	part	wherein	we	just	use	the	Console.Write	method	to	send	each
value	of	the	element	to	the	console.

Note	that	again	,	we	are	accessing	each	element	with	the	help	of	the	array	variable
name	along	with	the	index	position.

If	the	above	code	is	entered	properly	and	the	program	is	executed,	the	following
output	will	be	displayed.

Output:

From	the	output,	you	can	see	all	the	values	of	the	array	being	displayed	in	the
Console.

Summary

A	Console	application	is	one	that	can	be	made	to	run	in	the	command	prompt
on	a	windows	machine.
The	Console.write	method	can	be	used	to	write	content	to	the	console.
The	basic	data	types	available	in	C#	are	Integer,	Double,	Boolean,	and	String.
Enumerations	are	used	to	declare	a	set	of	Constant	values.	In	C#	enumerations
are	declared	with	the	use	of	the	enum	keyword.
The	various	operators	available	in	C#	are	broadly	classified	into	the	categories
of	Arithmetic,	Relational,	and	Logical	operators.
Variables	are	used	to	point	to	memory	locations	which	contain	values	of	a
particular	data	type.
Arrays	are	used	to	store	elements	of	the	same	type.	Individual	elements	of	the
array	can	be	assigned	values.

Chapter	4:	Class	and	Object
C#	is	based	on	the	C++	programming	language.	Hence,	the	C#	programming
language	has	in-built	support	for	classes	and	objects.	Class	is	nothing	but	an
encapsulation	of	properties	and	methods	that	are	used	to	represent	a	real-time
entity.

For	an	example,	if	you	want	to	work	with	employee’s	data	in	a	particular
application.

The	properties	of	the	employee	would	be	the	ID	and	name	of	the	employee.	The
methods	would	include	the	entry	and	modification	of	employee	data.

All	of	these	operations	can	be	represented	as	a	class	in	C#.	In	this	chapter,	we	will
look	at	how	we	can	work	with	classes	and	objects	in	C#	in	more	detail.

What	are	classes	and	objects
Let’s	first	begin	with	classes.

As	we	discussed	earlier	classes	are	an	encapsulation	of	data
properties	and	data	methods.

The	properties	are	used	to	describe	the	data	the	class	will	be	holding.
The	methods	tells	what	are	the	operations	that	can	be	performed	on	the	data.

To	get	a	better	understanding	of	class	and	objects,	let’s	look	at	an	example	below
of	how	a	class	would	look	like.

The	name	of	the	class	is	“Tutorial”.	The	class	has	the	following	properties

1.	 Tutorial	ID	–	This	will	be	used	to	store	a	unique	number	which	would
represent	the	Tutorial.

2.	 Tutorial	Name	–	This	will	be	used	to	store	the	name	of	the	tutorial	as	a
string.

A	class	also	comprises	of	methods.	Our	class	has	the	following	methods,

1.	 SetTutorial	–	This	method	would	be	used	to	set	the	ID	and	name	of	the
Tutorial.	So	for	example,	if	we	wanted	to	create	a	tutorial	for	.Net,	we	might
create	an	object	for	this.	The	object	would	have	an	ID	of	let’s	say	1.	Secondly,
we	would	assign	a	name	of	“.Net”	as	the	name	of	the	Tutorial.	The	ID	value	of
1	and	the	name	of	“.Net”	would	be	stored	as	a	property	of	the	object.

2.	 GetTutorial	-	This	method	would	be	used	to	get	the	details	of	a	specific
tutorial.	So	if	we	wanted	to	get	the	name	of	the	Tutorial	,	this	method	would
return	the	string	“.Net”.

Below	is	a	snapshot	of	how	an	object	might	look	like	for	our	Tutorial	class.	We
have	3	objects,	each	with	their	own	respective	TutorialID	and	TutorialName.

Let’s	now	dive	into	Visual	Studio	to	create	our	class.	We	are	going	to	build	upon
our	existing	console	application	which	was	created	in	our	earlier	chapter.	We	will
create	a	class	in	Visual	Studio	for	our	current	application.

Let’s	follow	the	below-mentioned	steps	to	get	this	example	in	place.

Step	1)	The	first	step	involves	the	creation	of	a	new	class	within	our	existing
application.	This	is	done	with	the	help	of	Visual	Studio.

1.	 The	first	step	is	to	right	click	on	the	solution,	which	in	our	case	is
‘DemoApplication‘.	This	will	bring	up	a	context	menu	with	a	list	of	options.

2.	 From	the	context	menu	choose	the	option	Add->Class.	This	will	provide	the
option	to	add	a	class	to	the	existing	project.

Step	2)	The	next	step	is	to	provide	a	name	for	the	class	and	add	it	to	our	solution.

1.	 In	the	project	dialog	box,	we	first	need	to	provide	a	name	for	our	class.	Let’s
provide	a	name	of	Tutorial.cs	for	our	class.	Note	that	the	file	name	should
end	with	.cs	to	ensure	it	is	treated	as	a	proper	class	file.

2.	 When	we	click	the	Add	button,	the	class	will	be	added	to	our	solution.

If	the	above	steps	are	followed,	you	will	get	the	below	output	in	Visual	Studio.

Output:-

A	class	named	Tutorial.cs	will	be	added	to	the	solution.	If	you	open	the	file,	you
will	find	the	below	code	added	to	the	class	file.

Code	Explanation:-

1.	 The	first	part	contains	the	mandatory	modules	which	Visual	Studio	adds	to
any	.Net	file.	These	modules	are	always	required	to	ensure	any	.Net	program
runs	on	a	Windows	environment.

2.	 The	second	part	is	the	class	which	is	added	to	the	file.	The	class	name	is
‘Tutorial’	in	our	case.	This	is	the	name	which	was	specified	with	the	class	was
added	to	the	solution.

For	the	moment,	our	class	file	does	not	do	anything.	In	the	following	topics,	we
will	look	into	more	details	on	how	to	work	with	the	class.

Fields	and	methods
We	have	already	seen	how	fields	and	methods	are	defined	in	classes	in	the	earlier
topic.

For	our	Tutorial	class,	we	can	have	the	following	properties.

1.	 Tutorial	ID	–	This	will	be	used	to	store	a	unique	number	which	would
represent	the	Tutorial.

2.	 Tutorial	Name	–	This	will	be	used	to	store	the	name	of	the	tutorial	as	a	string.

Our	Tutorial	class	can	also	have	the	below-mentioned	methods.

1.	 SetTutorial	–	This	method	would	be	used	to	set	the	ID	and	name	of	the
Tutorial.

2.	 GetTutorial	-	This	method	would	be	used	to	get	the	details	of	a	specific
tutorial.

Let’s	now	see	how	we	can	incorporate	fields	and	methods	in	our	code.

Step	1)	The	first	step	is	to	ensure	the	Tutorial	class	has	the	right	fields	and
methods	defined.	In	this	step,	we	add	the	below	code	to	the	Tutorial.cs	file.

Code	Explanation:-

1.	 The	first	step	is	to	add	the	fields	of	TutorialID	and	TutorialName	to	the	class
file.	Since	the	TutorialID	field	will	be	a	number,	we	define	it	as	an	Integer,
while	TutorialName	will	be	defined	as	string.

2.	 Next,	we	define	the	SetTutorial	method.	This	method	accepts	2	parameters.
So	if	Program.cs	calls	the	SetTutorial	method,	it	would	need	to	provide	the
values	to	these	parameters.	These	values	will	be	used	to	set	the	fields	of	the

Tutorial	object.
Note:-Let’s	take	an	example	and	assume	our	Program.cs	file	calls	the
SetTutorial	with	the	parameters	“1”	and	“.Net”.	The	below	steps	would	be
executed	as	a	result	of	this,
a.	 The	value	of	pID	would	become	1
b.	 The	value	of	pName	would	be	.Net.
c.	 In	the	SetTutorial	method,	these	values	would	then	be	passed	to
TutorialID	and	TutorialName.

d.	 So	now	TutorialID	would	have	a	value	of	1	and	TutorialName	would	have
a	value	of	“.Net”.

3.	 Here	we	set	the	fields	of	the	Tutorial	class	to	the	parameters	accordingly.	So
we	set	TutorialID	to	pID	and	TutorialName	to	Pname.

4.	 We	then	define	the	GetTutorial	method	to	return	value	of	the	type	“String”.
This	method	will	be	used	to	return	the	TutorialName	to	the	calling	program.
Likewise,	you	can	also	get	the	tutorial	id	with	method	Int	GetTutorial

5.	 Here	we	return	the	value	of	the	TutorialName	field	to	the	calling	program.

Step	2)	Now	let’s	add	code	to	our	Program.cs,	which	is	our	Console	application.
The	Console	application	will	be	used	to	create	an	object	of	the	“Tutorial	class”	and
call	the	SetTutorial	and	GetTutorial	methods	accordingly.

(Note:-	An	object	is	an	instance	of	a	class	at	any	given	time.	The	difference
between	a	class	and	an	object	is	that	the	object	actually	contains	values	for	the
properties.)

Code	Explanation:-

1.	 The	first	step	is	to	create	an	object	for	the	Tutorial	class.	Mark	here	that	this
is	done	by	using	the	keyword	‘new’.	The	‘new’	keyword	is	used	to	create	an
object	from	a	class	in	C#.	The	object	is	then	assigned	to	the	pTutor	variable.

2.	 The	method	SetTutorial	is	then	called.	The	parameters	of	1	and	“.Net”	are
passed	to	the	SetTutorial	method.	These	will	then	be	used	to	set	the
“TutorialID”	and	“TutorialName”	fields	of	the	class	accordingly.

3.	 We	then	use	the	GetTutorial	method	of	the	Tutorial	class	to	get	the
TutorialName.	This	is	then	displayed	to	the	console	via	the
Console.WriteLine	method.

If	the	above	code	is	entered	properly	and	the	program	is	run	the	following	output
will	be	displayed.

Output:

From	the	output,	you	can	clearly	see	that	the	string	“.Net”	was	returned	by	the
GetTutorial	method.

Access	Modifiers
Access	Modifiers	are	used	to	define	the	visibility	of	a	class	property	or	method.
There	are	times	when	you	may	not	want	other	programs	to	see	the	properties	or
the	methods	of	class.	In	such	cases,	C#	gives	the	ability	to	put	modifiers	on	class
properties	and	methods.	The	class	modifiers	have	the	ability	to	restrict	access	so
that	other	programs	cannot	see	the	properties	or	methods	of	a	class.

There	are	generally	3	types	of	access	modifiers.	They	are	explained	below.

1.	 Private	–	When	this	access	modifier	is	attached	to	either	a	property	or	a
method,	it	means	that	those	members	cannot	be	accessed	from	any	external
program.
Let’s	take	an	example	and	see	what	happens	when	we	use	the	private	access
modifier.
Let’s	modify	the	current	code	in	our	Tutorial.cs	file.	In	the	SetTutorial
method,	let’s	change	the	public	keyword	to	private.

Now	let’s	switchover	to	our	Program.cs	file.	You	will	notice	that	there	is	a	red
squiggly	line	under	the	SetTutorial	method.
Since	we	have	now	declared	the	SetTutorial	method	as	private	in	our	Tutorial
class,	Visual	Studio	has	detected	this.	It	has	told	the	user	by	highlighting	it
that	now	this	method	will	not	work	from	the	Program.cs	file.

2.	 Public	–	When	this	access	modifier	is	attached	to	either	a	property	or	a
method,	it	means	that	those	members	can	be	accessed	from	any	external
program.	We	have	already	seen	this	in	our	earlier	examples.

Since	we	have	defined	our	methods	as	public	in	the	Tutorial	class,	they	have
the	ability	to	be	accessed	from	the	Program.cs	file.

3.	 Protected	-	When	this	access	modifier	is	attached	to	either	a	property	or	a
method,	it	means	that	those	members	can	be	accessed	only	by	classes
inherited	from	the	current	class.	This	will	be	explained	in	more	detail	in	the
Inheritance	class.

C#	Constructor
Constructors	are	used	to	initialize	the	values	of	class	fields	when	their
corresponding	objects	are	created.	A	constructor	is	a	method	which	has	the	same
name	as	that	of	the	class.	If	a	constructor	is	defined	in	class,	then	it	will	the	first
method	which	is	called	when	an	object	is	created.	Suppose	if	we	had	a	class	called
Employee.	The	constructor	method	would	also	be	named	as	Employee().

The	following	key	things	need	to	be	noted	about	constructor	methods

1.	 The	access	modifier	for	the	constructor	needs	to	be	made	as	public.
2.	 There	should	be	no	return	type	for	the	constructor	method.

Let’s	now	see	how	we	can	incorporate	the	user	of	constructors	in	our	code.	We	will
use	constructors	to	initialize	the	TutorialID	and	TutorialName	fields	to	some
default	values	when	the	object	is	created.

Step	1)	The	first	step	is	to	create	the	constructor	for	our	Tutorial	class.	In	this
step,	we	add	the	below	code	to	the	Tutorial.cs	file.

Code	Explanation:-

1.	 We	first	add	a	new	method	which	has	the	same	name	as	that	of	the	class.
Because	it	is	the	same	name	as	the	class,	C#	treats	this	as	a	constructor
method.	So	now	whenever	the	calling	method	creates	an	object	of	this	class,
this	method	will	be	called	by	default.

2.	 In	the	Tutorial	constructor,	we	are	setting	the	value	of	TutorialID	to	0	and
TutorialName	to	“Default”.	So	whenever	an	object	is	created,	these	fields	will
always	have	these	default	values.

Now	let’s	switchover	to	our	Program.cs	file	and	just	remove	the	line,	which	calls
the	SetTutorial	method.	This	is	because	we	want	to	just	see	how	the	constructor
works.

Code	Explanation:-

1.	 The	first	step	is	to	create	an	object	for	the	Tutorial	class.	This	is	done	via	the
‘new’	keyword.

2.	 We	use	the	GetTutorial	method	of	the	Tutorial	class	to	get	the	TutorialName.
This	is	then	displayed	to	the	console	via	the	Console.WriteLine	method.

If	the	above	code	is	entered	properly	and	the	program	is	executed,	the	following
output	will	be	displayed.

Output:

From	the	output,	we	can	see	that	the	constructor	was	indeed	called,	and	that	the
value	of	the	TutorialName	was	set	to	“Default”.

