C#

PROGRAMMING
BEGINNERS

C# for Beginners: Learn in 1 Day

By Krishna Rungta

Copyright 2016 - All Rights Reserved — Krishna Rungta

ALL RIGHTS RESERVED. No part of this publication may be reproduced or
transmitted in any form whatsoever, electronic, or mechanical, including
photocopying, recording, or by any informational storage or retrieval system
without express written, dated and signed permission from the author.

DOWNLOAD PDF CODING BUGS £INOTES GALLERY

Table of Contents

Chapter 1: What is .NET Framework
1. What is the .NET Framework
2. Different versions of the .Net framework

Chapter 2: Download and Install Visual Studio

Chapter 3: Data Types

Building the first console application
Basic Data Types
. Enumeration

Variables and Operators
Flow Control and conditional statements

Arrays

S N -

Chapter 4: Class and Object
What are classes and objects
Fields and methods

Access Modifiers

Constructors

Inheritance

Polymorphism

Abstract classes

Interfaces

PN TP DN

Chapter 5: Collections

Chapter 6: Windows Forms Application

1. Windows Forms Basics
2. Hello World in Windows Forms

3. Adding Controls to a form

4. Event Handling for Controls
5. Other Controls

Chapter 7: Database Access

Fundamentals of Database connectivity
Connections in .Net

Accessing data

Inserting Records

Updating Records

Deleting Records

Connecting Controls to Data

Using DataGrids

N OO P~ W N

Chapter 8: File Operations

1. Basic File I/0 Commands

2. Streams — Reading and Writing to files
3. Serialization

Chapter 1: What is .NET Framework

The .Net framework is a software development platform developed by Microsoft.
The framework was meant to create applications, which would run on the
Windows Platform. The first version of the .Net framework was released in the
year 2000.

The version was called .Net framework 1.0. The .Net framework has come a long
way since then, and the current version is 4.6.1.

The .Net framework can be used to create both - Form based andWeb
based applications. Web services can also be developed using the .Net
framework.

The framework also supports various programming languages such as Visual
Basic and C#. So developers can choose and select the language to develop the
required application. In this chapter, you will learn some basics of the .Net
framework.

Net Framework Architecture

The basic architecture of the .Net framework is as shown below.

* WinForms

Language RLS:

* ADO.Net

I_| b ra ry » Framework Class Library

C I_R * Common Language Runtime

The architecture of the .Net framework is based on the following key components;

1. Common Language Runtime - The “Common Language Infrastructure”
or CLI is a platform on which the .Net programs are executed.

The CLI has the following key features:

¢ Exception Handling - Exceptions are errors which occur when the
application is executed.
Examples of exceptions are:
o If an application tries to open a file on the local machine, but the file is not
present.
o If the application tries to fetch some records from a database, but the
connection to the database is not valid.
e Garbage Collection - Garbage collection is the process of removing
unwanted resources when they are no longer required.
Examples of garbage collection are
o A File handle which is no longer required. If the application has finished all
operations on a file, then the file handle may no longer be required.
o The database connection is no longer required. If the application has
finished all operations on a database, then the database connection may no

longer be required.
e Working with Various programming languages —

As noted in an earlier section, a developer can develop an application in a variety
of .Net programming languages.

1. Language - The first level is the programming language itself, the most
common ones are VB.Net and C#.

2. Compiler — There is a compiler which will be separate for each
programming language. So underlying the VB.Net language, there will be a
separate VB.Net compiler. Similarly for C#, you will have another compiler.

3. Common Language Interpreter — This is the final layer in .Net which
would be used to run a .net program developed in any programming
language. So the subsequent compiler will send the program to the CLI layer
to run the .Net application.

CH

Compiler Complier

Common
Language
Interpreter

2. Class Library - The .NET Framework includes a set of standard class
libraries. A class library is a collection of methods and functions that can be

used for the core purpose.
For example, there is a class library with methods to handle all file level
operations. So there is a method which can be used to read the text from a
file. Similarly, there is a method to write text to a file.
Most of the methods are split into either the System.* or Microsoft.*
namespaces. (The asterisk * just means a reference to all of the methods that
fall under the System or Microsoft namespace)
A namespace is a logical separation of methods. We will learn these
namespaces more in detail in the subsequent chapters.

3. Languages - The types of applications that can be built in the .Net
framework are classified broadly into the following categories.

e WinForms — This is used for developing Forms-based applications, which
would run on an end user machine. Notepad is an example of a client-based
application.

e ASP.Net - This is used for developing web based applications, which are
made to run on any browser such as Internet Explorer, Chrome or Firefox.

o The Web application would be processed on a server, which would have
Internet Information Services Installed.

o Internet Information Services or IIS is a Microsoft component which is
used to execute an ASP.net application.

o The result of the execution is then sent to the client machines, and the
output is shown in the browser.

¢ ADO.Net - This technology is used to develop applications to interact with
Databases such as Oracle or Microsoft SQL Server.

Different versions of the .Net framework

Below is the table of .Net framework versions, which have been released with their
release dates. Every version has relevant changes to the framework.

For example, in framework 3.5 and onwards a key framework called the Entity
framework was released. This framework is used to change the approach in
which the applications are developed while working with databases.

Version number CLR version Release date
1.0 1.0 2002-02-13
1.1 1.1 2003-04-24
2.0 2.0 2005-11-07
3.0 2.0 2006-11-06
3.5 2.0 2007-11-19
4.0 4 2010-04-12
4.5 4 2012-08-15
4.5.1 4 2013-10-17
4.5.2 4 2014-05-05
4.6 4 2015-07-20
4.6.1 4 2015-11-17

The biggest advantage of the .Net framework is that it supports Windows
platform. Almost everyone works with Windows machines.

Microsoft always ensures that .Net frameworks are in compliance with all the
supported Windows operating systems.

The following design principles of the .Net framework is what makes it very
relevant to create .Net based applications.

1. Interoperability - The .Net framework provides a lot of backward support.
Suppose if you had an application built on an older version of the .Net
framework, say 2.0. And if you tried to run the same application on a
machine which had the higher version of the .Net framework, say 3.5. The
application would still work. This is because with every release, Microsoft
ensures that older framework versions gel well with the latest version.

2. Portability- Applications built on the .Net framework can be made to work
on any Windows platform. And now in recent times, Microsoft is also
envisioning to make Microsoft products work on other platforms, such as iOS
and Linux.

3. Security - The .NET Framework has a good security mechanism. The in-
built security mechanism helps in both validation and verification of
applications. Every application can explicitly define their security
mechanism. Each security mechanism is used to grant the user access to the
code or to the running program.

4. Memory management - The Common Language runtime does all the work
or memory management. The .Net framework has all the capability to see
those resources, which are not used by a running program. It would then
release those resources accordingly. This is done via a program called the
“Garbage Collector” which runs as part of the .Net framework.

The garbage collector runs at regular intervals and keeps on checking which
system resources are not utilized, and frees them accordingly.

5. Simplified deployment - The .Net framework also have tools, which can
be used to package applications built on the .Net framework. These packages
can then be distributed to client machines. The packages would then
automatically install the application.

Summary

e .Net is a programming language developed by Microsoft. It was designed to
build applications which could run on the Windows platform.

¢ The .Net programming language can be used to develop Forms based
applications, Web based applications and Web services.

¢ Developers can choose from a variety of programming languages available on
the .Net platform. The most common one’s are VB.Net and C#.

Chapter 2: Download and Install
Visual Studio

Microsoft Visual Studio is an integrated development environment (IDE) from
Microsoft. It is used to develop computer programs for Microsoft Windows. Visual
Studio is one stop shop for all applications built on the .Net platform. One can
develop, debug and run applications using Visual Studio.

Both Forms based and web based applications can be designed and developed
using this IDE. The Visual Studio has the below-mentioned features

1. Creation of an application in any .Net language — The Visual Studio
IDE can be used to create an application in any .Net language. Hence, a
developer can use C#, VB.Net or even F# to develop an application.

2. Creation of any application type — The Visual Studio IDE can be used to
create an application of any type. (Web-based application or Windows Forms
based application).

3. Debug Applications on the fly — Applications can be tested as they are
being built. The IDE allows one to run the program at any point of time
during the development process. Hence, a developer can check for any errors
during the development phase itself.

4. Extensions — The IDE has the facility to install third-party extensions. An
example can be Subversion, which is used for source code repository
management. Subversion is used to upload code to a central repository. This
is done so that a copy of the code will always exist. Visual Studio has the
facility to integrate with such software from the IDE itself. Hence, a developer
can work with code repositories from the IDE itself.

Let’s look at the installation of this IDE, so that we can work with creating
programs in the subsequent chapters. Visual Studio can be downloaded from the
following link - https://www.visualstudio.com/en-
us/downloads/download-visual-studio-vs.aspx

Once you have the Visual Studio Installer, you can install it using the below
mentioned steps

Step 1) The first steps involves choosing the location for the installation. In this
step one also has to accept the License Terms and conditions.

b Visual Studio

Premium 2013

with Blend _ E/rl 1., gr. W

Setup requires 6.46 GB in: & wﬂﬂ«ﬂm 1°0T the
CAProgram Files (xB6\Microsoft Visual Studic 12.0 «l n ST, mmﬁ on

Check the

v | agree to the anc : 2 A@r%m@nr fﬂ
Join the [R to help w L—“C’gnsg

improve the quality, reliability and performance of Visual Studio

(optional). con d‘ﬂ Dn S

Click the Next
oviton

1. Choose the location where Visual Studio should be installed. Ensure you have
enough hard disk space on your machine for the setup.

2. Agree to the License Terms and Privacy policy.

3. Click the Next button to Proceed.

Step 2) The next steps involves choosing the require components as part of the
installation.

pq Visual Studio

Premium 2013

Optional features to install:

Click on The
Install button.

1. Choose only the required components. This can save on the amount of space

required for the Installation. Below are the important components which
should be installed

e Microsoft Foundation Classes for C++
e Microsoft SQL Server Data Tools
e Microsoft Web Developer Tools

2. After that, click on the Install button to start the installation.

Once the installation is complete, you will get the below screen showing the
success of the installation

pq Visual Studio

Premium 2013

Setup Successful!

All specified components have been ir

Chapter 3: Data Types

C# is one of the languages provided by Microsoft to work with .Net. This language
encompasses a rich set of features, which allows developing different types of
applications.

C# is an object-oriented programming language and resembles several aspects of
the C++ Language. In this tutorial, we see how to develop our first application.

This will be a basic console application, we will then explore different data types
available in the C# language as well as the control flow statements.

Building the first console application

A console application is an application that can be run in the command prompt in
Windows. For any beginner on .Net, building a console application is ideally the
first step to begin with.

In our example, we are going to use Visual Studio to create a console type project.
Next, we are going to use the console application to display a message “Welcome
to .Net”. We will then see how to build and run the console application.

Let’s follow the below-mentioned steps to get this example in place.

Step 1) The first step involves the creation of a new project in Visual Studio. For
that, once the Visual Studio is launched, you need to choose the menu option
New->Project.

FILE EDIT VIEW DEBUG TEAM TOOLS TES ANALYZE WINDOW HELP Sign in

Tz Team Project...

O File. Ctri+N

Project From Existing Code...

Liscuver wial N niew 1 rremium

Ctri+Shift+5 P ﬂ] :‘rl

You can find inf d

:;;ci':crl::n'uentz [OhOOSﬁ w the following
project option

Alt+F4
&

Command Window Web Publish Activity

Ready

Step 2) The next step is to choose the project type as a Console application. Here,
we also need to mention the name and location of our project.

S G Newli"roject"-'-.-.'

b Recent MNET Framework 4.5 = Sortby: Default - 572

4 |nstalled

cn
| Windows Forms Application Visual C#

4 Visual C# .
FJ WPF Application Visual C# C'hmsg me
ce

Windows Store IS
Bl console Application ool @Phﬁﬁﬂﬂﬂ
E,!! Class Library
Qﬁ! Portable Class Library Visual C# @W'e a NAMe
@ WPF Browser Applicaticn and wmﬁm {-mz
R emoypoj s fine application
WPF Custom Control Library Click the oK

ovfton

Browse...

Selution name: DemoApplication | Create directory for s

[] Add to source contro

1. In the project dialog box, we can see various options for creating different
types of projects in Visual Studio. Click the Windows option on the left-hand
side.

2. When we click the Windows options in the previous step, we will be able to
see an option for Console Application. Click this option.

3. We then give a name for the application which in our case is
DemoApplication. We also need to provide a location to store our application.

4. Finally, we click the ‘OK’ button to let Visual Studio to create our project.

If the above steps are followed, you will get the below output in Visual Studio.
Output:-

Output Solution Explorer

N o-reRdiEm o &=

kgl Solution 'DemoApplication’ (1 M aPP“mﬂon
4 [DemoApplication

b & Properties

[+ =B References W O‘F W

¥_1 App.config

B ©* Program.cs Mﬂjn Prﬂ@rﬂm

1. A project called ‘DemoApplication‘ will be created in Visual Studio. This
project will contain all the necessary artifacts required to run the Console
application.

2. The Main program called Program.cs is default code file which is created
when a new application is created in Visual Studio. This code will contain the
necessary code for our console application.

Step 3) Now let’s write our code which will be used to display the string
“Welcome to .Net” in the console application.

All the below code needs to be entered in the Program.cs file. The code will be
used to write “Welcome to .Net” when the console application runs.

r System;

ystem.Collections.Generic; | nWSPm and
; System.Ling; f
ystem.Text; 1 class for

ystem.Threading.Tasks; f

DemoApplication {

.ReadKey(); ;5;

Code Explanation:-

1. The first lines of code are default lines entered by Visual Studio. The ‘using’
statement is used to import existing .Net modules in our console application.
These modules are required for any .Net application to run properly. They
contain the bare minimum code to make a code work on a Windows machine.

2. Every application belongs to a class. C# is an object-oriented language, and
hence, all code needs to be defined in a self-sustaining module called a
‘Class.’ In turn, every class belongs to a namespace. A namespace is just a
logically grouping of classes.

3. The Main function is a special function which is automatically called when a
console application runs. Here you need to ensure to enter the code required
to display the required string in the console application.

4. The Console class is available in .Net which allows one to work with console
applications. Here we are using an inbuilt method called ‘Write’ to write the
string “Welcome to .Net” in the console.

5. We then use the Console.ReadKey() method to read any key from the
console. By entering this line of code, the program will wait and not exit
immediately. The program will wait for the user to enter any key before
finally exiting. If you don’t include this statement in code, the program will
exit as soon as it is run.

Step 4) Run your .Net program. To run any program, you need to click the Start
button in Visual Studio.

EDIT WVIEW PROJECT BUWILD DEBUG TEAM TOOLS TEST AMNALYZE WINDOW HELP
B HE 9D - b Start - Debug - M _ = E =% M

Object Browser Program.cs* + X
T

B ing System;
g System.Collections.Generic;
g System.Ling;
g System.Text,
s System.Threading.Tasks;

Click the Run
button

"
Uusing
&

If the above code is entered properly and the program is executed successfully, the
following output will be displayed.

Output:

B Aile:/f/C./Guru9s/DemoApplication/DemoAp)

$fring displaned

(s expected

From the output, you can clearly see that the string “Welcome to .Net” is displayed
properly. This is because the Console.write statement causes this string to be sent
to the console.

C# Data Types

The C# language comes with a set of Basic data types. These data types are used to
build values which are used within an application. Let’s explore the basic data
types available in C#. For each example, we will modify just the main function in
our Program.cs file.

1. Integer — An Integer data types is used to work with numbers. In this case,
the numbers are whole numbers like 10, 20 or 30. In C#, the datatype is
denoted by the Int32 keyword. Below is an example of how this datatype
can be used. In our example, we will define an Int32 variable called num. We
will then assign an Integer value to the variable and then display it
accordingly.

ic void Main(string[] args) {
) hum=38;

ole.Write(num); Wﬁﬂn@ e

Console.ReadKey(); lﬂf@@ﬂr Vadve 10
the console

Code Explanation:-

1. The Int32 data type is specified to declare an Integer variable called num. The
variable is then assigned a value of 30.

2. Finally the console.write function is used to display the number to the
console.

If the above code is entered properly and the program is executed successfully,
following output will be displayed.

Output:

Aile://fC/Guru99/DemoApplication/Dem

Integer d‘lspla.qad
as axpao’rad

From the output, you can clearly see that the Integer variable called num was
displayed in the console

2. Double - A double data type is used to work with decimals. In this case, the
numbers are whole numbers like 10.11, 20.22 or 30.33. In C#, the datatype is
denoted by the keyword “Double®. Below is an example of this datatype .

In our example, we will define a double variable called num. We will then assign a
Double value to the variable and then display it accordingly.

B \riting the
Dovble valve 10
the console

Code Explanation:-

1. The double data type is specified to declare a double type variable called num.
The variable is then assigned a value of 30.33.

2. Finally the console.write function is used to display the number to the
console.
If the above code is entered properly and the program is executed
successfully, following output will be displayed.
Output:

Filey///C/Gura99/DemoApplication/Dy

Dovole displavied

AS 5XP£C1' ¢d

From the output, you can clearly see that the double variable called num was
displayed in the console

3. Boolean - A boolean data type is used to work with Boolean values of true
and false. In C#, the datatype is denoted by the Boolean keyword. Below is
an example of this datatype can be used.

In our example, we will define a Boolean variable called ‘status.” We will then
assign a boolean value to the variable and then display it accordingly.

static void Main(string[] args) {
n status=true;

Writing the

oy e WELIEtSERD) boolean valve 10
Console.ReadKey(); the console

Code Explanation:-

1. The boolean data type is specified to declare a Boolean variable called ‘status.’
The variable is then assigned a value of true/false.