Note:	Here	the	value	“default”	is	fetched	from	the	constructor.

C#	Inheritance
Inheritance	is	an	important	concept	in	C#.	Inheritance	is	a	concept	in	which	you
define	parent	classes	and	child	classes.

The	child	classes	inherits	methods	and	properties	of	the	parent	class,	but	at	the
same	time,	they	can	also	modify	the	behavior	of	the	methods	if	required.	The	child
class	can	also	define	methods	of	its	own	if	required.

You	will	get	a	better	understanding	if	we	see	this	action.

Let’s	now	see	how	we	can	incorporate	the	concept	of	inheritance	in	our	code.

Step	1)	The	first	step	is	to	change	the	code	for	our	Tutorial	class.	In	this	step,	we
add	the	below	code	to	the	Tutorial.cs	file.

Note	that	we	need	to	now	add	the	access	modifier	of	‘protected’	to	both	the
TutorialID	and	TutorialName	field.

Remember	we	had	mentioned	this	access	modifier	in	the	Access	Modifier	chapter.
Well	here	you	can	see	the	purpose	of	having	this.	Only	when	you	have	this	access
modifier	(protected),	the	child	class	be	able	to	use	the	fields	of	the	parent	class.

Step	2)	The	second	step	is	to	add	our	new	child	class.	The	name	of	this	class	will
be	“Guru99Tutorial”.	In	this	step,	we	add	the	below	code	to	the	Tutorial.cs	file.
The	code	should	be	placed	after	the	Tutorial	class	definition.

Code	Explanation:-

1.	 The	first	step	is	to	create	the	Guru99Tutorial	child	class.	We	also	need	to
mention	that	this	class	is	going	to	be	a	child	class	of	the	Tutorial	class.	This	is
done	by	the	‘:’	keyword.

2.	 Next,	we	are	defining	a	method	called	RenameTutorial.	It	will	be	used	to
rename	the	TutorialName	field	.This	method	accepts	a	string	variable	which
contains	the	new	name	of	the	Tutorial.

3.	 We	then	assigned	the	parameter	pNewName	to	the	TutorialName	field.

Note:	-	Even	though	we	have	not	defined	the	TutorialName	field	in	the
“Guru99Tutorial”	class,	we	are	still	able	to	access	this	field.	This	is	because	of	the
fact	that	“Guru99Tutorial”	is	a	child	class	of	Tutorial	class.	And	because	we	made
the	fields	of	the	Tutorial	class	as	protected,	they	can	be	accessed	by	this	class.

Step	3)	The	last	step	is	to	modify	our	main	Program.cs	file.	In	our	console
application,	we	are	going	to	make	an	object	of	the	Guru99Tutorial	class.	With	this
object,	we	are	going	to	call	the	RenameTutorial	method.	We	are	then	going	to
display	the	TutorialName	field	with	the	help	of	the	GetTutorial	method.

Code	Explanation:-

1.	 The	first	step	is	to	create	an	object	for	the	Guru99Tutorial	class.	This	is	done
via	the	‘new’	keyword.	Note	that	this	time	we	are	not	creating	an	object	of	the
Tutorial	class.

2.	 We	use	the	RenameTutorial	method	of	the	Guru99Tutorial	class	to	change
the	TutorialName	field.	We	pass	the	string	“.Net	by	Guru99”	to	the
RenameTutorial	method.

3.	 We	then	call	the	GetTutorial	method.	Note	that	even	though	this	method	is
not	defined	in	the	Guru99Tutorial	class,	we	are	still	able	to	access	this
method.	The	output	of	the	GetTutorial	method	is	then	displayed	to	the
console	via	the	Console.WriteLine	method.

If	the	above	code	is	entered	properly	and	the	program	is	executed	successfully,	the
following	output	will	be	displayed.

Output:

From	the	output,	we	can	clearly	see	that	the	TutorialName	field	was	renamed	to
“.Net	by	Guru99”.	This	was	made	possible	of	the	RenameTutorial	method	called
by	the	child	class.

C#	Polymorphism
Polymorphism	is	a	concept	wherein	a	method	can	be	defined	more	than	one	time.
But	each	time,	the	function	would	have	a	different	set	of	parameters	passed	on	to
it.

You	will	get	a	better	understanding	if	we	see	this	action.

Let’s	now	see,	how	we	can	incorporate	the	concept	of	Polymorphism	in	our	code.

Step	1)	The	first	step	is	to	change	the	code	for	our	Tutorial	class.	In	this	step,	we
add	the	below	code	to	the	Tutorial.cs	file.

Code	Explanation:-

1	&	2)	The	first	step	is	the	same	as	in	our	earlier	examples.	We	are	keeping	the
definition	of	the	SetTutorial	method	as	it	is.

3)	This	method	sets	the	TutorialID	and	the	TutorialName	based	on	the	parameters
pID	and	pName.

4)	This	is	where	we	make	a	change	to	our	class	wherein	we	add	a	new	method	with
the	same	name	of	SetTutorial.	Only	this	time	we	are	only	passing	one	parameter
which	is	the	pName.	In	this	method,	we	are	just	setting	the	field	of	TutorialName
to	pName.

Step	2)	The	last	step	is	to	modify	our	main	Program.cs	file.	In	our	console
application,	we	are	going	to	make	an	object	of	the	Guru99Tutorial	class.

Code	Explanation:-

1.	 In	the	first	step,	we	are	using	the	SetTutorial	method	with	2	parameters.
Where	we	are	passing	both	the	TutorialID	and	TutorialName	to	this	method.

2.	 In	the	second	step,	we	are	now	calling	the	SetTutorial	method	with	just	one
parameter.	We	are	just	passing	the	TutorialName	to	this	method.

If	the	above	code	is	entered	properly	and	the	program	is	run	the	following	output
will	be	displayed.	If	in	case	you	wanted	to	also	fetch	the	Tutorial	ID	along	with	the
Tutorial	Name	,	you	should	follow	the	below	step

1.	 Create	a	separate	method	called	public	int	GetTutorialID
2.	 In	that	method	write	the	code	line	“return	TutorialID.”	This	can	be	used	to

return	the	TutorialID	to	the	calling	program.

Output:

From	the	output,	we	can	clearly	see	that	both	methods	were	called	successfully.
Because	of	this,	the	strings	“First	Tutorial”	and	“Second	Tutorial”	were	sent	to	the
console.

C#	Abstract	classes
An	abstract	class	is	used	to	define	what	is	known	as	a	base	class.	A	base	class	is	a
class	which	has	the	most	basic	definition	of	a	particular	requirement.

A	typical	example	of	an	abstract	class	is	given	below.	Below	is	the	definition	of	a
class	called	‘Animal.‘	When	the	‘Animal’	class	is	defined,	there	is	nothing	known
about	the	animal,	whether	it	is	a	dog	or	a	cat.	The	method	called	description	is	just
a	generic	method	defined	for	the	class.

Now	when	it	is	known	what	exactly	the	Animal	is	going	to	be,	we	create	another
class	which	inherits	the	base	class.	If	we	know	that	the	animal	is	in	fact	a	Dog,	we
create	Dog	class	which	inherits	the	main	base	class.	The	key	difference	here	is	that
the	Dog	class	cannot	change	the	definition	of	the	Description	method	of	the
Animal	class.	It	has	to	define	its	own	method	called	Dog-Description.	This	is	the
basic	concept	of	abstract	classes.

Let’s	see	how	we	can	change	our	code	to	include	an	abstract	class.	Note	that	we
will	not	be	running	the	code,	because	there	is	nothing	that	can	be	run	using	an
abstract	class.

Step	1)	As	a	first	step,	let’s	create	an	abstract	class.	The	class	will	be	called
Tutorial	and	will	just	have	one	method.	All	the	code	needs	to	be	written	in	the
Program.cs	file.

Code	Explanation:-

1.	 We	first	define	the	abstract	class.	Note	the	use	of	the	abstract	keyword.	This
is	used	to	denote	that	the	class	is	an	abstract	class.

2.	 Next,	we	are	defining	our	method	which	does	nothing.	The	method	must
have	the	keyword	called	virtual.	This	means	that	the	method	cannot	be
changed	by	the	child	class.	This	is	a	basic	requirement	for	any	abstract	class.

Step	2)	Now	let’s	add	our	child	class.	This	code	is	added	to	the	Program.cs	file.

There	is	nothing	exceptional	about	this	code.	We	just	define	a	class	called
‘Guru99Tutorial’	which	inherits	the	abstract	Tutorial	class.	We	then	define	the

same	methods	as	we	have	been	using	from	before.

Note:	Here	we	cannot	change	the	definition	of	the	Set	method	which	was	defined
in	the	Tutorial	class.	In	the	Tutorial	class,	we	had	defined	a	method	called	‘Set’
(public	virtual	void	Set()).	Since	the	method	was	part	of	the	abstract	class,	we	are
not	allowed	to	define	the	Set	method	again	in	the	Guru99Tutorial	class.

C#	Interface
Interfaces	are	used	along	with	classes	to	define	what	is	known	as	a	contract.	A
contract	is	an	agreement	on	what	the	class	will	provide	to	an	application.

An	interface	declares	the	properties	and	methods.	It	is	up	to	the	class	to	define
exactly	what	the	method	will	do.

Let’s	look	at	an	example	of	an	interface	by	changing	the	classes	in	our	Console
application.	Note	that	we	will	not	be	running	the	code,	because	there	is	nothing
that	can	be	run	using	an	interface.

Let’s	create	an	interface	class.	The	class	will	be	called	“Guru99Interface.”	Our
main	class	will	then	extend	the	defined	interface.	All	the	code	needs	to	be	written
in	the	Program.cs	file.

Code	Explanation:-

1.	 We	first	define	an	interface	called	“Guru99Interface.”	Note	that	the	keyword
“interface”	is	used	to	define	an	interface.

2.	 Next,	we	are	defining	the	methods	that	will	be	used	by	our	interface.	In	this
case,	we	are	defining	the	same	methods	which	are	used	in	all	of	earlier
examples.	Note	that	an	interface	just	declares	the	methods.	It	does	not	define
the	code	in	them.

3.	 We	then	make	our	Guru99Tutorial	class	extend	the	interface.	Here	is	where
we	actually	write	the	code	that	defines	the	various	methods	declared	in	the
interface.	This	sort	of	coding	achieves	the	following

It	ensures	that	the	class,	Guru99Tutorial,	only	adds	the	code	which	is
necessary	for	the	methods	of	“SetTutorial”	and	“GetTutorial”	and	nothing	else.
It	also	ensures	that	the	interface	behaves	like	a	contract.	The	class	has	to	abide
by	the	contract.	So	if	the	contract	says	that	it	should	have	2	methods	called
“SetTutorial”	and	“GetTutorial,”	then	that	is	how	it	should	be.

Summary

The	class	is	an	encapsulation	of	data	properties	and	methods.	The	properties
are	used	to	define	the	type	of	data	in	the	class.	The	methods	define	the
operations	which	can	be	performed	on	the	data.
A	constructor	is	used	to	initialize	the	fields	of	a	class	whenever	an	object	is
created.
The	constructor	is	a	method	which	has	the	same	names	as	the	class	itself.
Inheritance	is	where	a	child	class	inherits	the	fields	and	methods	of	the	parent
class.	The	child	class	can	then	also	define	its	own	methods.
Polymorphism	is	the	concept	wherein	one	method	can	be	defined	multiple
times.	The	only	difference	is	the	number	of	parameters	which	are	passed	to	the
method.
An	abstract	class	is	a	base	class	which	has	the	very	basic	requirements	of	what
a	class	should	look	like.	It	is	not	possible	for	the	child	class	to	inherit	the
methods	of	the	base	class.
An	interface	defines	a	contract	which	the	class	will	comply	by.	The	interface
defines	what	are	the	operations	that	the	class	can	perform.

Chapter	5:	C#	Collections
In	our	previous	chapter,	we	have	learned	about	how	we	can	use	arrays	in	C#.	Let’s
have	a	quick	overview	of	it,	Arrays	in	programming	are	used	to	group	a	set	of
related	objects.	So	one	could	create	an	array	or	a	set	of	Integers,	which	could	be
accessed	via	one	variable	name.

Collections	are	similar	to	Arrays,	it	provide	a	more	flexible	way	of	working	with	a
group	of	objects.

In	arrays,	you	would	have	noticed	that	you	need	to	define	the	number	of	elements
in	an	array	beforehand.	This	had	to	be	done	when	the	array	was	declared.

But	in	a	collection,	you	don’t	need	to	define	the	size	of	the	collection	beforehand.
You	can	add	elements	or	even	remove	elements	from	the	collection	at	any	point	of
time.	This	chapter	will	focus	on	how	we	can	work	with	the	different	collections
available	in	C#.

C#	ArrayList
The	ArrayList	collection	is	similar	to	the	Arrays	data	type	in	C#.	The	biggest
difference	is	the	dynamic	nature	of	the	array	list	collection.

For	arrays,	you	need	to	define	the	number	of	elements	that	the	array	can	hold	at
the	time	of	array	declaration.	But	in	the	case	of	the	Array	List	collection,	this	does
not	need	to	be	done	beforehand.	Elements	can	actually	be	added	or	removed	from
the	Array	List	collection	at	any	point	of	time.	Let’s	look	at	the	operations	available
for	the	array	list	collection	in	more	detail.

1.	 Declaration	of	an	Array	List	–	The	declaration	of	an	ArrayList	is
provided	below.	An	array	list	is	created	with	the	help	of	the	ArrayList	Data
type.	The	“new”	keyword	is	used	to	create	an	object	of	an	Arraylist.	The	object
is	then	assigned	to	the	variable	a1.	So	now	the	variable	a1	will	be	used	to
access	the	different	elements	of	the	array	list.	

ArrayList	a1	=	new	ArrayList()

2.	 Adding	elements	to	an	array	–	The	add	method	is	used	to	add	an
element	to	the	ArrayList.	The	add	method	can	be	used	to	add	any	sort	of	data
type	element	to	the	array	list.	So	you	can	add	an	Integer,	or	a	string,	or	even	a
Boolean	value	to	the	array	list.	The	general	syntax	of	the	addition	method	is
given	below

ArrayList.add(element)

Below	are	some	examples	of	how	the	“add”	method	can	be	used.	The	add	method
can	be	used	to	add	various	data	types	to	the	Array	List	collection.