2. Finally the console.write function is used to display the Boolean value to the
console.

If the above code is entered properly and the program is executed successfully, the
output will be displayed.

Output:

B fileffCIGuru9s/DemoApplication/De

From the output, you can clearly see that the Boolean variable which equals true
was displayed in the console

4. String - A String data type is used to work with String values. In C#, the
datatype is denoted by the keyword ‘String’. Below is an example of this
datatype.

In our example, we will define a String variable called ‘message.” We will then
assign a String value to the variable and then display it accordingly.

namespace DemoApplication {

class Program

{ static void Main(string[] args) {
S essage="Hello";

Writing the

Console.Write(message Snrm@ valve 1o
Console.ReadKey(); the console

Code Explanation:-

1. The String data type is specified to declare a string variable called message.
The variable is then assigned a value of “Hello”.

2. Finally, the console.write function is used to display the string value to the
console.

If the above code is entered properly and the program is executed successfully, the
output will be displayed.

Output:

filey/fC/Guru98/DemoApplication/D

$1ving displaujed

AS EXP%T 2d

From the output, you can clearly see that the String variable called message was
displayed in the console

C# Enumeration

An enumeration is used in any programming language to define a constant set of
values. For example, the days of the week can be defined as an enumeration and
used anywhere in the program. In C#, the enumeration is defined with the help of
the keyword ‘enum’.

Let’s see an example of how we can use the ‘enum‘ keyword.

In our example, we will define an enumeration called days, which will be used to
store the days of the week. For each example, we will modify just the main
function in our Program.cs file.

DemoApplication {

Qgram

enym data pra

declarafion D\splwdm@ .

VAN 02 of the
enum dasa. tupe

Conscle.ReadKey();

Code Explanation:-

1. The ‘enum‘ data type is specified to declare an enumeration. The name of the
enumeration is Days. All the days of the week are specified as values of the
enumeration.

2. Finally the console.write function is used to display one of the values of the
enumeration.

If the above code is entered properly and the program is executed successfully, the
following output will be displayed.

Output:

O files /G Guru9S/DemoApplication/Dem

enum Vadve

displaujed as
3)({)501’ ed

From the output, you can clearly see that the ‘Sun’ value of the enumeration is
displayed in the console.

C# Operators and Variables

A variable is a name given to a storage area that is used to store values of various
data types. Each variable in C# needs to have a specific type, which determines the
size and layout of the variable’s memory.

For example, a variable can be of the type String, which means that it will be used
to store a string value. Based on the data type, specific operations can be carried
out on the variable.

For instance, if we had an Integer variable, then operations such as addition and
subtraction can be carried out on the variable. One can declare multiple variables
in a program.

Let’s look at a quick example on the declaration of multiple variables of different

data types.

In our example, we will define 2 variables, one of the type ‘string’ and the other of
the type ‘Integer’. We will then display the values of these variables to the console.
For each example, we will modify just the main function in our Program.cs file.

static void Main(string[] args)

String message = "The value is ";

Daﬁmn@ o
srr‘m@ variable

Displayging the
valves of both
Vaxiaoles.

Console.Write(message+val);

&

Daﬁn‘m@ an
Inteqer variable

Console.ReadKey();

Code Explanation:-

1. Avariable of the data type String is declared. The name of the variable is
‘message’. The value of the variable is “The value is .

2. A variable of the data type Integer (Int32) is declared. The name of the
variable is ‘val‘. The value of the variable is 30.

3. Finally the Console.write statement is used to output both the value of the
String and Integer variable.

If the above code is entered properly and the program is executed successfully, the
following output will be displayed.

Output:

B filefACIGuru9s/DemoApplication/

he value i=s 38

0t the string

and Integer Valve
are displajed

From the output, you can clearly see that the values of both the string and integer

variable are displayed to the console.

Operators are used to perform operations on values of various data types. For
example, to perform the addition of 2 numbers, the + operator is used.

Let’s see the table of operators available for the various data types

1. Arithmetic Operators — These are operators used for performing
mathematic operations on numbers. Below is the list of operators available in
C#.

Operator Description
+ Adds two operands

- Subtracts second operand from the first

* Multiplies both operands

/ Divides numerator by de-numerator

% Modulus Operator and remainder of after an integer division
++ Increment operator increases integer value by one

— Decrement operator decreases integer value by one

2. Relational Operators — These are operators used for performing
Relational operations on numbers. Below is the list of relational operators
available in C#.

Opera Description

tor

== Checks if the values of two operands are equal or not, if yes then condition becomes true.

1= Checks if the values of two operands are equal or not, if values are not equal then condition
becomes true.

> Checks if the value of left operand is greater than the value of right operand, if yes then
condition becomes true.

< Checks if the value of left operand is less than the value of right operand, if yes then
condition becomes true.

>= Checks if the value of left operand is greater than or equal to the value of right operand, if
yes then condition becomes true.

<= Checks if the value of left operand is less than or equal to the value of right operand, if yes

then condition becomes true.

3. Logical Operators — These are operators used for performing Logical
operations on values. Below is the list of operators available in C#.

Operator | Description
&& This is the Logical AND operator. If both the operands are true, then condition becomes true.
[This is the Logical AND operator. If any of the operands are true, then condition becomes true.

! This is the Logical NOT operator.

Let’s look at a quick example of how the operators can be used in .Net.

In our example, we will define 2 Integer variables and one Boolean variable. We
will then perform the following operations

~e DemoApplication { .
sl using

arithematic

0perators

d Main(string[] args)

Defining _ | rot32 vali-te,valr—de;
Variaoles @ | bool status = true; using
& wsmle.WPiteLine(vali+V312);;2 Relationad

Cot
sole.WriteLine(vall < val2) 3 DP@Y@IOYS

e.WriteLine(!(status));

4 Using logical operators
ole.ReadKey();

Code Explanation:-

1. Two Integer variables are defined, one being val1 and the other being val2.
These will be used to showcase relational and arithmetic operations. A
Boolean variable is defined to showcase logical operations.

2. An example of the arithmetic operation is shown wherein the addition
operator is carried out on val1 and val2. The result is written to the console.

3. An example of the relational operation is shown wherein the less than
operator is carried out on val1 and val2. The result is written to the console.

4. An example of the logical operation is shown, wherein the logical operator (!)
is applied to the status variable. The logical NOT operator reverses the
current value of any Boolean value. So if a Boolean value is ‘true’, the logical
NOT will return the value ‘false’ and vice versa. In our case since the value of
the status variable is ‘true’, the result will show ‘false’. The result is written to
the console.

If the above code is entered properly and the program is executed successfully, the
output will be displayed.

Output:

filey/AC/Guru99/DemoApplication/DemoAp

output of aul

operafions

Flow Control and conditional statements

Flow control and conditional statements are available in any programming
language to alter the flow of a program.

For example, if someone want to execute only a particular set of statements based
on some certain logic, then Flow control and conditional statements will be useful.

You will get a better understanding as we go through the various statements which
are available in C#.

Please note that all the code below is made to the Program.cs file.

1. If statement — The if statement is used to evaluate a boolean expression
before executing a set of statements. If an expression evaluates to true, then it
will run one set of statements else it will run another set of statements.

In our example below, a comparison is made for a variable called value. If the
value of the variable is less than 10 ,then it will run one statement, or else it will

run on another statement.

-ﬁ**_ value 11
variable declaration if condifion
1im(value<18 Y {¢ 2

statement for if

condition

Statement for else
condition

Code Explanation:-

1. We first define a variable called value and set it to the value of 11.

2. We then use the ‘if’ statement to check if the value is less than 10 of the
variable. The result will either be true or false.

3. If the if condition evaluates to true, we then send the message “Value is less
than 10” to the console.

4. If the if condition evaluates to false, we then send the message “Value is
greater than 10” to the console.

If the above code is entered properly and the program is executed successfully, the
following output will be displayed.

Output:

- filef /G Guru99/DemoApplication/Demotf

alue is greater than 19

QUput Displasjed

based on the if
condition

We can clearly see that the ‘if’ statement was evaluated to false. Hence the
message “Value is greater than 10” was sent to the console.

2. Switch statement — The switch statement is an enhancement to the ‘if’
statement. If you have multiple expressions that need to be evaluated in one
shot, then writing multiple ‘if statements becomes an issue.

The switch statement is used to evaluate an expression and run different
statements based on the result of the expression. If one condition does not

evaluate to true, the switch statement will then move to the next condition and so
forth.

Let’s see, how this works with the below example. Here, we are again comparing
the value of a variable called ‘value.” We then check if the value is equal to 1, or 2,
or something totally different.

: ! value=11;
variable declaration — code statement

swifch statement g 1 | le.WriteLine("Value is 1");
declayation

case stoatement cas . 1sole.Writeline("Vvalue is 2");
o lo e ool Yelde as duffereut)

Code Explanation:-

1. We first define a variable called ‘value’ and set it to the value of 11.

2. We then use the ‘switch’ statement to check the value of the variable ‘value.’
3. Case statements are used to set different conditions. Based on the conditions,
a set of statements can be executed. A switch statement can have multiple

case conditions. The first case statement checks to see if the value of the
variable is equal to 1.