Below	you	can	see	examples	of	how	we	can	add	Integer’s	Strings	and	even	Boolean
values	to	the	Array	List	collection.

a1.add(1)	–	This	will	add	an	Integer	value	to	the	collection
a1.add(“Example”)	–	This	will	add	a	String	value	to	the	collection
a1.add(true)	–	This	will	add	a	Boolean	value	to	the	collection

Now	let’s	see	this	working	at	a	code	level.	All	of	the	below-mentioned	code	will	be
written	to	our	Console	application.	The	code	will	be	written	to	our	Program.cs	file.

In	the	program	below,	we	will	write	the	code	to	create	a	new	array	list.	We	will
also	show	to	add	elements	and	to	display	the	elements	of	the	Array	list.

Code	Explanation:-

1.	 The	first	step	is	used	to	declare	our	Array	List.	Here	we	are	declaring	a1	as	a
variable	to	hold	the	elements	of	our	array	list.

2.	 We	then	use	the	add	keyword	to	add	the	number	1	,	the	String	“Example”	and
the	Boolean	value	‘true’	to	the	array	list.

3.	 We	then	use	the	Console.WriteLine	method	to	display	the	value	of	each	array
lists	element	to	the	console.	You	will	notice	that	just	like	arrays,	we	can	access
the	elements	via	their	index	positions.	So	to	access	the	first	position	of	the
Array	List,	we	use	the	[0]	index	position.	And	so	on	and	so	forth.

If	the	above	code	is	entered	properly	and	the	program	is	run	the	following	output
will	be	displayed.

Output:

From	the	output,	you	can	clearly	see	that	all	of	the	elements	from	the	array	list	are
sent	to	the	console.

Let’s	look	at	some	more	methods	which	are	available	as	part	of	the	ArrayList.

Count	–	This	method	is	used	to	get	the	number	of	items	in	the	ArrayList
collection.	Below	is	the	general	syntax	of	this	statement.	ArrayList.Count()	–

This	method	will	return	the	number	of	elements	that	the	array	list	contains.
Contains	-	This	method	is	used	to	see	if	an	element	is	present	in	the	ArrayList
collection.	Below	is	the	general	syntax	of	this	statement
ArrayList.Contains(element)	–	This	method	will	return	true	if	the	element	is
present	in	the	list	,	else	it	will	return	false.
RemoveAt	-	This	method	is	used	to	remove	an	element	at	a	specific	position
in	the	ArrayList	collection.	Below	is	the	general	syntax	of	this	statement

ArrayList.RemoveAt(index)	–	This	method	will	remove	an	element	from	a	specific
position	of	the	Array	List.

Now	let’s	see	this	working	at	a	code	level.	All	of	the	below-mentioned	code	will	be
written	to	our	Console	application.	The	code	will	be	written	to	our	Program.cs	file.

In	the	below	program,	we	will	write	the	code	to	see	how	we	can	use	the	above-
mentioned	methods.

Code	Explanation:-

1.	 So	the	first	property	we	are	seeing	is	the	Count	property.	We	are	getting	the
Count	property	of	the	array	list	a1	and	then	writing	it	to	the	Console.

2.	 In	the	second	part,	we	are	using	the	Contains	method	to	see	if	the	arraylist	a1
contains	the	element	2.	We	then	write	the	result	to	the	Console	via	the
Writeline	command.

3.	 Finally	to	showcase	the	Remove	element	method	,	we	are	performing	the
below	steps,
a.	 First,	we	write	the	value	of	the	element	at	Index	position	1	of	the	array	list

to	the	console.
b.	 Then	we	remove	the	element	at	Index	position	1	of	the	array	list.

c.	 Finally,	we	again	write	the	value	of	the	element	at	Index	position	1	of	the
array	list	to	the	console.	This	set	of	steps	will	give	a	fair	idea	whether	the
remove	method	will	work	as	it	should	be.

If	the	above	code	is	entered	properly	and	the	program	is	run	the	following	output
will	be	displayed.

Output:

Why	the	last	value	is	true?

If	you	see	the	sequence	of	events	,	the	element	Example	is	removed	from	the	array
because	this	is	at	position	1.	Position	1	of	the	array	then	gets	replaced	by	what	was
in	position	2	earlier	which	the	value	‘true’

C#	Stack
The	stack	is	a	special	case	collection	which	represents	a	last	in	first	out	(LIFO)
concept.	To	first	understand	LIFO,	let’s	take	an	example.	Imagine	a	stack	of	books
with	each	book	kept	on	top	of	each	other.

The	concept	of	last	in	first	out	in	the	case	of	books	means	that	only	the	top	most
book	can	be	removed	from	the	stack	of	books.	It	is	not	possible	to	remove	a	book
from	between,	because	then	that	would	disturb	the	setting	of	the	stack.

Hence	in	C#,	the	stack	also	works	in	the	same	way.	Elements	are	added	to	the
stack,	one	on	the	top	of	each	other.	The	process	of	adding	an	element	to	the	stack
is	called	a	push	operation.	To	remove	an	element	from	a	stack,	you	can	also
remove	the	top	most	element	of	the	stack.	This	operation	is	known	as	pop.

Let’s	look	at	the	operations	available	for	the	Stack	collection	in	more	detail.

Declaration	of	the	stack	–	A	stack	is	created	with	the	help	of	the	Stack	Data
type.	The	keyword	“new”	is	used	to	create	an	object	of	a	Stack.	The	object	is
then	assigned	to	the

variable	st.	Stack	st	=	new	Stack()

Adding	elements	to	the	stack	–	The	push	method	is	used	to	add	an
element	onto	the	stack.	The	general	syntax	of	the	statement	is	given	below.

Stack.push(element)

Removing	elements	from	the	stack	–	The	pop	method	is	used	to	remove
an	element	from	the	stack.	The	pop	operation	will	return	the	topmost	element
of	the	stack.	The	general	syntax	of	the	statement	is	given	below

Stack.pop()

Count	–	This	property	is	used	to	get	the	number	of	items	in	the	Stack.	Below
is	the	general	syntax	of	this	statement.

Stack.Count

Contains	-	This	method	is	used	to	see	if	an	element	is	present	in	the	Stack.
Below	is	the	general	syntax	of	this	statement.	The	statement	will	return	true	if
the	element	exists,	else	it	will	return	the	value	false.

Stack.Contains(element)

Now	let’s	see	this	working	at	a	code	level.	All	of	the	below-mentioned	code	will	be
written	to	our	Console	application.	The	code	will	be	written	to	our	Program.cs	file.

In	the	below	program,	we	will	write	the	code	to	see	how	we	can	use	the	above-
mentioned	methods.

In	this	example,	we	will	see

How	a	stack	gets	created.
How	to	display	the	elements	of	the	stack	,	and	use	the	Count	and	Contain
methods.

Code	Explanation:-

1.	 The	first	step	is	used	to	declare	the	Stack.	Here	we	are	declaring	“st”	as	a
variable	to	hold	the	elements	of	our	stack.

2.	 Next,	we	add	3	elements	to	our	stack.	Each	element	is	added	via	the	Push
method.

3.	 Now	since	the	stack	elements	cannot	be	accessed	via	the	index	position	like
the	array	list,	we	need	to	use	a	different	approach	to	display	the	elements	of
the	stack.	The	Object	(obj)	is	a	temporary	variable,	which	is	declared	for
holding	each	element	of	the	stack.	We	then	use	the	foreach	statement	to	go
through	each	element	of	the	stack.	For	each	stack	element,	the	value	is
assigned	to	the	obj	variable.	We	then	use	the	Console.Writeline	command	to
display	the	value	to	the	console.

4.	 We	are	using	the	Count	property	(st.count)	to	get	the	number	of	items	in	the
stack.	This	property	will	return	a	number.	We	then	display	this	value	to	the

console.
5.	 We	then	use	the	Contains	method	to	see	if	the	value	of	3	is	present	in	our

stack.	This	will	return	either	a	true	or	false	value.	We	then	display	this	return
value	to	the	console.

If	the	above	code	is	entered	properly	and	the	program	is	run	the	following	output
will	be	displayed.

Output:

From	the	output,	we	can	clearly	see	that	the	elements	of	the	stack	are	displayed.
Also,	the	value	of	True	is	displayed	to	say	that	the	value	of	3	is	defined	on	the
stack.

Note:	You	have	noticed	that	the	last	element	pushed	onto	the	stack	is	displayed
first.	This	is	the	topmost	element	of	the	stack.	The	count	of	stack	elements	is	also
shown	in	the	output.

Now	let’s	look	at	the	“remove”	functionality.	We	will	see	the	code	required	to
remove	the	topmost	element	from	the	stack.

Code	Explanation:-

1.	 Here	we	just	issue	the	pop	method	which	is	used	to	remove	an	element	from
the	stack.

If	the	above	code	is	entered	properly	and	the	program	is	run,	the	following	output
will	be	displayed.

Output:

We	can	see	that	the	element	3	was	removed	from	the	stack.

C#	Queue
The	Queue	is	a	special	case	collection	which	represents	a	first	in	first	out	concept.
Imagine	a	queue	of	people	waiting	for	the	bus.	Normally,	the	first	person	who
enters	the	queue	will	be	the	first	person	to	enter	the	bus.	Similarly,	the	last	person
to	enter	the	queue	will	be	the	last	person	to	enter	into	the	bus.	Elements	are	added
to	the	stack,	one	on	the	top	of	each	other.

The	process	of	adding	an	element	to	the	queue	is	the	enqueuer	operation.	To
remove	an	element	from	a	queue,	you	can	use	the	dequeuer	operation.	The
operation	in	queues	are	similar	to	stack	we	saw	previously.

Let’s	look	at	the	operations	available	for	the	Queue	collection	in	more	detail.

Declaration	of	the	Queue	–	The	declaration	of	a	Queue	is	provided	below.
A	Queue	is	created	with	the	help	of	the	Queue	Data	type.	The	“new”	keyword	is
used	to	create	an	object	of	a	Queue.	The	object	is	then	assigned	to	the	variable
qt.

Queue	qt	=	new	Queue()

Adding	elements	to	the	Queue	–	The	enqueue	method	is	used	to	add	an
element	onto	the	queue.	The	general	syntax	of	the	statement	is	given	below.

Queue.enqueue(element)

Removing	elements	from	the	queue	–	The	dequeue	method	is	used	to
remove	an	element	from	the	queue.	The	dequeue	operation	will	return	the	last
element	of	the	queue.	The	general	syntax	of	the	statement	is	given	below

Queue.pop()

Count	–	This	property	is	used	to	get	the	number	of	items	in	the	queue.	Below
is	the	general	syntax	of	this	statement.

Queue.Count

Contains	-	This	method	is	used	to	see	if	an	element	is	present	in	the	Queue.
Below	is	the	general	syntax	of	this	statement.	The	statement	will	return	true	if
the	element	exists,	else	it	will	return	the	value	false.

Queue.Contains(element)

Now,	let’s	see	this	working	at	a	code	level.	All	of	the	below-mentioned	code	will	be
written	to	our	Console	application.

The	code	will	be	written	to	our	Program.cs	file.	In	the	below	program,	we	will
write	the	code	to	see	how	we	can	use	the	above-mentioned	methods.

In	this	example,	we	will	see	how	a	queue	gets	created.	Next,	we	will	see	how	to
display	the	elements	of	the	queue,	and	use	the	Count	and	Contain	methods.

Code	Explanation:-

1.	 The	first	step	is	used	to	declare	the	Queue.	Here	we	are	declaring	qt	as	a
variable	to	hold	the	elements	of	our	Queue.

2.	 Next,	we	add	3	elements	to	our	Queue.	Each	element	is	added	via	the
“enqueue”	method.

3.	 Now	one	thing	that	needs	to	be	noted	about	Queues	is	that	the	elements
cannot	be	accessed	via	the	index	position	like	the	array	list.	We	need	to	use	a
different	approach	to	display	the	elements	of	the	Queue.	So	here’s	how	we	go
about	displaying	the	elements	of	a	queue.

We	first	declare	a	temporary	variable	called	obj.	This	will	be	used	to	hold	each
element	of	the	Queue.
We	then	use	the	foreach	statement	to	go	through	each	element	of	the	Queue.
For	each	Queue	element,	the	value	is	assigned	to	the	obj	variable.
We	then	use	the	Console.Writeline	command	to	display	the	value	to	the
console.

4.	 We	are	using	the	“Count”	property	to	get	the	number	of	items	in	the	Queue.
This	property	will	return	a	number.	We	then	display	this	value	to	the	console.

5.	 We	then	use	the	“Contains”	method	to	see	if	the	value	of	3	is	present	in	our
Queue.	This	will	return	either	a	true	or	false	value.	We	then	display	this
return	value	to	the	console.

If	the	above	code	is	entered	properly	and	the	program	is	run	the	following	output
will	be	displayed.

Output:

From	the	output,	we	can	clearly	see	that	the	elements	of	the	Queue	are	displayed.
Note	that,	unlike	“stack”	in	“queue”	the	first	element	pushed	on	to	the	queue	is
displayed	first.	The	count	of	queue	elements	is	also	shown	in	the	output.	Also,	the
value	of	True	is	displayed	to	say	that	the	value	of	3	is	defined	on	the	queue.

Now	let’s	look	at	the	remove	functionality.	We	will	see	the	code	required	to
remove	the	last	element	from	the	queue.

Code	Explanation:-

1.	 Here	we	just	issue	the	“dequeue”	method,	which	is	used	to	remove	an
element	from	the	queue.	This	method	will	remove	the	first	element	of	the
queue.

If	the	above	code	is	entered	properly	and	the	program	is	run	the	following	output
will	be	displayed.

Output:

From	the	output,	we	can	see	that	the	first	element	which	was	added	to	the	queue,
which	was	the	element	1,	was	removed	from	the	queue.

C#	Hashtable
A	hash	table	is	a	special	collection	that	is	used	to	store	key-value	items.	So	instead
of	storing	just	one	value	like	the	stack,	array	list	and	queue,	the	hash	table	stores	2
values.	These	2	values	form	an	element	of	the	hash	table.

Below	are	some	example	of	how	values	of	a	hash	table	might	look	like.

{	“001”	,	“.Net”	}

{	“002”	,	“.C#”	}

{	“003”	,	“ASP.Net”	}

Above	we	have	3	key	value	pairs.	The	keys	of	each	element	are	001,	002	and	003
respectively.	The	values	of	each	key	value	pair	are	“.Net”,	“C#”	and	“ASP.Net”
respectively.

Let’s	look	at	the	operations	available	for	the	Hashtable	collection	in	more	detail.

Declaration	of	the	Hashtable	–	The	declaration	of	a	Hashtable	is	shown
below.	A	Hashtable	is	created	with	the	help	of	the	Hashtable	Data	type.	The
“new”	keyword	is	used	to	create	an	object	of	a	Hashtable.	The	object	is	then
assigned	to	the	variable	ht.

Hashtable	ht	=	new	Hashtable()

Adding	elements	to	the	Hashtable	–	The	Add	method	is	used	to	add	an
element	on	to	the	queue.	The	general	syntax	of	the	statement	is	given	below

HashTable.add(“key”,“value”)

Remember	that	each	element	of	the	hash	table	comprises	of	2	values,	one	is	the
key,	and	the	other	is	the	value.

Now,	let’s	see	this	working	at	a	code	level.	All	of	the	below-mentioned	code	will	be
written	to	our	Console	application.

The	code	will	be	written	to	our	Program.cs	file.	In	the	below	program,	we	will
write	the	code	to	see	how	we	can	use	the	above-mentioned	methods.

For	now	in	our	example,	we	will	just	look	at	how	we	can	create	a	hashtable	,	add
elements	to	the	hashtable	and	display	them	accordingly.

Code	Explanation:-

1.	 First,	we	declare	the	hashtable	variable	using	the	Hashtable	data	type	by
using	keyword	“New.”	The	name	of	the	variable	defines	is	‘ht’.

2.	 We	then	add	elements	to	the	hash	table	using	the	Add	method.	Remember
that	we	need	to	add	both	a	key	and	value	element	when	adding	something	to
the	hashtable.

3.	 There	is	no	direct	way	to	display	the	elements	of	a	hash	table.

In	order	to	display	the	hashtable	,	we	first	need	to	get	the	list	of	keys	(001,	002
and	003)	from	the	hash	table.
This	is	done	via	the	ICollection	interface.	This	is	a	special	data	type	which	can
be	used	to	store	the	keys	of	a	hashtable	collections.	We	then	assign	the	keys	of
the	hashtable	collection	to	the	variable	‘keys’.

4.	 Next	for	each	key	value,	we	get	the	associated	value	in	the	hashtable	by	using
the	statement	ht[k].

If	the	above	code	is	entered	properly	and	the	program	is	run	the	following	output
will	be	displayed.

Output:

Let’s	look	at	some	more	methods	available	for	hash	tables.

ContainsKey	-	This	method	is	used	to	see	if	a	key	is	present	in	the	Hashtable.
Below	is	the	general	syntax	of	this	statement.	The	statement	will	return	true	if
the	key	exists,	else	it	will	return	the	value	false.

Hashtable.Containskey(key)

ContainsValue	-	This	method	is	used	to	see	if	a	Value	is	present	in	the
Hashtable.	Below	is	the	general	syntax	of	this	statement.	The	statement	will
return	true	if	the	Value	exists,	else	it	will	return	the	value	false.

Hashtable.ContainsValue(key)

Let’s	change	the	code	in	our	Console	application	to	showcase	how	we	can	use	the
“Containskey”	and	“ContainsValue”	method.

Code	Explanation:-

1.	 First,	we	use	the	ContainsKey	method	to	see	if	the	key	is	present	in	the
hashtable.	This	method	will	return	true	if	the	key	is	present	in	the	hashtable.
This	method	should	return	true	since	the	key	does	exist	in	the	hashtable.

2.	 We	then	use	the	ContainsValue	method	to	see	if	the	value	is	present	in	the
hashtable.	This	method	will	return	‘true’	since	the	Value	does	exist	in	the
hashtable.

If	the	above	code	is	entered	properly	and	the	program	is	run	the	following	output
will	be	displayed.

Output:

From	the	output,	you	can	clearly	see	that	both	the	key	and	value	being	searched
are	present	in	the	hash	table.

Summary

The	Array	List	collection	is	used	to	store	a	group	of	elements.	The	advantage	of
the	Array	list	collection	is	that	it	is	dynamic	in	nature.	You	can	add	and	remove
elements	on	the	fly	to	the	array	list	collection.
A	Stack	is	based	on	the	last	in	first	out	concept.	The	operation	of	adding	an
element	to	the	stack	is	called	the	push	operation.	The	operation	of	removing	an
element	to	the	stack	is	called	the	pop	operation.
A	Queue	is	based	on	the	first	in	first	out	concept.	The	operation	of	adding	an
element	to	the	queue	is	called	the	enqueue	operation.	The	operation	of
removing	an	element	to	the	queue	is	called	the	dequeue	operation.
A	Hashtable	is	used	to	store	elements	which	comprises	of	key	values	pairs.	To
access	the	value	of	an	element	,	you	need	to	know	the	key	of	the	element.

Chapter	6:	Windows	Forms	Application

So	far	we	have	seen	how	to	work	with	C#	to	create	console	based	applications.	But
in	a	real	life	scenario	teams	normally	use	Visual	Studio	and	C#	to	create	either
Windows	Forms	or	Web-based	applications.

A	windows	form	application	is	any	application,	which	is	designed	to	run	on	a
computer.	It	will	not	run	on	web	browser	because	then	it	becomes	a	web
application.

This	chapter	will	focus	on	how	we	can	create	Windows-based	applications.	We	will
also	learn	some	basics	on	how	to	work	with	the	various	elements	of	Windows
applications.

Windows	Forms	Basics
A	Windows	forms	application	is	one	that	runs	on	the	desktop	computer.	A
Windows	forms	application	will	normally	have	a	collection	of	controls	such	as
labels,	textboxes,	list	boxes,	etc.

Below	is	an	example	of	a	simple	Windows	form	application.	It	shows	a	simple
Login	screen,	which	is	accessible	by	the	user.	The	user	will	enter	the	required
credentials	and	then	will	click	the	Login	button	to	proceed.

So	an	example	of	the	controls	available	in	the	above	application

1.	 This	is	a	collection	of	label	controls	which	are	normally	used	to	describe
adjacent	controls.	So	in	our	case,	we	have	2	textboxes,	and	the	labels	are	used
to	tell	the	user	that	one	textbox	is	for	entering	the	user	name	and	the	other
for	the	password.

2.	 The	2	textboxes	are	used	to	hold	the	username	and	password	which	will	be
entered	by	the	user.

3.	 Finally,	we	have	the	button	control.	The	button	control	will	normally	have
some	code	attached	to	perform	a	certain	set	of	actions.	So	for	example	in	the
above	case,	we	could	have	the	button	perform	an	action	of	validating	the	user
name	and	password	which	is	entered	by	the	user.

C#	Hello	World
Now	let’s	look	at	an	example	of	how	we	can	implement	a	simple	‘hello	world’
application	in	Visual	Studio.	For	this,	we	would	need	to	implement	the	below-
mentioned	steps

Step	1)	The	first	step	involves	the	creation	of	a	new	project	in	Visual	Studio.	After
launching	Visual	Studio,	you	need	to	choose	the	menu	option	New->Project.

Step	2)	The	next	step	is	to	choose	the	project	type	as	a	Windows	Forms
application.	Here	we	also	need	to	mention	the	name	and	location	of	our	project.

1.	 In	the	project	dialog	box,	we	can	see	various	options	for	creating	different
types	of	projects	in	Visual	Studio.	Click	the	Windows	option	on	the	left-hand
side.

2.	 When	we	click	the	Windows	options	in	the	previous	step,	we	will	be	able	to
see	an	option	for	Windows	Forms	Application.	Click	this	option.

3.	 We	then	give	a	name	for	the	application	which	in	our	case	is
DemoApplication.	We	also	need	to	provide	a	location	to	store	our	application.

4.	 Finally,	we	click	the	‘OK’	button	to	let	Visual	Studio	to	create	our	project.

If	the	above	steps	are	followed,	you	will	get	the	below	output	in	Visual	Studio.

Output:-

You	will	actually	see	a	Form	Designer	displayed	in	Visual	Studio.	It’s	on	this	Form
Designer	that	you	will	start	building	your	Windows	Forms	application.

In	the	Solution	explorer,	you	will	also	be	able	to	see	the	DemoApplication
Solution.	This	solution	will	contain	the	below	2	project	files

1.	 A	Form	application	called	Forms1.cs.	This	file	will	contain	all	of	the	code	for
the	Windows	Form	application.

2.	 The	Main	program	called	Program.cs	is	default	code	file	which	is	created
when	a	new	application	is	created	in	Visual	Studio.	This	code	will	contain	the
startup	code	for	the	application	as	a	whole.

On	the	right-hand	side	of	Visual	Studio,	you	will	also	see	a	ToolBox.	The	toolbox
contains	all	the	controls	which	can	be	added	to	a	Windows	Forms.	Controls	like	a
text	box	or	a	label	are	just	some	of	the	controls	which	can	be	added	to	a	Windows
Forms.

Below	is	a	screenshot	of	how	the	Toolbox	looks	like.

Step	3)	In	this	step,	we	will	now	add	a	label	to	the	Form	which	will	display	“Hello
World.”	From	the	toolbox	,	you	will	need	to	choose	the	Label	control	and	simply
drag	it	onto	the	Form.

Once	you	drag	the	label	to	the	form,	you	can	actually	see	the	label	embedded	on
the	form	as	shown	below.

Step	4)	The	next	step	is	to	actually	go	to	the	properties	of	the	control	and	Change
the	text	to	‘Hello	World’.

To	go	to	the	properties	of	control,	you	need	to	right-click	the	control	and	choose
the	Properties	menu	option

The	properties	panel	also	shows	up	in	Visual	Studio.	So	for	the	label	control,	in
the	properties	control,	go	to	the	Text	section	and	enter	“Hello	World”.
Each	Control	has	a	set	of	properties	which	describe	the	control.

If	you	follow	all	of	the	above	steps	and	run	your	program	in	Visual	Studio,	you	will
get	the	following	output

Output:-

In	the	output,	you	can	clearly	see	that	the	Windows	Form	is	displayed.	You	can
also	see	‘Hello	World’	is	displayed	on	the	form.

Adding	Controls	to	a	form
We	had	already	seen	how	to	add	a	control	to	a	form	when	we	added	the	label
control	in	the	earlier	section	to	display	“Hello	World.”

Let’s	look	at	the	other	controls	available	for	Windows	forms	and	see	some	of	their
common	properties.

In	our	example,	we	will	create	one	form	which	will	have	the	following
functionality.

1.	 The	ability	for	the	user	to	enter	name	and	address.
2.	 An	option	to	choose	the	city	in	which	the	user	resides	in
3.	 The	ability	for	the	user	to	enter	an	option	for	the	gender.
4.	 An	option	to	choose	a	course	which	the	user	wants	to	learn.	There	will

choices	for	both	C#	and	ASP.Net

So	let’s	look	at	each	control	in	detail	and	add	them	to	build	the	form	with	the
above-mentioned	functionality.

Group	Box	–	A	group	box	is	used	for	grouping	logical	controls	into	a	section.
Let’s	take	an	example,	if	you	had	a	collection	of	controls	for	entering	details	such
as	name	and	address	of	a	person.	Ideally,	these	are	details	of	a	person,	so	you
would	want	to	have	these	details	in	a	separate	section	on	the	Form.	For	this
purpose,	you	can	have	a	group	box.	Let’s	see	how	we	can	implement	this	with	an
example	shown	below

Step	1)	The	first	step	is	to	drag	the	Groupbox	control	onto	the	Windows	Form
from	the	toolbox	as	shown	below

Step	2)	Once	the	groupbox	has	been	added,	go	to	the	properties	window	by
clicking	on	the	groupbox	control.	In	the	properties	window,	go	to	the	Text
property	and	change	it	to	“User	Details”.

One	you	make	the	above	changes,	you	will	see	the	following	output

Output:-

In	the	output,	you	can	clearly	see	that	the	Groupbox	was	added	to	the	form.	You
can	also	see	that	the	text	of	the	groupbox	was	changed	to	“User	Details.”

Label	Control	–	Next	comes	the	Label	Control.	The	label	control	is	used	to
display	a	text	or	a	message	to	the	user	on	the	form.	The	label	control	is	normally

used	along	with	other	controls.	Common	examples	is	wherein	a	label	is	added
along	with	the	textbox	control.

The	label	gives	an	indication	to	the	user	on	what	is	expected	to	fill	up	in	the
textbox.	Let’s	see	how	we	can	implement	this	with	an	example	shown	below.	We
will	add	2	labels,	one	which	will	be	called	‘name’	and	the	other	called	‘address.’
They	will	be	used	in	conjunction	with	the	textbox	controls	which	will	be	added	in
the	later	section.

Step	1)	The	first	step	is	to	drag	the	label	control	on	to	the	Windows	Form	from
the	toolbox	as	shown	below.	Make	sure	you	drag	the	label	control	2	times	so	that
you	can	have	one	for	the	‘name’	and	the	other	for	the	‘address’.

Step	2)	Once	the	label	has	been	added,	go	to	the	properties	window	by	clicking	on
the	label	control.	In	the	properties	window,	go	to	the	Text	property	of	each	label
control.

One	you	make	the	above	changes,	you	will	see	the	following	output

Output:-

You	can	actually	see	the	label	controls	added	to	the	form.

Textbox	–	A	textbox	is	used	for	allowing	a	user	to	enter	some	text	on	the
forms	application.	Let’s	see	how	we	can	implement	this	with	an	example	shown
below.	We	will	add	2	textboxes	to	the	form	,	one	for	the	Name	and	the	other	for
the	address	to	be	entered	for	the	user

Step	1)	The	first	step	is	to	drag	the	textbox	control	onto	the	Windows	Form	from
the	toolbox	as	shown	below

Step	2)	Once	the	text	boxes	have	been	added,	go	to	the	properties	window	by
clicking	on	the	textbox	control.	In	the	properties	window,	go	to	the	Name	property
and	add	a	meaningful	name	to	each	textbox.	For	example,	name	the	textbox	for
the	user	as	txtUser	and	that	for	the	address	as	txtAddress.	A	naming	convention
and	standard	should	be	made	for	controls	because	it	becomes	easier	to	add	extra
functionality	to	these	controls,	which	we	will	see	later	on.