4. If the first case statement is true, then the message “Value is 1” is written to
the console.

5. The break statement is used to break from the entire switch statement, once a
condition is true.

6. The default condition is a special condition. This just means that if no case
expression evaluates to true, then run the set of statements for the default
condition.

If the above code is entered properly and the program is executed successfully, the
following output will be displayed. The output prints the default value “Value is
different”, since no condition is satisfied.

Output:

file//fC/Guru99/DemoApplication/Demo,

alue is different

Quput Displauied
based on the

switth
statement

3. While loop — The while loop is used for iterative purposes. Suppose if you
want to repeat a certain set of statements for a particular number of times,
then while loop is used.

In our example below, we use the while statement to display the value of a variable
‘i. The while statement is used to display the value 3 times.

=¥y

ﬁfgf_value%é.;liQBQ ;
|IHHiiiii%l%%iiiﬁiiiilll//’ 0 : : RS b
| consol and incroment i

While statement /
Console.ReadKey();

Code Explanation:-

1. Two Integer variables are defined, one being value and the other being ‘i‘. The
value variable is used as the upper limit to which we should iterate our while
statement. And ‘i‘ is the variable which will be processed during the iteration.

2. In the while statement, the value of ‘i‘ is constantly checked against the upper
limit.

3. Here we display the value of ‘i‘ to the console. We also increment the value of

€2¢

1.

If the above code is entered properly and the program is executed
successfully, the following output will be displayed.
Output:

B Afiley/C/Guru99/DemoApplication/Demod)

QUfput Displasjed
based on the

while
Starement

Here you can see that the while statement is executed 3 times and incremented at
the same time. And each time, it displayed the current value of the variable ‘.
4. For loop - The ‘for’ loop is also used for iterative purposes. Suppose if you
want to repeat a certain set of statements for a particular number of times,
then for loop is used.

In our example below, we use the ‘for’ statement to display the value of a variable
‘i‘. The “for’ statement is used to display the value 3 times.

Variable
declarafion

Increment

Wi ﬂn@ vales 1o e i

EXPWSS'\DH

console .
Console.ReadKey(); eV vation

Code Explanation:-

1. The ‘for’ keyword is used to start off the ‘for loop’ statement.

2. In the “for loop’, we define 3 things. The first is to initialize the value of a
variable, which will be used in the ‘for loop’.

3. The second is to compare the value of the ‘i against an upper limit. In our
case, the upper limit is the value of 3 (i<3).

4. Finally, we increment the value of ‘i‘ accordingly.

5. Here we display the value of ‘i‘ to the console.

If the above code is entered properly and the program is executed successfully, the
following output will be displayed.

Output:

B file/ A fC/Gurue9/DemoApplication/Demao.

Qufput Displasjed

based on the for
statement

Here you can see that the ‘for’ statement is executed 3 times. And each time, it
displayed the current value of the variable ‘.

C# Arrays

An array is used to store a collection or series of elements. These elements will be
of the same type.

So for example, if you had an array of Integer values, the array could be a
collection of values such as [1, 2, 3, 4]. Here the number of elements in the array is
4.

Arrays are useful when you want to store a collection of values of the same type. So
instead of declaring a variable for each and every element, you can just declare one
variable.

This variable will point to an array or list of elements, which will be responsible
for storing the elements of the array.

Let’s look at how we can work with arrays in C#. In our example, we will declare
an array of Integers and work with them accordingly.

Note that all of the below code is being made to the Program.cs file.
Step 1) Declaring an array — The first step is to declare an array. Let’s see how we

can achieve this by the below code example.

space DemoApplication {

Al = J g g gy oy
B B e P‘ Qgram
L=

void Main(string[] args)

" e 2

Code Explanation:-

1. The first part is the datatype. It specifies the type of elements used in the
array. So in our case, we are creating an array of Integers.

2. The second part [], which specifies the rank of the array. (The rank is a
placeholder which specifies the number of elements the array will contain)

3. Next is the Name of the array which in our case is ‘values’. Note you are
seeing a green squiggly underline, don’t worry about that. That is just .Net
saying that you have declared an array, but not using it anywhere.

Step 2) The next step is to initialize the array. Here we are going to specify the
number of values the array will hold. We are also going to assign values to each
element of the array.

static void Main(string[] args)

Int32[] values;
Assaping salues < nen sotsars ArTal s gong
Vaves 1o the t0 hold 2
values[©]

gements of &' | values[1] eglements
the mwd values[2]

Code Explanation:-

1. First, we are setting the number of elements the array will hold to 3. So in the
square brackets, we are saying that the array will hold 3 elements.

2. Then we are assigning values to each individual element of the array. We can
do this by specifying the variable name + the index position in the array.

So values[0] means that we are storing a value in the first position of the array.
Similarly to access the second position, we use the notation of values[1] and so on
and so forth.

Note: - In Arrays, the index position starts from .

Step 3) Let’s now display the individual elements of the array in the Console.
Let’s add the below code to achieve this.

values = new Int32[3];

1 a N i
values[©] - USm@

values[1]

values[2] - Console.WriteLing

r"|. sol wr*':-i.teL:.i.h.é'{.ﬁ'E.llués'[éj j:-'; f0 Send eqch
onsole.WriteLine(values[1]); | glement valve 10
onso

le. wrlteLme{val“ES[‘])’ the console

2.
e.

Console.ReadKey();

Code Explanation:-

This is the simple part wherein we just use the Console.Write method to send each
value of the element to the console.

Note that again , we are accessing each element with the help of the array variable
name along with the index position.

If the above code is entered properly and the program is executed, the following
output will be displayed.

Output:

Ailes/ S fCGura99/DemoApplication/Dem

QUput of all the

Valves of the
ooy

From the output, you can see all the values of the array being displayed in the
Console.

Summary

¢ A Console application is one that can be made to run in the command prompt
on a windows machine.

¢ The Console.write method can be used to write content to the console.

e The basic data types available in C# are Integer, Double, Boolean, and String.

e Enumerations are used to declare a set of Constant values. In C# enumerations
are declared with the use of the enum keyword.

e The various operators available in C# are broadly classified into the categories
of Arithmetic, Relational, and Logical operators.

e Variables are used to point to memory locations which contain values of a
particular data type.

e Arrays are used to store elements of the same type. Individual elements of the
array can be assigned values.

Chapter 4: Class and Object

C# is based on the C++ programming language. Hence, the C# programming
language has in-built support for classes and objects. Class is nothing but an
encapsulation of properties and methods that are used to represent a real-time
entity.

For an example, if you want to work with employee’s data in a particular
application.

The properties of the employee would be the ID and name of the employee. The
methods would include the entry and modification of employee data.

All of these operations can be represented as a class in C#. In this chapter, we will
look at how we can work with classes and objects in C# in more detail.

What are classes and objects

Let’s first begin with classes.

As we discussed earlier classes are an encapsulation of data
properties and data methods.

e The properties are used to describe the data the class will be holding.
e The methods tells what are the operations that can be performed on the data.

To get a better understanding of class and objects, let’s look at an example below
of how a class would look like.

The name of the class is “Tutorial”. The class has the following properties

1. Tutorial ID — This will be used to store a unique number which would
represent the Tutorial.

2. Tutorial Name — This will be used to store the name of the tutorial as a
string.

A class also comprises of methods. Our class has the following methods,

1. SetTutorial — This method would be used to set the ID and name of the
Tutorial. So for example, if we wanted to create a tutorial for .Net, we might
create an object for this. The object would have an ID of let’s say 1. Secondly,
we would assign a name of “.Net” as the name of the Tutorial. The ID value of
1 and the name of “.Net” would be stored as a property of the object.

2. GetTutorial - This method would be used to get the details of a specific
tutorial. So if we wanted to get the name of the Tutorial , this method would
return the string “.Net”.

Tutorial Class

* Properties

e TutoriallD

e TutiorialName
e Methods

e SetTutorial

e GetTutorial

Below is a snapshot of how an object might look like for our Tutorial class. We
have 3 objects, each with their own respective TutorialID and TutorialName.

TutorialObjectl TutorialObject2 TutorialObject3

e TutoriallD =1 e TutoriallD =2 e TutoriallD =3
* TutorialName ¢ TutorialName e TutorialName
=8 = ASP.Net = VB.Net

Let’s now dive into Visual Studio to create our class. We are going to build upon
our existing console application which was created in our earlier chapter. We will
create a class in Visual Studio for our current application.

Let’s follow the below-mentioned steps to get this example in place.