One	you	make	the	above	changes,	you	will	see	the	following	output

Output:-

In	the	output,	you	can	clearly	see	that	the	Textboxes	was	added	to	the	form.

List	box	–	A	Listbox	is	used	to	showcase	a	list	of	items	on	the	Windows	form.
Let’s	see	how	we	can	implement	this	with	an	example	shown	below.	We	will	add	a
list	box	to	the	form	to	store	some	city	locations.

Step	1)	The	first	step	is	to	drag	the	list	box	control	onto	the	Windows	Form	from
the	toolbox	as	shown	below

Step	2)	Once	the	list	box	has	been	added,	go	to	the	properties	window	by	clicking
on	the	list	box	control.

1.	 First,	change	the	property	of	the	Listbox	box	control	,	in	our	case	we	have
changed	this	to	lstCity

2.	 Click	on	the	Items	property.	This	will	allow	you	to	add	different	items	which
can	show	up	in	the	list	box.	In	our	case,	we	have	selected	items	“collection”.

3.	 In	the	String	Collection	Editor,	which	pops	up,	enter	the	city	names.	In	our
case,	we	have	entered	“Mumbai”,	“Bangalore”	and	“Hyderabad”.

4.	 Finally,	click	on	the	‘OK’	button.

One	you	make	the	above	changes,	you	will	see	the	following	output

Output:-

In	the	output,	you	can	clearly	see	that	the	Listbox	was	added	to	the	form.	You	can
also	see	that	the	list	box	has	been	populated	with	the	city	values.

RadioButton	-	A	Radiobutton	is	used	to	showcase	a	list	of	items	out	of	which	the
user	can	choose	one.	Let’s	see	how	we	can	implement	this	with	an	example	shown
below.	We	will	add	a	radio	button	for	a	male/female	option.

Step	1)	The	first	step	is	to	drag	the	‘radiobutton’	control	onto	the	Windows	Form
from	the	toolbox	as	shown	below.

Step	2)	Once	the	Radiobutton	has	been	added,	go	to	the	properties	window	by
clicking	on	the	Radiobutton	control.

1.	 First,	you	need	to	change	the	text	property	of	both	Radio	controls.	Go	the
properties	windows	and	change	the	text	to	male	of	one	radiobutton	and	the
text	of	the	other	to	female.

2.	 Similarly,	change	the	name	property	of	both	Radio	controls.	Go	the
properties	windows	and	change	the	name	to	‘rdMale’	of	one	radiobutton	and
to	‘rdfemale’	for	the	other	one.

One	you	make	the	above	changes,	you	will	see	the	following	output

Output:-

You	will	see	the	Radio	buttons	added	to	the	Windows	form.

Checkbox	-	A	checkbox	is	used	to	provide	a	list	of	options	in	which	the	user	can
choose	multiple	choices.	Let’s	see	how	we	can	implement	this	with	an	example
shown	below.	We	will	add	2	checkboxes	to	our	Windows	forms.	These	checkboxes
will	provide	an	option	to	the	user	on	whether	they	want	to	learn	C#	or	ASP.Net.

Step	1)	The	first	step	is	to	drag	the	checkbox	control	onto	the	Windows	Form
from	the	toolbox	as	shown	below

Step	2)	Once	the	checkbox	has	been	added,	go	to	the	properties	window	by
clicking	on	the	Checkbox	control.

In	the	properties	window,

1.	 First,	you	need	to	change	the	text	property	of	both	checkbox	controls.	Go	the
properties	windows	and	change	the	text	to	C#	and	ASP.Net.

2.	 Similarly,	change	the	name	property	of	both	Radio	controls.	Go	the
properties	windows	and	change	the	name	to	chkC	of	one	checkbox	and	to
chkASP	for	the	other	one.

One	you	make	the	above	changes,	you	will	see	the	following	output

Output:-

Button	-	A	button	is	used	to	allow	the	user	to	click	on	a	button	which	would	then
start	the	processing	of	the	form.	Let’s	see	how	we	can	implement	this	with	an
example	shown	below.	We	will	add	a	simple	button	called	‘Submit’	which	will	be
used	to	submit	all	the	information	on	the	form.

Step	1)	The	first	step	is	to	drag	the	button	control	onto	the	Windows	Form	from
the	toolbox	as	shown	below

Step	2)	Once	the	Button	has	been	added,	go	to	the	properties	window	by	clicking
on	the	Button	control.

1.	 First,	you	need	to	change	the	text	property	of	the	button	control.	Go	the
properties	windows	and	change	the	text	to	‘submit’.

2.	 Similarly,	change	the	name	property	of	the	control.	Go	the	properties
windows	and	change	the	name	to	‘btnSubmit’.

One	you	make	the	above	changes,	you	will	see	the	following	output

Output:-

Congrats,	you	now	have	your	first	basic	Windows	Form	in	place.	Let’s	now	go	to
the	next	topic	to	see	how	we	can	do	Event	handling	for	Controls.

C#	Event	Handling	for	Controls
When	working	with	windows	form,	you	can	add	events	to	controls.	An	event	is
something	that	happens	when	an	action	is	performed.	Probably	the	most	common
action	is	the	clicking	of	a	button	on	a	form.	In	Windows	forms	,	you	can	add	code
which	can	be	used	to	perform	certain	actions	when	a	button	is	pressed	on	the
form.

Normally	when	a	button	is	pressed	on	a	form,	it	means	that	some	processing
should	take	place.

Let’s	take	a	look	at	one	of	the	event	and	how	it	can	be	handled	before	we	go	onto
the	button	event	scenario.

The	below	example	will	showcase	an	event	for	the	Listbox	control.	So	whenever	an
item	is	selected	in	the	listbox	control,	a	message	box	should	pop	up	which	shows
the	item	selected.	Let’s	perform	the	following	steps	to	achieve	this.

Step	1)	Double	click	on	the	Listbox	in	the	form	designer.	By	doing	this,	Visual
Studio	will	automatically	open	up	the	code	file	for	the	form.	And	it	will
automatically	add	an	event	method	to	the	code.	This	event	method	will	be
triggered,	whenever	any	item	in	the	listbox	is	selected.

Above	is	the	snippet	of	code	which	is	automatically	added	by	Visual	Studio,	when
you	double-click	the	List	box	control	on	the	form.	Now	let’s	add	the	below	section
of	code	to	this	snippet	of	code,	to	add	the	required	functionality	to	the	listbox
event.

1.	 This	is	the	event	handler	method	which	is	automatically	created	by	Visual
Studio	when	you	double-click	the	List	box	control.	You	don’t	need	to	worry
about	the	complexity	of	the	method	name	or	the	parameters	passed	to	the
method.

2.	 Here	we	are	getting	the	SelectedItem	through	the	lstCity.SelectedItem
property.	Remember	that	lstCity	is	the	name	of	our	Listbox	control.	We	then
use	the	GetItemText	method	to	get	the	actual	value	of	the	selected	item.	We
then	assign	this	value	to	the	text	variable.

3.	 Finally,	we	use	the	MessageBox	method	to	display	the	text	variable	value	to
the	user.

One	you	make	the	above	changes,	and	run	the	program	in	Visual	Studio	you	will
see	the	following	output

Output:-

From	the	output,	you	can	clearly	see	that	when	any	item	from	the	list	box	is
selected,	a	message	box	will	pops	up.	This	will	show	the	selected	item	from	the
listbox.

Now	let’s	look	at	the	final	control	which	is	the	button	click	Method.	Again	this
follows	the	same	philosophy.	Just	double	click	the	button	in	the	Forms	Designer
and	it	will	automatically	add	the	method	for	the	button	event	handler.	Then	you
just	need	to	add	the	below	code.

1.	 This	is	the	event	handler	method	which	is	automatically	created	by	Visual
Studio	when	you	double	click	the	button	control.	You	don’t	need	to	worry	on
the	complexity	of	the	method	name	or	the	parameters	passed	to	the	method.

2.	 Here	we	are	getting	values	entered	in	the	name	and	address	textbox.	The
values	can	be	taken	from	the	text	property	of	the	textbox.	We	then	assign	the
values	to	2	variables,	name,	and	address	accordingly.

3.	 Finally,	we	use	the	MessageBox	method	to	display	the	name	and	address
values	to	the	user.

One	you	make	the	above	changes,	and	run	the	program	in	Visual	Studio	you	will
see	the	following	output

Output:-

1.	 First,	enter	a	value	in	the	name	and	address	field.
2.	 Then	click	on	the	Submit	button

Once	you	click	the	Submit	button	,	a	message	box	will	pop,	and	it	will	correctly
show	you	what	you	entered	in	the	user	details	section.

Other	Controls
There	are	2	further	controls	we	can	look	at,	one	is	the	‘Tree	Control’	and	the	other
is	the	‘Image	control’.	Let’s	look	at	examples	of	how	we	can	implement	these
controls

TreeControl	–	The	tree	control	is	used	to	list	down	items	in	a	tree	like
fashion.	Probably	the	best	example	is	when	we	see	the	Windows	Explorer	itself.
The	folder	structure	in	Windows	explorer	is	like	a	tree	like	structure.

Let’s	see	how	we	can	implement	this	with	an	example	shown	below.

Step	1)	The	first	step	is	to	drag	the	Tree	control	onto	the	Windows	Form	from	the
toolbox	as	shown	below

Step	2)	The	next	step	is	start	adding	nodes	to	the	tree	collection	so	that	it	can
come	up	in	the	tree	accordingly.	First,	let’s	follow	the	below	sub-steps	to	add	a
root	node	to	the	tree	collection.

1.	 Go	to	the	properties	toolbox	for	the	tree	view	control.	Click	on	the	Node’s
property.	This	will	bring	up	the	TreeNode	Editor

2.	 In	the	TreeNode	Editor	click	on	the	Add	Root	button	to	add	a	root	node	to
the	tree	collection.

3.	 Next,	change	the	text	of	the	Root	node	and	provide	the	text	as	Root	and	click
‘OK’	button.	This	will	add	Root	node.

Step	3)	The	next	step	is	start	adding	the	child	nodes	to	the	tree	collection.	Let’s
follow	the	below	sub-steps	to	add	child	root	node	to	the	tree	collection.

1.	 First,	click	on	the	Add	child	button.	This	will	allow	you	to	add	child	nodes	to
the	Tree	collection.

2.	 For	each	child	node,	change	the	text	property.	Keep	on	repeating	the	previous
step	and	this	step	and	add	2	additional	nodes.	In	the	end,	you	will	have	3
nodes	as	shown	above,	with	the	text	as	Label,	Button,	and	Checkbox
respectively.

3.	 Click	on	the	OK	button

Once	you	have	made	the	above	changes,	you	will	see	the	following	output.

Output:-

You	will	actually	be	able	to	see	the	Tree	view	added	to	the	form.	When	you	run	the
Windows	form	application,	you	can	expand	the	root	node	and	see	the	child	nodes
in	the	list.

PictureBox	Control	–	This	control	is	used	to	add	images	to	the	Windows
Forms.	Let’s	see	how	we	can	implement	this	with	an	example	shown	below.

Step	1)	The	first	step	is	to	drag	the	PictureBox	control	onto	the	Windows	Form
from	the	toolbox	as	shown	below

Step	2)	The	next	step	is	to	actually	attach	an	image	to	the	picture	box	control.
This	can	be	done	by	following	the	below	steps.

1.	 First,	click	on	the	Image	property	for	the	PictureBox	control.	A	new	window
will	pops	out.

2.	 In	this	window,	click	on	the	Import	button.	This	will	be	used	to	attach	an
image	to	the	picturebox	control.

3.	 A	dialog	box	will	pop	up	in	which	you	will	be	able	to	choose	the	image	to
attach	the	picturebox

4.	 Click	on	the	OK	button

One	you	make	the	above	changes,	you	will	see	the	following	output

Output:-

From	the	output,	you	can	clearly	see	that	an	image	is	displayed	on	the	form.

Summary

A	Windows	forms	application	is	one	that	runs	on	the	desktop	of	a	computer.
Visual	Studio	along	with	C#	can	be	used	to	create	a	Windows	Forms
application.
Controls	can	be	added	to	the	Windows	forms	via	the	Toolbox	in	Visual	Studio.
Controls	such	as	labels	,	checkboxes	,	radio	buttons,	etc.	can	be	added	to	the
form	via	the	toolbox.
One	can	also	use	advanced	controls	like	the	treeview	control	and	the
picturebox	control.
Event	handlers	are	used	to	respond	to	events	generated	from	controls.	The
most	common	one	is	the	one	added	for	the	button	clicked	event.

Chapter	7:	Database	Access

Accessing	Data	from	a	database	is	one	of	the	important	aspects	of	any
programming	language.	It	is	an	absolute	necessity	for	any	programming	language
to	have	the	ability	to	work	with	databases.	C#	is	no	different.

It	has	the	ability	to	work	with	different	types	of	databases.	It	can	work	with	the
most	common	databases	such	as	Oracle	and	Microsoft	SQL	Server.

It	also	has	the	ability	to	work	with	new	forms	of	databases	such	as	MongoDB	and
MySQL.

Fundamentals	of	Database	connectivity
C#	and	.Net	has	the	ability	to	work	with	a	majority	of	databases,	the	most
common	being	Oracle	and	Microsoft	SQL	Server.	But	with	every	database,	the
logic	behind	working	with	all	of	them	is	mostly	the	same.

In	our	examples,	we	will	look	at	working	the	Microsoft	SQL	Server	as	our
database.	For	learning	purposes,	one	can	download	and	use	the	Microsoft	SQL
Server	Express	Edition,	which	is	a	free	database	software	provided	by
Microsoft.

In	working	with	databases,	the	following	are	the	concepts	which	are	common
across	all	databases.

1.	 Connection	–	To	work	with	the	data	in	a	database,	the	first	obvious	step	is
the	connection.	The	connection	to	a	database	normally	consists	of	the	below-
mentioned	parameters.
a.	 Database	name	or	Data	Source	–	The	first	important	parameter	is

the	database	name	to	which	the	connection	needs	to	be	established.	Each
connection	can	only	work	with	one	database	at	a	time.

b.	 Credentials	–	The	next	important	aspect	is	the	username	and	password
which	needs	to	be	used	to	establish	a	connection	to	the	database.	It
ensures	that	the	username	and	password	have	the	necessary	privileges	to
connect	to	the	database.

c.	 Optional	parameters	-	For	each	database	type,	you	can	specify	optional
parameters	to	provide	more	information	on	how	.net	should	handle	the
connection	to	the	database.	For	example,	one	can	specify	a	parameter	for
how	long	the	connection	should	stay	active.	If	no	operation	is	performed
for	a	specific	period	of	time,	then	the	parameter	would	determine	if	the
connection	has	to	be	closed.

2.	 Selecting	data	from	the	database	–	Once	the	connection	has	been
established,	the	next	important	aspect	is	to	fetch	the	data	from	the	database.
C#	has	the	ability	to	execute	‘SQL’	select	command	against	the	database.	The
‘SQL’	statement	can	be	used	to	fetch	data	from	a	specific	table	in	the
database.

3.	 Inserting	data	into	the	database	–	C#	can	also	be	used	to	insert	records
into	the	database.	Values	can	be	specified	in	C#	for	each	row	that	needs	to	be
inserted	into	the	database.

4.	 Updating	data	into	the	database	–	C#	can	also	be	used	to	update
existing	records	into	the	database.	New	values	can	be	specified	in	C#	for	each

row	that	needs	to	be	updated	into	the	database.
5.	 Deleting	data	from	a	database	–	C#	can	also	be	used	to	delete	records

into	the	database.	Select	commands	to	specific	which	rows	need	to	be	deleted
can	be	specified	in	C#.

Ok,	now	that	we	have	seen	the	theory	of	each	operations,	let’s	jump	into	the
further	sections	to	look	at	how	we	can	perform	database	operations	in	C#.

Connections	in	.Net
Let’s	now	look	at	the	code,	which	needs	to	be	kept	in	place	to	create	a	connection
to	a	database.	In	our	example,	we	will	connect	to	a	database	which	has	the	name
of	Demodb.	The	credentials	used	to	connect	to	the	database	are	given	below

Username	–	sa
Password	–	demo123

We	will	see	a	simple	Windows	forms	application	to	work	with	databases.	We	will
have	a	simple	button	called	“Connect”	which	will	be	used	to	connect	to	the
database.

So	let’s	follow	the	below	steps	to	achieve	this

Step	1)	The	first	step	involves	the	creation	of	a	new	project	in	Visual	Studio.	After
launching	Visual	Studio,	you	need	to	choose	the	menu	option	New->Project.

Step	2)	The	next	step	is	to	choose	the	project	type	as	a	Windows	Forms
application.	Here,	we	also	need	to	mention	the	name	and	location	for	our	project.

1.	 In	the	project	dialog	box,	we	can	see	various	options	for	creating	different
types	of	projects	in	Visual	Studio.	Click	the	Windows	option	on	the	left-hand
side.

2.	 When	we	click	the	Windows	options	in	the	previous	step,	we	will	be	able	to
see	an	option	for	Windows	Forms	Application.	Click	this	option.

3.	 We	then	give	a	name	for	the	application	which	in	our	case	is
“DemoApplication”.	We	also	need	to	provide	a	location	to	store	our
application.

4.	 Finally,	we	click	the	‘OK’	button	to	let	Visual	Studio	to	create	our	project.

Step	3)	Now	add	a	button	from	the	toolbox	to	the	Windows	form.	Put	the	text
property	of	the	Button	as	Connect.	This	is	how	it	will	look	like

Step	4)	Now	double	click	the	form	so	that	an	event	handler	is	added	to	the	code
for	the	button	click	event.	In	the	event	handler,	add	the	below	code.

Code	Explanation:-

1.	 The	first	step	is	to	create	variables,	which	will	be	used	to	create	the
connection	string	and	the	connection	to	the	SQL	Server	database.

2.	 The	next	step	is	to	actually	create	the	connection	string.	The	connecting
string	needs	to	be	specified	in	a	correct	way	in	order	for	C#	to	understand	the
connection	string.	The	connection	string	consists	of	the	following	parts
a.	 Data	Source	–	This	is	the	name	of	the	server	on	which	the	database

resides.	In	our	case,	it	resides	on	a	machine	called	WIN-	50GP30FGO75.
b.	 The	Initial	Catalog	is	used	to	specify	the	name	of	the	database

c.	 The	UserID	and	Password	are	the	credentials	required	to	connect	to	the
database.

3.	 Next,	we	assign	the	connecting	string	to	the	variable	cnn.	The	variable	cnn,
which	is	of	type	SqlConnection	is	actually	used	to	establish	the	connection	to
the	database.

4.	 Next,	we	use	the	Open	method	of	the	cnn	variable	to	open	a	connection	to	the
database.	We	then	just	display	a	message	to	the	user	that	the	connection	is
established.

5.	 Once	the	operation	is	completed	successfully,	we	then	close	the	connection	to
the	database.	It	is	always	a	good	practice	to	close	the	connection	to	the
database	if	nothing	else	is	required	to	be	done	on	the	database.

When	the	above	code	is	set,	and	the	project	is	executed	using	Visual	Studio,	you
will	get	the	below	output.	Once	the	form	is	displayed,	click	the	Connect	button.

Output:-

When	you	click	on	“connect”	button,	from	the	output	you	can	clearly	see	that	the
database	connection	was	established.	Hence,	the	message	box	was	displayed.

Access	data
To	showcase	how	data	can	be	accessed	using	C#,	let	us	assume	that	we	have	the
following	artifacts	in	our	database.

1.	 A	table	called	demotb.	This	table	will	be	used	to	store	the	ID	and	names	of
various	Tutorials.

2.	 The	table	will	have	2	columns,	one	called	“TutorialID”	and	the	other	called
“TutorialName.”

3.	 For	the	moment,	the	table	will	have	2	rows	as	shown	below.

TutorialID TutorialName

1 C#

2 ASP.Net

Let’s	change	the	code	in	our	form,	so	that	we	can	query	for	this	data	and	display
the	information	via	a	Messagebox.	Note	that	all	the	code	entered	below	is	a
continuation	of	the	code	written	for	the	data	connection	in	the	previous	section.

Step	1)	Let’s	split	the	code	into	2	parts	so	that	it	will	be	easy	to	understand	for	the
user.

The	first	will	be	to	construct	our	“select”	statement,	which	will	be	used	to	read
the	data	from	the	database.
We	will	then	execute	the	“select”	statement	against	the	database	and	fetch	all
the	table	rows	accordingly.

Code	Explanation:-

1.	 The	first	step	is	to	create	the	following	variables
a.	 SQLCommand	–	The	‘SQLCommand’	is	a	class	defined	within	C#.	This

class	is	used	to	perform	operations	of	reading	and	writing	into	the
database.	Hence,	the	first	step	is	to	make	sure	that	we	create	a	variable
type	of	this	class.	This	variable	will	then	be	used	in	subsequent	steps	of
reading	data	from	our	database.

b.	 The	datareader	object	is	used	to	get	all	the	data	specified	by	the	SQL
query.	We	can	then	read	all	the	table	rows	one	by	one	using	the	data
reader.

c.	 We	then	define	2	string	variables,	one	is	“SQL”	to	hold	our	SQL	command
string.	The	next	is	the	“Output”	which	will	contain	all	the	table	values.

2.	 The	next	step	is	to	actually	define	the	SQL	statement,	which	will	be	used
against	our	database.	In	our	case,	it	is	“Select	TutorialID,	TutorialName	from
demotb”.	This	will	fetch	all	the	rows	from	the	table	demotb.

3.	 Next,	we	create	the	command	object	which	is	used	to	execute	the	SQL
statement	against	the	database.	In	the	SQL	command,	you	have	to	pass	the
connection	object	and	the	SQL	string.

4.	 Next,	we	will	execute	the	data	reader	command,	which	will	fetch	all	the	rows
from	the	demotb	table.

5.	 Now	that	we	have	all	the	rows	of	the	table	with	us,	we	need	a	mechanism	to
access	the	row	one	by	one.	For	this,	we	will	use	the	while	statement.	The
while	statement	will	be	used	to	access	the	rows	from	the	data	reader	one	at	a
time.	We	then	use	the	GetValue	method	to	get	the	value	of	TutorialID	and
TutorialName.

Step	2)	In	the	final	step,	we	will	just	display	the	output	to	the	user	and	close	all
the	objects	related	to	the	database	operation.

Code	Explanation:-

1.	 We	will	continue	our	code	by	displaying	the	value	of	the	Output	variable
using	the	MessageBox.	The	Output	variable	will	contain	all	the	values	from
the	demotb	table.

2.	 We	finally	close	all	the	objects	related	to	our	database	operation.	Remember
this	is	always	a	good	practice.

When	the	above	code	is	set,	and	the	project	is	run	using	Visual	Studio,	you	will	get
the	below	output.	Once	the	form	is	displayed,	click	the	Connect	button.

Output:-

From	the	output,	you	can	clearly	see	that	the	program	was	able	to	get	the	values
from	the	database.	The	data	is	then	displayed	in	the	message	box.

C#	Insert	Database
Just	like	Accessing	data,	C#	has	the	ability	to	insert	records	into	the	database	as
well.	To	showcase	how	to	insert	records	into	our	database,	let’s	take	the	same	table
structure	which	was	used	above.

TutorialID TutorialName

1 C#

2 ASP.Net

Let’s	change	the	code	in	our	form,	so	that	we	can	insert	the	following	row	into	the
table

TutorialID TutorialName

3 VB.Net

So	let’s	add	the	following	code	to	our	program.	The	below	code	snippet	will	be
used	to	insert	an	existing	record	in	our	database.

Code	Explanation:-

1.	 The	first	step	is	to	create	the	following	variables
a.	 SQLCommand	–	This	data	type	is	used	to	define	objects	which	are	used	to

perform	SQL	operations	against	a	database.	This	object	will	hold	the	SQL
command	which	will	run	against	our	SQL	Server	database.

b.	 The	dataadapter	object	is	used	to	perform	specific	SQL	operations	such	as
insert,	delete	and	update	commands.

c.	 We	then	define	a	string	variable,	which	is	“SQL”	to	hold	our	SQL
command	string.

2.	 The	next	step	is	to	actually	define	the	SQL	statement	which	will	be	used
against	our	database.	In	our	case,	we	are	issuing	an	insert	statement,	which
will	insert	the	record	of	TutorialID=1	and	TutorialName=VB.Net

3.	 Next,	we	create	the	command	object	which	is	used	to	execute	the	SQL
statement	against	the	database.	In	the	SQL	command,	you	have	to	pass	the
connection	object	and	the	SQL	string

4.	 In	our	data	adapter	command,	we	now	associate	the	insert	SQL	command	to
our	adapter.	We	also	then	issue	the	ExecuteNonQuery	method	which	is	used
to	execute	the	Insert	statement	against	our	database.	The	‘ExecuteNonQuery’
method	is	used	in	C#	to	issue	any	DML	statements	against	the	database.	By
DML	statements,	we	mean	the	insert,	delete,	and	update	operation.	In	C#	,	if
you	want	to	issue	any	of	these	statements	against	a	table	,	you	need	to	use	the
ExecuteNonQuery	method.

5.	 We	finally	close	all	the	objects	related	to	our	database	operation.	Remember
this	is	always	a	good	practice.

When	the	above	code	is	set,	and	the	project	is	executed	using	Visual	Studio,	you
will	get	the	below	output.	Once	the	form	is	displayed,	click	the	Connect	button.

Output:-

If	you	actually	go	to	SQL	Server	Express	and	see	the	rows	in	the	demotb	table,	you
will	see	the	row	inserted	as	shown	below

C#	Update	Database
Just	like	Accessing	data,	C#	has	the	ability	to	update	existing	records	from	the
database	as	well.	To	showcase	how	to	update	records	into	our	database,	let’s	take
the	same	table	structure	which	was	used	above.

TutorialID TutorialName

1 C#

2 ASP.Net

3 VB.Net

Let’s	change	the	code	in	our	form,	so	that	we	can	update	the	following	row.	The
old	row	value	is	TutorialID	as	“3”	and	Tutorial	Name	as	“VB.Net”.	Which	we	will
update	it	to	“VB.Net	complete”	while	the	row	value	for	Tutorial	ID	will	remain
same.

Old	row

TutorialID TutorialName

3 VB.Net

New	row

TutorialID TutorialName

3 VB.Net	complete

So	let’s	add	the	following	code	to	our	program.	The	below	code	snippet	will	be
used	to	update	an	existing	record	in	our	database.

Code	Explanation:-

1.	 The	first	step	is	to	create	the	following	variables

a.	 SQLCommand	–	This	data	type	is	used	to	define	objects	which	are	used	to
perform	SQL	operations	against	a	database.	This	object	will	hold	the	SQL
command	which	will	run	against	our	SQL	Server	database.

b.	 The	dataadapter	object	is	used	to	perform	specific	SQL	operations	such	as
insert,	delete	and	update	commands.

c.	 We	then	define	a	string	variable,	which	is	SQL	to	hold	our	SQL	command
string.

2.	 The	next	step	is	to	actually	define	the	SQL	statement	which	will	be	used
against	our	database.	In	our	case	we	are	issuing	an	update	statement,	this	will
update	the	Tutorial	name	to	“VB.Net	Complete”	while	the	TutorialID	is
unchanged	and	kept	as	3.

3.	 Next,	we	will	create	the	command	object,	which	is	used	to	execute	the	SQL
statement	against	the	database.	In	the	SQL	command,	you	have	passed	the
connection	object	and	the	SQL	string.

4.	 In	our	data	adapter	command,	we	now	associate	the	insert	SQL	command	to
our	adapter.	We	also	then	issue	the	ExecuteNonQuery	method	which	is	used
to	execute	the	Update	statement	against	our	database.

5.	 We	finally	close	all	the	objects	related	to	our	database	operation.	Remember
this	is	always	a	good	practice.

When	the	above	code	is	set,	and	the	project	is	executed	using	Visual	Studio,	you
will	get	the	below	output.	Once	the	form	is	displayed,	click	the	Connect	button.

Output:-

If	you	actually	go	to	SQL	Server	Express	and	see	the	rows	in	the	demotb	table,	you
will	see	the	row	was	successfully	updated	as	shown	below.