Step 1) The first step involves the creation of a new class within our existing
application. This is done with the help of Visual Studio.

b ! \ppl 4 Build
FILE EDIT WVIEV Rebuild TEST ANALYZE WINDOW HELP
rD-. 2 Clean _ _ﬁ . []
View
Program.cs
"

---- pUbnsh'" - L8 kil Vil rFiaLiry = L’-‘ _l.!ISLJ ail E;‘l

Analyze

Scope to This

BlanssSmlimbimm Eumlmmma bl

alutianbenizsanilion
Add O Newltem.. Ctrl+Shift+A
ianago MuGet Packagesa. Existing Item... Shift+Alt+ A . L
1 < 3;i++)
Set as StartlUp Project New Folder

Debug Reference... Gmw Thg OPmn D‘r

Cut Ctri+X Service Reference...
Paste Ctrl+V] Windows Form... Gla.SS
Rernove Del User Control...

e Componant.

Unload Project Class... 3‘2\
: 8 Cpen Folder in File Explorer Bt

) SO|U5I2T] &

& s

Properties Alt+Enter
5 4 4

#ropene g Right" click on the

b =m References

¥ App.config e %mm

P Program.cs

1. The first step is to right click on the solution, which in our case is
‘DemoApplication‘. This will bring up a context menu with a list of options.

2. From the context menu choose the option Add->Class. This will provide the
option to add a class to the existing project.

Step 2) The next step is to provide a name for the class and add it to our solution.

_ Add New Item - DemoApplication

§ 4 Installed : Default

(7
=]
3
o

-

-

Class Visual C# ltems Type: Visual C¥ ems

S
[

4 Visual C7 Itemns
Code
Data

An empty class definition
Interface Vizual C# ems

Windows Form Visual C2 items Prﬂv‘de a nm
User Control Visual C# ltems .I.«a w m

Component Class Visual C# tems

General

b Web
Windows Forms
WPF
Reporting
SOL Server
Workflow

e F1%1M 8

User Control (WPF) Visual C2

-
]
w

Graphics About Box

Click The Add
button 10 create
the class.

g ¢ Online
ADO.NET Entrty Data Model Visual C2 ltems

Application Configuration File Visual C# ltemns
Application Marnifest File Visual C# ltems

Assembly Infon i Visual C# ltems

Tutnriaq.c s

1. In the project dialog box, we first need to provide a name for our class. Let’s
provide a name of Tutorial.cs for our class. Note that the file name should
end with .cs to ensure it is treated as a proper class file.

2. When we click the Add button, the class will be added to our solution.

If the above steps are followed, you will get the below output in Visual Studio.

Output:-

b S Properties

[+ =m-B References

. A class is added

€# Program.cs

[Tutornalcs i—— rn w Sﬂl‘)ﬂm

A class named Tutorial.cs will be added to the solution. If you open the file, you
will find the below code added to the class file.

g System; |
ing System.Collections.Generic; |

g System.Ling;

g System.Text;

Code Explanation:-

1. The first part contains the mandatory modules which Visual Studio adds to
any .Net file. These modules are always required to ensure any .Net program
runs on a Windows environment.

2. The second part is the class which is added to the file. The class name is
‘Tutorial’ in our case. This is the name which was specified with the class was
added to the solution.

For the moment, our class file does not do anything. In the following topics, we
will look into more details on how to work with the class.

Fields and methods

We have already seen how fields and methods are defined in classes in the earlier
topic.

For our Tutorial class, we can have the following properties.
1. Tutorial ID — This will be used to store a unique number which would

represent the Tutorial.
2. Tutorial Name — This will be used to store the name of the tutorial as a string.

Our Tutorial class can also have the below-mentioned methods.

1. SetTutorial — This method would be used to set the ID and name of the
Tutorial.

2. GetTutorial - This method would be used to get the details of a specific
tutorial.

Let’s now see how we can incorporate fields and methods in our code.

Step 1) The first step is to ensure the Tutorial class has the right fields and
methods defined. In this step, we add the below code to the Tutorial.cs file.

ng TutorialName;

public void SetTutorial(int

Defining the
\ SetTotoriad method
Setting the fields
volves

Code Explanation:-

1. The first step is to add the fields of TutorialID and TutorialName to the class
file. Since the TutorialID field will be a number, we define it as an Integer,
while TutorialName will be defined as string.

2. Next, we define the SetTutorial method. This method accepts 2 parameters.
So if Program.cs calls the SetTutorial method, it would need to provide the
values to these parameters. These values will be used to set the fields of the

Tutorial object.

Note:-Let’s take an example and assume our Program.cs file calls the

SetTutorial with the parameters “1” and “.Net”. The below steps would be

executed as a result of this,

a. The value of pID would become 1

b. The value of pName would be .Net.

c. In the SetTutorial method, these values would then be passed to
TutoriallD and TutorialName.

d. So now TutorialID would have a value of 1 and TutorialName would have
a value of “.Net”.

3. Here we set the fields of the Tutorial class to the parameters accordingly. So
we set TutorialID to pID and TutorialName to Pname.

4. We then define the GetTutorial method to return value of the type “String”.
This method will be used to return the TutorialName to the calling program.
Likewise, you can also get the tutorial id with method Int GetTutorial

5. Here we return the value of the TutorialName field to the calling program.

Step 2) Now let’s add code to our Program.cs, which is our Console application.
The Console application will be used to create an object of the “Tutorial class” and
call the SetTutorial and GetTutorial methods accordingly.

(Note:- An object is an instance of a class at any given time. The difference
between a class and an object is that the object actually contains values for the
properties.)

Creating a new
Totorial ooject

WriteLine(pTutor.GetTutorial());

Calling tie

Console.ReadKey(); /3 : %.@TTUftJﬂal mﬂ"ﬂd

caling the
GerTUtorial method

Code Explanation:-

1. The first step is to create an object for the Tutorial class. Mark here that this
is done by using the keyword ‘new’. The ‘new’ keyword is used to create an
object from a class in C#. The object is then assigned to the pTutor variable.

2. The method SetTutorial is then called. The parameters of 1 and “.Net” are
passed to the SetTutorial method. These will then be used to set the
“TutorialID” and “TutorialName” fields of the class accordingly.

3. We then use the GetTutorial method of the Tutorial class to get the
TutorialName. This is then displayed to the console via the
Console.WriteLine method.

If the above code is entered properly and the program is run the following output
will be displayed.

Output:

& filey//C/Guru99/DemoApplication/Di

From the output, you can clearly see that the string “.Net” was returned by the
GetTutorial method.

Access Modifiers

Access Modifiers are used to define the visibility of a class property or method.
There are times when you may not want other programs to see the properties or
the methods of class. In such cases, C# gives the ability to put modifiers on class
properties and methods. The class modifiers have the ability to restrict access so
that other programs cannot see the properties or methods of a class.

There are generally 3 types of access modifiers. They are explained below.

1. Private — When this access modifier is attached to either a property or a
method, it means that those members cannot be accessed from any external
program.

Let’s take an example and see what happens when we use the private access
modifier.

Let’s modify the current code in our Tutorial.cs file. In the SetTutorial
method, let’s change the public keyword to private.

namespace DemoApplication

{

o

class Tutorial

int TutoriallD;
string TutorialName;

Added the

Pr“ﬁaf@ private void SetTutorial(int pID , String pName) {
kﬁ@VVDrd TutoriallID=pID;

TutorialName=pName;

Now let’s switchover to our Program.cs file. You will notice that there is a red
squiggly line under the SetTutorial method.

Since we have now declared the SetTutorial method as private in our Tutorial
class, Visual Studio has detected this. It has told the user by highlighting it
that now this method will not work from the Program.cs file.

static void Main(string[] args)

{

exvor in fhe
SetTutoriad

method

Console.ReadKey();

2. Public — When this access modifier is attached to either a property or a
method, it means that those members can be accessed from any external
program. We have already seen this in our earlier examples.

int TutoriallD;

string TutorialName;
public void SetTutorial(int pID , String pName) {
. TutoriallID=pID;
Public / TutorialName=pName;
ALCesS
o }
modifier public String GetTutorial()

Since we have defined our methods as public in the Tutorial class, they have
the ability to be accessed from the Program.cs file.

3. Protected - When this access modifier is attached to either a property or a
method, it means that those members can be accessed only by classes
inherited from the current class. This will be explained in more detail in the
Inheritance class.

C# Constructor

Constructors are used to initialize the values of class fields when their
corresponding objects are created. A constructor is a method which has the same
name as that of the class. If a constructor is defined in class, then it will the first
method which is called when an object is created. Suppose if we had a class called
Employee. The constructor method would also be named as Employee().

The following key things need to be noted about constructor methods

1. The access modifier for the constructor needs to be made as public.
2. There should be no return type for the constructor method.

Let’s now see how we can incorporate the user of constructors in our code. We will
use constructors to initialize the TutorialID and TutorialName fields to some
default values when the object is created.

Step 1) The first step is to create the constructor for our Tutorial class. In this
step, we add the below code to the Tutorial.cs file.

namespace DemoApplication

{

public class Tutoria

{

int TutoriallD;

string TutorialName; lﬂ]ﬂﬂfl"ﬂﬂ@

fields

public void SetTutorial(int pID , String pName) {

TutoriallID=pID;
TutorialName=pName;

Code Explanation:-

1. We first add a new method which has the same name as that of the class.
Because it is the same name as the class, C# treats this as a constructor
method. So now whenever the calling method creates an object of this class,
this method will be called by default.