Deleting	Records
Just	like	Accessing	data,	C#	has	the	ability	to	delete	existing	records	from	the
database	as	well.	To	showcase	how	to	delete	records	into	our	database,	let’s	take
the	same	table	structure	which	was	used	above.

TutorialID TutorialName

1 C#

2 ASP.Net

3 VB.Net	complete

Let’s	change	the	code	in	our	form,	so	that	we	can	delete	the	following	row

TutorialID TutorialName

3 VB.Net	complete

So	let’s	add	the	following	code	to	our	program.	The	below	code	snippet	will	be
used	to	delete	an	existing	record	in	our	database.

Code	Explanation:-

1.	 The	Key	difference	in	this	code	is	that	we	are	now	issuing	the	delete	SQL
statement.	The	delete	statement	is	used	to	delete	the	row	in	the	demotb	table
in	which	the	TutorialID	has	a	value	of	3.

2.	 In	our	data	adapter	command,	we	now	associate	the	insert	SQL	command	to
our	adapter.	We	also	then	issue	the	ExecuteNonQuery	method	which	is	used
to	execute	the	Delete	statement	against	our	database.

When	the	above	code	is	set,	and	the	project	is	executed	using	Visual	Studio,	you
will	get	the	below	output.	Once	the	form	is	displayed,	click	the	Connect	button.

Output:-

If	you	actually	go	to	SQL	Server	Express	and	see	the	rows	in	the	demotb	table,	you
will	see	the	row	was	successfully	deleted	as	shown	below.

Connecting	Controls	to	Data
In	the	earlier	sections,	we	have	seen	how	to	we	can	use	C#	commands	such	as
SQLCommand	and	SQLReader	to	fetch	data	from	a	database.	We	also	saw	how	we
read	each	row	of	the	table	and	use	a	messagebox	to	display	the	contents	of	a	table
to	the	user.

But	obviously,	users	don’t	want	to	see	data	sent	via	message	boxes	and	would
want	better	controls	to	display	the	data.	Let’s	take	the	below	data	structure	in	a
table

TutorialID TutorialName

1 C#

2 ASP.Net

3 VB.Net	complete

From	the	above	data	structure,	the	user	would	ideally	want	to	see	the	TutorialID
and	Tutorial	Name	displayed	in	a	textbox.	Secondly,	they	might	want	to	have
some	sort	of	button	control	which	could	allow	them	to	go	to	the	next	record	or	to
the	previous	record	in	the	table.	This	would	require	a	bit	of	extra	coding	from	the
developer’s	end.

The	good	news	is	that	C#	has	the	ability	to	reduce	the	additional	coding	effort	by
allowing	binding	of	controls	to	data.	What	this	means	is	that	C#	can	automatically
populate	the	value	of	the	textbox	as	per	a	particular	field	of	the	table.

So,	you	can	have	2	textboxes	in	a	windows	form.	You	can	then	link	one	text	box	to
the	TutorialID	field	and	another	textbox	to	the	TutorialName	field.	This	linking	is
done	in	the	Visual	Studio	designer	itself,	and	you	don’t	need	to	write	extra	code	for
this.

Visual	Studio	will	ensure	that	it	actually	writes	the	code	for	you	to	ensure	the
linkage	works.	Then	when	you	run	your	application,	the	textbox	controls	will
automatically	connect	to	the	database,	fetch	the	data	and	display	it	in	the	textbox
controls.	No	coding	is	required	from	the	developer’s	end	to	achieve	this.

Let’s	look	at	a	code	example	of	how	we	can	achieve	binding	of	controls.

In	our	example,	we	are	going	to	create	2	textboxes	on	the	windows	form.	They	are
going	to	represent	the	Tutorial	ID	and	Tutorial	Name	respectively.	They	will	be
bound	to	the	Tutorial	ID	and	TutorialName	fields	of	the	database	accordingly.

Let’s	follow	the	below-mentioned	steps	to	achieve	this.

Step	1)	Construct	the	basic	form.	In	the	form	drag	and	drop	2	components-	labels
and	textboxes.	Then	carry	out	the	following	substeps

1.	 Put	the	text	value	of	the	first	label	as	TutorialID
2.	 Put	the	text	value	of	the	second	label	as	TutorialName
3.	 Put	the	name	property	of	the	first	textbox	as	txtID
4.	 Put	the	name	property	of	the	second	textbox	as	txtName

Below	is	the	how	the	form	would	look	like	once	the	above-mentioned	steps	are
performed.

Step	2)	The	next	step	is	to	add	a	binding	Navigator	to	the	form.	The	binding
Navigator	control	has	the	ability	to	automatically	navigate	through	each	row	of	the
table.	To	add	the	binding	navigator,	just	go	to	the	toolbox	and	drag	it	to	the	form.

Step	3)	The	next	step	is	to	actually	add	a	binding	to	our	database.	This	can	be
done	by	going	to	any	of	the	Textbox	control	and	clicking	on	the	DataBindings-
>Text	property.	The	Binding	Navigator	is	used	to	establish	a	link	from	your
application	to	a	database.

When	you	perform	this	step,	Visual	Studio	will	automatically	add	the	required
code	to	the	application	to	make	sure	the	application	is	linked	to	the	database.
Normally	the	database	in	Visual	Studio	is	referred	to	as	a	Project	Data	Source.	So
to	ensure	the	connection	is	established	between	the	application	and	the	database,
the	first	step	is	to	create	a	project	data	source.

The	following	screen	will	show	up.	Click	on	the	link-	“Add	Project	Data	Source”.
When	you	click	on	the	project	data	source	,	you	will	be	presented	with	a	wizard,
this	will	allow	you	to	define	the	database	connection.

Step	4)	Once	you	click	on	the	Add	Project	Data	Source	link	,	you	will	be	presented
with	a	wizard	which	will	be	used	to	create	a	connection	to	the	demotb	database.
The	following	steps	show	in	detail	what	needs	to	be	configured	during	each	step	of
the	wizard.

1.	 In	the	screen	which	pops	up	,	choose	the	Data	Source	type	as	Database	and
then	click	on	next	button.

2.	 In	the	next	screen,	you	need	to	start	the	creation	of	the	connection	string	to
the	database.	The	connection	string	is	required	for	the	application	to
establish	a	connection	to	the	database.	It	contains	the	parameters	such	as
server	name,	database	name,	and	the	name	of	the	driver.

1.	 Click	on	the	New	connection	button
2.	 Choose	the	Data	Source	as	Microsoft	SQL	Server
3.	 Click	the	Continue	button.

3.	 Next,	you	need	to	add	the	credentials	to	connect	to	the	database
a.	 Choose	the	server	name	on	which	the	SQL	Server	resides
b.	 Enter	the	user	id	and	password	to	connect	to	the	database
c.	 Choose	the	database	as	demotb
d.	 Click	the	‘ok’	button.

4.	 In	this	screen,	we	will	confirm	all	the	settings	which	were	carried	on	the
previous	screens.
a.	 Choose	the	option	“Yes”	to	include	sensitive	data	in	the	connection	string
b.	 Click	on	the	“Next”	button.

5.	 In	the	next	screen,	click	on	the	“Next”	button	to	confirm	the	creation	of	the
connection	string

6.	 In	this	step,

1.	 Choose	the	tables	of	Demotb,	which	will	be	shown	in	the	next	screen.
2.	 This	table	will	now	become	an	available	data	source	in	the	C#	project

When	you	click	the	Finish	button,	Visual	Studio	will	now	ensure	that	the
application	is	able	to	query	all	the	rows	in	the	table	Demotb.

Step	5)	Now	that	the	data	source	is	defined,	we	now	need	to	connect	the
TutorialID	and	TutorialName	textbox	to	the	demotb	table.	When	you	click	on	the
Text	property	of	either	the	TutorialID	or	TutorialName	textbox	,	you	will	now	see
that	the	binding	source	to	Demotb	is	available.

For	the	first	text	box	choose	the	Tutorial	ID.	Repeat	this	step	for	the	second
textbox	and	choose	the	field	as	TutorialName.	The	below	steps	shows	how	we	can
navigate	to	each	control	and	change	the	binding	accordingly.

1.	 Click	on	the	Tutorial	ID	control.

2.	 In	the	Properties	window	,	you	will	see	the	properties	of	the	TutorialID
textbox.	Go	to	the	text	property	and	click	on	the	down	arrow	button.

3.	 When	you	click	the	down	arrow	button	,	you	will	see	the	demotbBinding
Source	option.	And	under	this	,	you	will	see	the	options	of	TutorialName	and
TutorialID.	Choose	the	Tutorial	ID	one.

Repeat	the	above	3	steps	for	the	Tutorial	Name	text	box.

1.	 So	click	on	the	Tutorial	Name	text	box
2.	 Go	to	the	properties	window
3.	 Choose	the	Text	property
4.	 Choose	the	TutorialName	option	under	demotbBindingSource

Step	6)	Next	we	need	to	change	the	Binding	Source	property	of	the
BindingNavigator	to	point	to	our	Demotb	data	source.	The	reason	we	do	this	is
because	the	Binding	Navigator	needs	to	also	know	which	table	it	needs	to	refer	to.

The	Binding	Navigator	is	used	to	select	the	next	or	previous	record	in	the	table.	So
even	though	the	data	source	is	added	to	the	project	as	a	whole	and	to	the	text	box
control,	we	still	need	to	ensure	the	Binding	Navigator	also	has	a	link	to	our	data
source.	In	order	to	do	this,	we	need	to	click	the	Binding	navigator	object,	go	to	the
Binding	Source	property	and	choose	the	one	that	is	available

Next,	we	need	to	go	to	the	Properties	window	so	that	we	can	make	the	change	to
Binding	Source	property.

When	all	of	the	above	steps	are	executed	successfully,	you	will	get	the	below-
mentioned	output.

Output:-

Now	when	the	project	is	launched,	you	can	see	that	the	textboxes	automatically
get	the	values	from	the	table.

When	you	click	the	Next	button	on	the	Navigator,	it	automatically	goes	to	the	next
record	in	the	table.	And	the	values	of	the	next	record	automatically	come	in	the
text	boxes

Using	DataGrids
Data	Grids	are	used	to	display	data	from	a	table	in	a	grid	like	format.	When	a	user
see’s	table	data,	they	normally	prefer	seeing	all	the	table	rows	in	one	shot.	This	can
be	achieved	if	we	can	display	the	data	in	a	grid	on	the	form.

C#	and	Visual	Studio	have	inbuilt	data	grids,	this	can	be	used	to	display	data.	Let’s
take	a	look	at	an	example	of	this.	In	our	example,	we	will	have	a	data	grid,	which
will	be	used	to	display	the	Tutorial	ID	and	Tutorial	Name	values	from	the	demotb
table.

Step	1)	Drag	the	DataGridView	control	from	the	toolbox	to	the	Form	in	Visual
Studio.	The	DataGridView	control	is	used	in	Visual	Studio	to	display	the	rows	of	a
table	in	a	grid-like	format.

Step	2)	In	the	next	step,	we	need	to	connect	our	data	grid	to	the	database.	In	the
last	section,	we	had	created	a	project	data	source.	Let’s	use	the	same	data	source
in	our	example.

1.	 First,	you	need	to	choose	the	grid	and	click	on	the	arrow	in	the	grid.	This	will
bring	up	the	grid	configuration	options.

2.	 In	the	configuration	options,	just	choose	the	data	source	as
demotbBindingSource	which	was	the	data	source	created	in	the	earlier
section.

If	all	the	above	steps	are	executed	as	shown,	you	will	get	the	below-mentioned
output.

Output:-

From	the	output,	you	can	clearly	see	that	the	grid	was	populated	by	the	values
from	the	database.

Summary

C#	has	the	ability	to	work	with	databases	such	as	Oracle	and	Microsoft	SQL
Server.
C#	has	all	the	commands	which	are	required	to	work	with	databases.	This
involves	establishing	a	connection	to	the	database.	You	can	perform	operations
such	as	select,	update,	insert	and	delete	using	the	commands	in	C#.
The	datareader	object	in	C#	is	used	to	hold	all	the	data	returned	by	the
database.	The	While	loop	in	C#	can	be	used	to	read	the	data	rows	one	at	a	time.
The	data	adapter	object	is	used	to	perform	SQL	operations	such	as	insert,
delete,	and	update	against	the	database.
C#	has	the	ability	to	bind	controls	to	the	various	fields	in	a	table.	They	are
bound	by	defining	a	data	source	in	C#.	The	data	source	is	used	to	pull	the	data
from	the	database	and	populate	them	in	the	controls.
The	binding	navigator	is	used	to	automatically	navigate	through	the	rows	in	a
table.
The	data	grid	in	C#	has	the	ability	to	connect	to	the	database	and	display	all
the	values	from	the	table	in	a	grid-like	format.

Chapter	8:	File	Operations

C#	has	a	wide	array	of	file	operations.	These	operations	include	opening	a	file,
reading	or	writing	to	a	file.

There	can	be	an	instances	wherein	you	want	to	work	with	files	directly,	in	which
case	you	would	use	the	file	operations	available	in	C#.

Some	of	the	basic	file	operations	are	mentioned	below.

1.	Reading	–	This	operation	is	the	basic	read	operation	wherein	data	is	read	from	a
file.

2.	Writing	-	This	operation	is	the	basic	write	operation	wherein	data	is	written	to	a
file.	By	default,	all	existing	contents	are	removed	from	the	file,	and	new	content	is
written.

1.	 Appending	–	This	operation	also	involves	writing	information	to	a	file.	The
only	difference	is	that	the	existing	data	in	a	file	is	not	overwritten.	The	new
data	to	be	written	is	added	at	the	end	of	the	file.

This	tutorial	focuses	on	how	to	work	with	files	in	C#.

Basic	File	I/O	Commands
C#	and	.Net	has	the	ability	to	work	with	files	with	the	help	of	several	File	I/O
commands.	Let’s	have	a	look	at	some	of	these	commands.	For	our	example,	we
will	assume	that	we	have	a	file	in	the	D	drive	called	Example.txt.

The	file	will	be	a	simple	text	file	and	have	2	lines	as	shown	below

Guru99	-	.Net
Guru99	-C#

For	our	example,	we	will	create	a	simple	Console	application	and	work	with	our
File	I/O	commands.	The	console	application	is	the	basic	one	which	was	created	in
the	earlier	chapters.	In	the	console	application,	all	code	is	written	to	the
Program.cs	file.

1.	 File.Exists	–	The	File	exists	method	is	used	to	check	if	a	particular	file
exists.	So	now	let’s	see	the	code	which	can	be	used	to	check	if	our	Example.txt
file	actually	exists	or	not.	Enter	the	below	code	in	the	program.cs	file.

Code	Explanation:-

1.	 First,	we	are	setting	a	string	variable	with	the	path	to	our	Example.txt	file.
2.	 Next,	we	use	the	File.Exists	method	to	check	if	the	file	really	exists	or	not.	If

the	File	exists,	a	true	value	will	be	returned.
3.	 If	we	get	a	true	value	and	the	file	does	exist,	then	we	write	the	message	“File

Exists”	to	the	console.

When	the	above	code	is	set,	and	the	project	is	executed	using	Visual	Studio,	you
will	get	the	below	output.

Output:-

From	the	above	output,	you	can	clearly	see	that	the	File.Exists	command	was
executed	successfully,	and	the	correct	message	was	displayed	in	the	console
window.

2.	 File.ReadAlllines	–	The	method	is	used	to	read	all	the	lines	one	by	one	in	a
file.	The	lines	are	then	stored	in	a	string	array	variable.	Let’s	look	at	an
example.	Enter	the	below	code	in	the	program.cs	file.

Code	Explanation:-

1.	 First,	we	are	declaring	a	string	array	variable.	This	will	be	used	to	store	the
result	which	will	be	returned	by	the	File.ReadAllLines	method.

2.	 Next,	we	use	the	File.ReadAllLines	method	to	read	all	the	lines	from	our	text
file.	The	result	is	then	passed	to	the	lines	variable.

3.	 Since	we	know	that	our	file	contains	only	2	lines,	we	can	access	the	value	of
the	array	variables	via	the	lines[0]	and	lines[1]	command.

When	the	above	code	is	set,	and	the	project	is	run	using	Visual	Studio,	you	will	get
the	below	output.

Output:-

From	the	output,	you	can	clearly	see	that	the	File.ReadAllLines	command
returned	both	the	lines	from	our	file	Example.txt

3.	 File.ReadAllText	–	This	method	is	used	to	read	all	the	lines	in	a	file	at
once.	The	lines	are	then	stored	in	a	string	variable.	Let’s	look	at	an	example.
Enter	the	below	code	in	the	program.cs	file.

Code	Explanation:-

1.	 First,	we	are	declaring	a	string	variable	called	Lines.	This	will	be	used	to	store
the	result	which	will	be	returned	by	the	File.ReadAllText	method.

2.	 Next,	we	use	the	File.ReadAllText	method	to	read	all	the	lines	from	our	text
file.	The	result	is	then	passed	to	the	lines	variable.

3.	 We	can	directly	use	the	Console.Writeline	method	to	display	the	value	of	the
Lines	variable.

When	the	above	code	is	set,	and	the	project	is	run	using	Visual	Studio,	you	will	get
the	below	output.

Output:-

From	the	output,	you	can	clearly	see	that	the	File.ReadAlltext	command	returned
both	the	lines	from	our	file	Example.txt

4.	 File.Copy	–	The	method	is	used	to	make	a	copy	of	an	existing	file.	Let’s	look
at	an	example.	Enter	the	below	code	in	the	program.cs	file.

Code	Explanation:-

1.	 First,	we	are	declaring	a	string	variable	called	path.	This	will	be	the	location
of	our	Example.txt	file.	This	file	will	be	the	source	file	used	for	the	copy
operation.

2.	 Next,	we	are	declaring	a	string	variable	called	copypath.	This	will	be	the
location	of	a	new	file	called	ExampleNew.txt	file.	This	will	be	the	destination
file	in	which	the	contents	will	be	written	from	the	source	file	Example.txt.

3.	 We	then	call	the	File.Copy	method	to	copy	the	file	Example.txt	file	to	the	file
ExampleNew.txt.

When	the	above	code	is	set,	and	the	project	is	run	using	Visual	Studio,	the	file
Example.txt	will	be	copied	to	ExampleNew.txt.

5.	 File.Delete	–	The	method	is	used	to	delete	an	existing	file.	Let’s	look	at	an
example.	Enter	the	below	code	in	the	program.cs	file.

Code	Explanation:-

1.	 First,	we	are	declaring	a	string	variable	called	path.	This	will	be	the	location
of	our	Example.txt	file.	This	is	the	file	which	will	be	deleted.

2.	 Next,	we	are	calling	the	File.Delete	method	to	delete	the	file.

When	the	above	code	is	set,	and	the	project	is	run	using	Visual	Studio,	the	file
Example.txt	will	be	deleted	from	the	D	drive.

Streams	–	Reading	and	Writing	to	files
In	C#	file	operations,	normally	streams	are	used	to	read	and	write	to	files.	A
stream	is	an	additional	layer	created	between	an	application	and	a	file.	The	stream
is	used	to	ensure	smooth	read	and	write	operations	to	the	file.

Streams	are	normally	used	when	reading	data	from	large	files.	By	using	streams,
the	data	from	large	files	in	broken	down	into	small	chunks	and	sent	to	the	stream.
These	chunks	of	data	can	then	be	read	from	the	application.

The	reason	for	breaking	it	down	into	small	chunks	is	because	of	the	performance
impact	of	reading	a	big	file	at	one	shot.	If	you	were	to	read	the	data	from	say,	a
100	MB	file	at	one	shot,	your	application	could	just	hang	and	become	unstable.
The	best	approach	is	then	to	use	streams	to	break	the	file	down	into	manageable
chunks.

So	when	a	write	operation	is	carried	out	on	the	file,	the	data	to	be	written,	is	first
written	to	the	stream.	From	the	stream,	the	data	is	then	written	to	the	file.	The
same	goes	for	the	read	operation.	In	the	read	operation,	data	is	first	transferred
from	the	file	to	the	stream.	The	data	is	then	read	from	the	application	via	the
stream.	Let’s	look	at	an	example	of	how	we	can	read	and	write	using	streams.

For	our	example,	we	will	assume	that	we	have	a	file	in	the	D	drive	called
Example.txt.	The	file	will	be	a	simple	text	file	and	have	2	lines	as	shown	below

Guru99	-	.Net
Guru99	-C#

For	our	example,	we	will	create	a	simple	Console	application	and	work	with	File
streams

1.	 Stream	Reader	–	The	stream	reader	is	used	to	read	data	from	a	file	using
streams.	The	data	from	the	file	is	first	read	into	the	stream.	Thereafter	the
application	reads	the	data	from	the	stream.

Let’s	look	at	an	example	of	how	we	can	use	streams	for	reading	data	from	a	file.
Enter	the	below	code	in	the	program.cs	file.

Code	Explanation:-

1.	 First,	we	are	declaring	a	stream	reader	object.	The	stream	reader	object	is
used	in	C#	to	define	a	stream	from	the	file	to	the	application.	The	data	will	be
pushed	from	the	file	to	the	stream	whenever	data	is	read	from	the	file.	The
File.OpenText	is	used	to	open	the	file	“Example.txt”	in	read-only	mode.	The
handler	to	the	file	is	then	sent	to	the	stream	reader	object.

2.	 Next,	we	are	defining	a	temporary	variable	‘s’	which	will	be	used	to	read	all
the	data	from	the	file.

3.	 We	then	use	the	stream	reader	method	ReadLine	to	read	each	line	from	the
stream	buffer.	When	we	perform	this	operation,	each	line	will	be	first
transferred	from	the	file	to	the	buffer.	Then	the	string	line	will	be	transferred
from	the	buffer	to	the	variable	‘s’.	We	then	write	the	contents	of	the	string	‘s’
to	the	console.

When	the	above	code	is	set,	and	the	project	is	run	using	Visual	Studio,	you	will	get
the	below	output.

Output:-

From	the	output,	you	can	clearly	see	that	the	Stream	Reader	read	both	the	lines
from	the	file.	Finally,	the	lines	of	the	string	read	from	the	stream	were	sent	to	the
Console.

2.	 Stream	Writer	–	The	stream	writer	is	used	to	write	data	to	a	file	using
streams.	The	data	from	the	application	is	first	written	into	the	stream.
Thereafter	the	stream	writes	the	data	to	the	file.	Let’s	look	at	an	example	of
how	we	can	use	streams	for	writing	data	from	a	file.	Enter	the	below	code	in
the	program.cs	file.

Code	Explanation:-

1.	 First,	we	are	declaring	a	stream	writer	object.	The	stream	writer	object	is
used	in	C#	to	define	a	stream.	The	stream	is	then	used	to	write	data	from	the
application	to	the	file.	The	data	will	be	pushed	from	the	application	to	the
stream	whenever	data	needs	to	be	written.	The	File.AppendText	command	is
used	to	open	the	file	“Example.txt”	in	an	append	mode.	The	handler	to	the
file	is	then	sent	to	the	stream	writer	object.

2.	 We	are	using	the	stream	write	method	Writeline	to	write	the	line	“Guru99	–
ASP.Net”	to	the	stream.	From	the	stream,	the	line	will	then	be	written	to	the
file.

3.	 We	then	close	the	stream	writer	after	writing	to	the	file.	It’s	normally	a	good
practice	to	close	file	handlers	when	the	file	is	no	longer	required	for	writing
purposes.

4.	 Finally,	we	are	reading	the	contents	of	the	file	again	and	writing	it	to	the
console	log.	This	is	to	check	as	to	whether	the	line	was	really	written	to	the
file.

When	the	above	code	is	set,	and	the	project	is	run	using	Visual	Studio,	you	will	get
the	below	output.

Output:-

From	the	output,	you	can	see	that	the	line	“Guru99	–	ASP.Net”	was	added	to	the
file	successfully.	All	the	3	lines	of	text	can	be	clearly	seen	in	the	console.

C#	Serialization
The	concept	of	Serialization	and	deserialization	is	used	whenever	data	pertaining
to	objects	have	to	be	sent	from	one	application	to	another.	Serialization	is	used	to
export	application	data	into	a	file.	The	destination	application	then	uses
deserialization	to	extract	the	data	from	the	application	for	further	use.

Serialization	is	a	concept	in	which	C#	class	objects	are	written	or	serialized	to	files.
Let’	say	you	had	a	C#	class	called	Tutorial.	And	the	class	has	2	properties	of	ID
and	Tutorials	name.

Serializing	can	be	used	to	directly	write	the	data	properties	of	the	Tutorial	class	to
a	file.	Deserialization	is	used	to	read	the	data	from	the	file	and	construct	the
Tutorial	object	again.

Let’s	look	at	an	example	of	how	we	can	achieve	this.

In	our	example,	we	are	going	to	perform	the	below	high-level	steps	in	the	code

1.	 Create	a	class	called	Tutorial	which	has	2	properties	,	namely	ID	and	Name
2.	 We	will	then	create	an	object	from	the	class	and	assign	a	value	of	“1”	to	the	ID

property	and	a	value	of	“.Net”	to	the	name	property.
3.	 We	will	then	use	serialization	to	serialize	the	above	object	to	a	file	called

Example.txt
4.	 Finally,	we	will	use	deserialization	to	deserialize	the	object	from	the	file	and

display	the	values	in	the	Console.

Enter	the	below	code	in	the	program.cs	file	of	the	console	application.

Step	1)	The	first	step	is	to	add	the	class	which	will	be	used	for	serialization

Code	Explanation:-

1.	 The	class	which	needs	to	be	serialized	needs	to	have	the	[Serializable]
attribute.	This	is	a	keyword	in	C#.	This	keyword	is	then	attached	to	the

Tutorial	class.	If	you	don’t	mention	this	attribute,	you	will	get	an	error	when
you	try	to	serialize	the	class.

2.	 Next	is	the	definition	of	the	class	which	will	be	serialized.	Here	we	are
defining	a	class	called	“Tutorial”	and	providing	2	properties,	one	is	“ID”	and
the	other	is	“Name.”

Step	2)	In	this	step,	first	we	will	create	the	object	of	the	Tutorial	class	and
serialize	it	to	the	file	called	Example.txt

Code	Explanation:-

1.	 First,	we	create	an	object	of	the	Tutorial	class.	We	then	assign	the	value	of	“1”
to	ID	and	“.net”	to	the	name	property.

2.	 We	then	use	the	formatter	class	which	is	used	to	serialize	or	convert	the
object	to	a	binary	format.	The	data	in	the	file	in	serialization	is	done	in	binary
format.	Next,	we	create	a	file	stream	object.	The	file	stream	object	is	used	to
open	the	file	Example.txt	for	writing	purposes.	The	keywords
FileMode.Create	and	FileMode.Write	is	used	to	specifically	mention	that	the
file	should	be	opened	for	writing	purposes.

3.	 Finally,	we	use	the	Serialize	method	to	transfer	the	binary	data	to	the	file.	We
then	close	the	stream,	since	the	write	operation	is	complete.

Step	3)	Finally	to	ensure	that	the	data	is	present	in	the	file,	we	use	deserialization
to	deserialize	the	object	from	the	file.

Code	Explanation:-

1.	 We	create	the	object	“stream”	to	open	the	file	Example.txt	in	read	only	mode.
2.	 We	then	use	the	formatter	class	which	is	used	to	deserialize	the	object,	which

is	stored	in	the	Example.txt	file.	The	object	returned	is	set	to	the	object
objnew.

3.	 Finally,	we	display	the	properties	of	the	object	“objnew”	to	the	console	using
the	“ID”	and	“name”	properties.

When	the	above	code	is	set,	and	the	project	is	run	using	Visual	Studio,	you	will	get
the	below	output.

Output:-

You	can	see	from	the	above	output	that	the	values	from	the	file	were	deserialized
properly	and	displayed	in	the	console.

Summary

C#	has	a	number	of	File	operations	which	can	be	performed	on	files.	Most	of
these	operations	are	part	of	the	class	File.
If	you	want	to	read	data	from	a	file,	you	can	use	the	File.ReadAlltext	or
File.ReadAllLines	methods.

Streams	are	used	as	an	intermediate	level	between	the	application	and	the	file.
A	StreamReader	is	used	whenever	data	is	required	to	be	read	from	a	file.
A	Streamwriter	is	used	whenever	data	needs	to	be	written	to	a	file.

Serialization	is	used	to	write	class	objects	to	files.	De-	Serialization	is	used	to
recover	the	objects	from	the	file.