2. In the Tutorial constructor, we are setting the value of TutorialID to 0 and
TutorialName to “Default”. So whenever an object is created, these fields will
always have these default values.

Now let’s switchover to our Program.cs file and just remove the line, which calls
the SetTutorial method. This is because we want to just see how the constructor
works.

static void Main(string[] args)

{

Tutorial pTutor = new Tu

Cemem
Lonso

Console.ReadKey();

Code Explanation:-

1. The first step is to create an object for the Tutorial class. This is done via the
‘new’ keyword.

2. We use the GetTutorial method of the Tutorial class to get the TutorialName.
This is then displayed to the console via the Console.WriteLine method.

If the above code is entered properly and the program is executed, the following
output will be displayed.

Output:

o file//C/Guru99/DemoApplication/Dem
Default

The Toforiad

nameé retvurned
IS default

From the output, we can see that the constructor was indeed called, and that the
value of the TutorialName was set to “Default”.

Note: Here the value “default” is fetched from the constructor.

C# Inheritance
Inheritance is an important concept in C#. Inheritance is a concept in which you
define parent classes and child classes.

The child classes inherits methods and properties of the parent class, but at the
same time, they can also modify the behavior of the methods if required. The child
class can also define methods of its own if required.

You will get a better understanding if we see this action.
Let’s now see how we can incorporate the concept of inheritance in our code.

Step 1) The first step is to change the code for our Tutorial class. In this step, we
add the below code to the Tutorial.cs file.

ace DemoApplication

Mark the fields as

class Tutorial

| proected
int TutoriallD; ,ﬂ”’#””f

tring TutorialName;
public void SetTutorial(int pID , String pName) {

TutorialID=pID;
TutorialName=pName;

Note that we need to now add the access modifier of ‘protected’ to both the
TutorialID and TutorialName field.

Remember we had mentioned this access modifier in the Access Modifier chapter.
Well here you can see the purpose of having this. Only when you have this access
modifier (protected), the child class be able to use the fields of the parent class.

Step 2) The second step is to add our new child class. The name of this class will
be “GuruggTutorial”. In this step, we add the below code to the Tutorial.cs file.
The code should be placed after the Tutorial class definition.

Child class mefhod

ic void RenameTutorial g pNewName)

Eégn;fssw Lurosisiane = Plicuiane; oy Setting the field
TotoraName to a

new name

Code Explanation:-

1. The first step is to create the GuruggTutorial child class. We also need to
mention that this class is going to be a child class of the Tutorial class. This is
done by the ‘:” keyword.

2. Next, we are defining a method called RenameTutorial. It will be used to
rename the TutorialName field .This method accepts a string variable which
contains the new name of the Tutorial.

3. We then assigned the parameter pNewName to the TutorialName field.

Note: - Even though we have not defined the TutorialName field in the
“GuruggTutorial” class, we are still able to access this field. This is because of the
fact that “GuruggTutorial” is a child class of Tutorial class. And because we made
the fields of the Tutorial class as protected, they can be accessed by this class.

Step 3) The last step is to modify our main Program.cs file. In our console
application, we are going to make an object of the GuruggTutorial class. With this
object, we are going to call the RenameTutorial method. We are then going to
display the TutorialName field with the help of the GetTutorial method.

class Program
static void Main(string[] args) B C/rﬂa-ﬂn@ Ob]ﬂﬂf of

Tutor.RenameTutorial(".Net by Gurugoe");._ -
; () EPWEE (i class method

Console.WriteLine(pTutor.GetTutorial());

Console.ReadKey(); 3 Child class method

Code Explanation:-

1. The first step is to create an object for the GuruggTutorial class. This is done
via the ‘new’ keyword. Note that this time we are not creating an object of the
Tutorial class.

2. We use the RenameTutorial method of the GuruggTutorial class to change
the TutorialName field. We pass the string “.Net by Gurugg” to the
RenameTutorial method.

3. We then call the GetTutorial method. Note that even though this method is
not defined in the GuruggTutorial class, we are still able to access this
method. The output of the GetTutorial method is then displayed to the
console via the Console.WriteLine method.

If the above code is entered properly and the program is executed successfully, the
following output will be displayed.

Output:

v file:///C:/Guru99/DemoApplication/DemoApplicatic
.Net by Guru?9

can see that the

Totoral Nume was

renamed by the
child Class

From the output, we can clearly see that the TutorialName field was renamed to
“Net by Gurug9”. This was made possible of the RenameTutorial method called
by the child class.

C# Polymorphism

Polymorphism is a concept wherein a method can be defined more than one time.
But each time, the function would have a different set of parameters passed on to
it.

You will get a better understanding if we see this action.

Let’s now see, how we can incorporate the concept of Polymorphism in our code.

Step 1) The first step is to change the code for our Tutorial class. In this step, we
add the below code to the Tutorial.cs file.

public void SetTutorial(int pID,

| | : : Ve
TutorialID = pID; %ﬁ‘m@ both the TUrorialiD Both mds ha Dngw
TutorialName = pName; - Same : IF\.@{j
\UNue
S il have different

{

void SetTutorial(String pName) Par ameters Pa.ssad to

: them.
. Sefting Just the
TutorialName = pName .

Code Explanation:-

1 & 2) The first step is the same as in our earlier examples. We are keeping the
definition of the SetTutorial method as it is.

3) This method sets the TutorialID and the TutorialName based on the parameters
pID and pName.

4) This is where we make a change to our class wherein we add a new method with
the same name of SetTutorial. Only this time we are only passing one parameter
which is the pName. In this method, we are just setting the field of TutorialName
to pName.

Step 2) The last step is to modify our main Program.cs file. In our console
application, we are going to make an object of the GuruggTutorial class.

static void Main(string[] args)

{

Tutorial pTutor = new Tutorial();

Coll the first

pTutor.SetTutorial(l, "First Tutorial");

Console.WriteLine(pTutor.GetTutorial()); ; method

bTutor;SefTutorial(“Seéond Tutorial“};
Console.WritelLine(pTutor.GetTutorial()); . Call the second

Console.ReadKey(); method

Code Explanation:-

1. In the first step, we are using the SetTutorial method with 2 parameters.
Where we are passing both the TutorialID and TutorialName to this method.

2. In the second step, we are now calling the SetTutorial method with just one
parameter. We are just passing the TutorialName to this method.

If the above code is entered properly and the program is run the following output
will be displayed. If in case you wanted to also fetch the Tutorial ID along with the
Tutorial Name , you should follow the below step

1. Create a separate method called public int GetTutorialID
2. In that method write the code line “return TutorialID.” This can be used to
return the TutorialID to the calling program.

Output:

o Aile:/f/CGuru9s/DemoApplication/DemoApplicat

First Tutorial
Second Tutorial

Both methods were
codied svecesstuliy

From the output, we can clearly see that both methods were called successfully.
Because of this, the strings “First Tutorial” and “Second Tutorial” were sent to the
console.

C# Abstract classes

An abstract class is used to define what is known as a base class. A base class is a
class which has the most basic definition of a particular requirement.

A typical example of an abstract class is given below. Below is the definition of a
class called ‘Animal. When the ‘Animal’ class is defined, there is nothing known
about the animal, whether it is a dog or a cat. The method called description is just
a generic method defined for the class.

Animal

¢ Description

Now when it is known what exactly the Animal is going to be, we create another
class which inherits the base class. If we know that the animal is in fact a Dog, we
create Dog class which inherits the main base class. The key difference here is that
the Dog class cannot change the definition of the Description method of the
Animal class. It has to define its own method called Dog-Description. This is the
basic concept of abstract classes.

Dog : Animal

e Dog-
Description

Let’s see how we can change our code to include an abstract class. Note that we
will not be running the code, because there is nothing that can be run using an
abstract class.

Step 1) As a first step, let’s create an abstract class. The class will be called
Tutorial and will just have one method. All the code needs to be written in the
Program.cs file.

using System.Threading.Tasks;

Defing an gostract class
Totoriad

Define an aostract class
TUorial

Code Explanation:-

1. We first define the abstract class. Note the use of the abstract keyword. This
is used to denote that the class is an abstract class.

2. Next, we are defining our method which does nothing. The method must
have the keyword called virtual. This means that the method cannot be
changed by the child class. This is a basic requirement for any abstract class.

Step 2) Now let’s add our child class. This code is added to the Program.cs file.

Defineg o class that
inherits the base class

public void SetTutorial(int pID, String pName)

{

TutoriallD = pID;
TutorialName = pName;

ublic String GetTutorial()

return TutorialName;

There is nothing exceptional about this code. We just define a class called
‘GuruggTutorial’ which inherits the abstract Tutorial class. We then define the

same methods as we have been using from before.

Note: Here we cannot change the definition of the Set method which was defined
in the Tutorial class. In the Tutorial class, we had defined a method called ‘Set’
(public virtual void Set()). Since the method was part of the abstract class, we are
not allowed to define the Set method again in the GuruggTutorial class.

C# Interface

Interfaces are used along with classes to define what is known as a contract. A
contract is an agreement on what the class will provide to an application.

An interface declares the properties and methods. It is up to the class to define
exactly what the method will do.

Let’s look at an example of an interface by changing the classes in our Console
application. Note that we will not be running the code, because there is nothing
that can be run using an interface.

Let’s create an interface class. The class will be called “GuruggInterface.” Our
main class will then extend the defined interface. All the code needs to be written
in the Program.cs file.

Define the

public

Interface i id SetTutorial(int pID, String pName);
; g GetTutorial();

yublic clsa : Ggru99InterFace .
methods pr 1t TutoriallD;

ring TutorialName;

Class extends
the inferface

void SetTutorial(int pID, String pName)

TutoriallD = pID;
TutorialName = pName;

Code Explanation:-

1. We first define an interface called “GuruggInterface.” Note that the keyword
“interface” is used to define an interface.

2. Next, we are defining the methods that will be used by our interface. In this
case, we are defining the same methods which are used in all of earlier
examples. Note that an interface just declares the methods. It does not define
the code in them.

3. We then make our GuruggTutorial class extend the interface. Here is where
we actually write the code that defines the various methods declared in the
interface. This sort of coding achieves the following

It ensures that the class, GuruggTutorial, only adds the code which is
necessary for the methods of “SetTutorial” and “GetTutorial” and nothing else.
It also ensures that the interface behaves like a contract. The class has to abide
by the contract. So if the contract says that it should have 2 methods called
“SetTutorial” and “GetTutorial,” then that is how it should be.

Summary

The class is an encapsulation of data properties and methods. The properties
are used to define the type of data in the class. The methods define the
operations which can be performed on the data.

A constructor is used to initialize the fields of a class whenever an object is
created.

The constructor is a method which has the same names as the class itself.
Inheritance is where a child class inherits the fields and methods of the parent
class. The child class can then also define its own methods.

Polymorphism is the concept wherein one method can be defined multiple
times. The only difference is the number of parameters which are passed to the
method.

An abstract class is a base class which has the very basic requirements of what
a class should look like. It is not possible for the child class to inherit the
methods of the base class.

An interface defines a contract which the class will comply by. The interface
defines what are the operations that the class can perform.

Chapter 5: C# Collections

In our previous chapter, we have learned about how we can use arrays in C#. Let’s
have a quick overview of it, Arrays in programming are used to group a set of
related objects. So one could create an array or a set of Integers, which could be
accessed via one variable name.

Collections are similar to Arrays, it provide a more flexible way of working with a
group of objects.

In arrays, you would have noticed that you need to define the number of elements
in an array beforehand. This had to be done when the array was declared.

But in a collection, you don’t need to define the size of the collection beforehand.
You can add elements or even remove elements from the collection at any point of
time. This chapter will focus on how we can work with the different collections
available in C#.

C# ArrayList

The ArrayList collection is similar to the Arrays data type in C#. The biggest
difference is the dynamic nature of the array list collection.

For arrays, you need to define the number of elements that the array can hold at
the time of array declaration. But in the case of the Array List collection, this does
not need to be done beforehand. Elements can actually be added or removed from
the Array List collection at any point of time. Let’s look at the operations available
for the array list collection in more detail.

1. Declaration of an Array List — The declaration of an ArrayList is
provided below. An array list is created with the help of the ArrayList Data
type. The “new” keyword is used to create an object of an Arraylist. The object
is then assigned to the variable a1. So now the variable a1 will be used to
access the different elements of the array list.

ArrayList a1 = new ArrayList()

2. Adding elements to an array — The add method is used to add an
element to the ArrayList. The add method can be used to add any sort of data
type element to the array list. So you can add an Integer, or a string, or even a
Boolean value to the array list. The general syntax of the addition method is
given below

ArrayList.add(element)

Below are some examples of how the “add” method can be used. The add method
can be used to add various data types to the Array List collection.

Below you can see examples of how we can add Integer’s Strings and even Boolean
values to the Array List collection.

e at.add(1) — This will add an Integer value to the collection
¢ atl.add(“Example”) — This will add a String value to the collection
e ai.add(true) — This will add a Boolean value to the collection

Now let’s see this working at a code level. All of the below-mentioned code will be
written to our Console application. The code will be written to our Program.cs file.

In the program below, we will write the code to create a new array list. We will
also show to add elements and to display the elements of the Array list.

static void Main(string[] args)
{ . .
ArraylList al = t(); ' Dﬂ‘hmn@ an Yy list
Adding dlements N al.Add(1);

. al.Add("Example");
to the arvau list al.Add(true);

le.Writeline(al[®]); | D]S{)Mln@ the elements

.WriteLine(al[1]); - !
le.WriteLine(al[2]); Ufwmw.j list

Console.ReadKey();

Code Explanation:-

1. The first step is used to declare our Array List. Here we are declaring a1 as a
variable to hold the elements of our array list.

2. We then use the add keyword to add the number 1, the String “Example” and
the Boolean value ‘true’ to the array list.

3. We then use the Console.WriteLine method to display the value of each array
lists element to the console. You will notice that just like arrays, we can access
the elements via their index positions. So to access the first position of the
Array List, we use the [0] index position. And so on and so forth.

If the above code is entered properly and the program is run the following output
will be displayed.

Output:

¥ Aile:///C/Guru99/DemoApplication/DemoApplication/bin/Debu

The elements of the

arvau list displawjed in
the ourput

From the output, you can clearly see that all of the elements from the array list are
sent to the console.

Let’s look at some more methods which are available as part of the ArrayList.

¢ Count — This method is used to get the number of items in the ArrayList
collection. Below is the general syntax of this statement. ArrayList.Count() —

This method will return the number of elements that the array list contains.

e Contains - This method is used to see if an element is present in the ArrayList
collection. Below is the general syntax of this statement
ArrayList.Contains(element) — This method will return true if the element is
present in the list , else it will return false.

¢ RemoveAt - This method is used to remove an element at a specific position
in the ArrayList collection. Below is the general syntax of this statement

ArrayList.RemoveAt(index) — This method will remove an element from a specific
position of the Array List.

Now let’s see this working at a code level. All of the below-mentioned code will be
written to our Console application. The code will be written to our Program.cs file.

In the below program, we will write the code to see how we can use the above-
mentioned methods.

md e o~ gy A
.....

count of items in the

Removing an ArYoup st

glement and

Showing that the

DLV~ Console.riteline(al.Count) Ohecking 10 see if Tne

removed AV LIt confains fhe

element

al.RemoveAt(1);

Console.WriteLine(al[1]);

Code Explanation:-

1. So the first property we are seeing is the Count property. We are getting the
Count property of the array list a1 and then writing it to the Console.

2. In the second part, we are using the Contains method to see if the arraylist a1
contains the element 2. We then write the result to the Console via the
Writeline command.

3. Finally to showcase the Remove element method , we are performing the
below steps,

a. First, we write the value of the element at Index position 1 of the array list
to the console.
b. Then we remove the element at Index position 1 of the array list.

c. Finally, we again write the value of the element at Index position 1 of the
array list to the console. This set of steps will give a fair idea whether the
remove method will work as it should be.

If the above code is entered properly and the program is run the following output
will be displayed.

Output:

i fileyf/C/Guru99/DemoApplication/DemoApplication/bin/Debug/Der

Ovput of the variovs

Arvu List functions

Why the last value is true?

If you see the sequence of events , the element Example is removed from the array
because this is at position 1. Position 1 of the array then gets replaced by what was
in position 2 earlier which the value ‘true’

C# Stack

The stack is a special case collection which represents a last in first out (LIFO)
concept. To first understand LIFO, let’s take an example. Imagine a stack of books
with each book kept on top of each other.

The concept of last in first out in the case of books means that only the top most
book can be removed from the stack of books. It is not possible to remove a book
from between, because then that would disturb the setting of the stack.

Hence in C#, the stack also works in the same way. Elements are added to the
stack, one on the top of each other. The process of adding an element to the stack
is called a push operation. To remove an element from a stack, you can also
remove the top most element of the stack. This operation is known as pop.

Let’s look at the operations available for the Stack collection in more detail.

¢ Declaration of the stack — A stack is created with the help of the Stack Data
type. The keyword “new” is used to create an object of a Stack. The object is
then assigned to the

variable st. Stack st = new Stack()

¢ Adding elements to the stack — The push method is used to add an
element onto the stack. The general syntax of the statement is given below.

Stack.push(element)

¢ Removing elements from the stack — The pop method is used to remove
an element from the stack. The pop operation will return the topmost element
of the stack. The general syntax of the statement is given below

Stack.pop()

¢ Count - This property is used to get the number of items in the Stack. Below
is the general syntax of this statement.

Stack.Count

¢ Contains - This method is used to see if an element is present in the Stack.
Below is the general syntax of this statement. The statement will return true if
the element exists, else it will return the value false.

Stack.Contains(element)

Now let’s see this working at a code level. All of the below-mentioned code will be
written to our Console application. The code will be written to our Program.cs file.

In the below program, we will write the code to see how we can use the above-
mentioned methods.

In this example, we will see

e How a stack gets created.
e How to display the elements of the stack , and use the Count and Contain
methods.

SErangll args) Creating a stack Variabole
s | :
S . I); i
["st.Push(1); Pushing elements count of stack
| st.Push(2); | @ 0 the stack glements

| st.Push(3);

Displauing stack
glements Sﬁﬂf@*ﬂﬂg‘fﬂf
an element
Console.WriteLine(); Console.WriteLine(); 2

driteLine("The number of elements in the stack=" + st.Count);

"oy st,Contains(é));

Code Explanation:-

1. The first step is used to declare the Stack. Here we are declaring “st” as a
variable to hold the elements of our stack.

2. Next, we add 3 elements to our stack. Each element is added via the Push
method.

3. Now since the stack elements cannot be accessed via the index position like
the array list, we need to use a different approach to display the elements of
the stack. The Object (obj) is a temporary variable, which is declared for
holding each element of the stack. We then use the foreach statement to go
through each element of the stack. For each stack element, the value is
assigned to the obj variable. We then use the Console.Writeline command to
display the value to the console.

4. We are using the Count property (st.count) to get the number of items in the
stack. This property will return a number. We then display this value to the

console.

5. We then use the Contains method to see if the value of 3 is present in our
stack. This will return either a true or false value. We then display this return
value to the console.

If the above code is entered properly and the program is run the following output
will be displayed.

Output:

I | >

Ovtput of Count
and contains
method

From the output, we can clearly see that the elements of the stack are displayed.
Also, the value of True is displayed to say that the value of 3 is defined on the
stack.

Note: You have noticed that the last element pushed onto the stack is displayed
first. This is the topmost element of the stack. The count of stack elements is also
shown in the output.

Now let’s look at the “remove” functionality. We will see the code required to
remove the topmost element from the stack.

Main(string[] args)

new Stack();

POpping an
glewent from

Foreach (Object obj in st){

Console.WritelLine(obj);

Code Explanation:-

1. Here we just issue the pop method which is used to remove an element from
the stack.

If the above code is entered properly and the program is run, the following output
will be displayed.

Output:

Afile://fC/Guru99/DemoApplication/DemoApplicatior

OUFpUT Snows
that the dement

3 WAs popped
from the stock

We can see that the element 3 was removed from the stack.

C# Queue

The Queue is a special case collection which represents a first in first out concept.
Imagine a queue of people waiting for the bus. Normally, the first person who
enters the queue will be the first person to enter the bus. Similarly, the last person
to enter the queue will be the last person to enter into the bus. Elements are added
to the stack, one on the top of each other.

The process of adding an element to the queue is the enqueuer operation. To
remove an element from a queue, you can use the dequeuer operation. The
operation in queues are similar to stack we saw previously.

Let’s look at the operations available for the Queue collection in more detail.

¢ Declaration of the Queue — The declaration of a Queue is provided below.
A Queue is created with the help of the Queue Data type. The “new” keyword is
used to create an object of a Queue. The object is then assigned to the variable

qt.

Queue qt = new Queue()

¢ Adding elements to the Queue — The enqueue method is used to add an
element onto the queue. The general syntax of the statement is given below.

Queue.enqueue(element)

¢ Removing elements from the queue — The dequeue method is used to
remove an element from the queue. The dequeue operation will return the last
element of the queue. The general syntax of the statement is given below

Queue.pop()

e Count - This property is used to get the number of items in the queue. Below
is the general syntax of this statement.

Queue.Count

¢ Contains - This method is used to see if an element is present in the Queue.
Below is the general syntax of this statement. The statement will return true if
the element exists, else it will return the value false.

Queue.Contains(element)

Now, let’s see this working at a code level. All of the below-mentioned code will be
written to our Console application.

The code will be written to our Program.cs file. In the below program, we will
write the code to see how we can use the above-mentioned methods.

In this example, we will see how a queue gets created. Next, we will see how to
display the elements of the queue, and use the Count and Contain methods.

;z[.‘:._;:ti-:: void Main(string[] args) Czl"ﬂﬂ.ﬂng a'qugvg variabole

ntnqueue(l), Mdm@ gwmm‘s
qt.Enqueue(2); | @& fo the GlUéUE count of qvévé

gt.Enqueue(3); 313"13”1’3
obj.qt){

Displayjing queve

. WriteLine(obj);

Seaxching for

le.WritelLine(); Conscle.WritelLine(); %

le.WriteLine("The number of elements

:.WriteLine("Does the queue contain” + gt.Contains(3));

Code Explanation:-

1. The first step is used to declare the Queue. Here we are declaring gt as a
variable to hold the elements of our Queue.

2. Next, we add 3 elements to our Queue. Each element is added via the
“enqueue” method.

3. Now one thing that needs to be noted about Queues is that the elements
cannot be accessed via the index position like the array list. We need to use a
different approach to display the elements of the Queue. So here’s how we go
about displaying the elements of a queue.

e We first declare a temporary variable called obj. This will be used to hold each
element of the Queue.

e We then use the foreach statement to go through each element of the Queue.

¢ For each Queue element, the value is assigned to the obj variable.

¢ We then use the Console.Writeline command to display the value to the
console.

4. We are using the “Count” property to get the number of items in the Queue.
This property will return a number. We then display this value to the console.

5. We then use the “Contains” method to see if the value of 3 is present in our
Queue. This will return either a true or false value. We then display this
return value to the console.

If the above code is entered properly and the program is run the following output
will be displayed.

Output:

HF

L __\E_fiIe:fﬁC'.fGurUQQIDemDAp|::IicatiﬂnfDemﬂAp|::IicaticnnfhinfDehungemUAppli

elements 0f the
queve

'm&m&mmwn:mmma
i he numbher of elements in the gueuel
tDoes the gueue containTrue

output of Count
and Contains
Mefinod

From the output, we can clearly see that the elements of the Queue are displayed.
Note that, unlike “stack” in “queue” the first element pushed on to the queue is
displayed first. The count of queue elements is also shown in the output. Also, the
value of True is displayed to say that the value of 3 is defined on the queue.

Now let’s look at the remove functionality. We will see the code required to
remove the last element from the queue.

void Main(string[] args)
Queue gt = new Queue();

qt.Enqueue(l); R@Wﬂ@ﬂﬂ

gt.Enqueue(2);

qt.Enqueue(3); glement from
1?UEGP@UE

qt .Dequeue(); 1

yreach (Object obj in qt){

Console.WriteLine(obj);

Code Explanation:-

1. Here we just issue the “dequeue” method, which is used to remove an
element from the queue. This method will remove the first element of the
queue.

If the above code is entered properly and the program is run the following output
will be displayed.

Output:

¢ Afiley/ /G Guru99/DemoApplication/DemoApplicatio

OUFpUT SnoWS
that the first

2lement was
removed from
fhe queve

From the output, we can see that the first element which was added to the queue,
which was the element 1, was removed from the queue.

C# Hashtable

A hash table is a special collection that is used to store key-value items. So instead
of storing just one value like the stack, array list and queue, the hash table stores 2
values. These 2 values form an element of the hash table.

Below are some example of how values of a hash table might look like.
{“001”, “.Net” }

{“0027,“.C#” }

{“003”, “ASP.Net” }

Above we have 3 key value pairs. The keys of each element are 001, 002 and 003
respectively. The values of each key value pair are “.Net”, “C#” and “ASP.Net”
respectively.

Let’s look at the operations available for the Hashtable collection in more detail.

¢ Declaration of the Hashtable — The declaration of a Hashtable is shown
below. A Hashtable is created with the help of the Hashtable Data type. The
“new” keyword is used to create an object of a Hashtable. The object is then
assigned to the variable ht.

Hashtable ht = new Hashtable()

¢ Adding elements to the Hashtable — The Add method is used to add an
element on to the queue. The general syntax of the statement is given below

HashTable.add(“key”,“value”)

Remember that each element of the hash table comprises of 2 values, one is the
key, and the other is the value.

Now, let’s see this working at a code level. All of the below-mentioned code will be
written to our Console application.

The code will be written to our Program.cs file. In the below program, we will
write the code to see how we can use the above-mentioned methods.

For now in our example, we will just look at how we can create a hashtable , add
elements to the hashtable and display them accordingly.

Creating a. hashiale Variable

s BA W Adding glements 19 the hashtale

ICollection k
Displaging the
_ valve for each
@ ey

Console.ReadKey
Code Explanation:-

1. First, we declare the hashtable variable using the Hashtable data type by
using keyword “New.” The name of the variable defines is ‘ht’.

2. We then add elements to the hash table using the Add method. Remember
that we need to add both a key and value element when adding something to
the hashtable.

3. There is no direct way to display the elements of a hash table.

e In order to display the hashtable , we first need to get the list of keys (001, 002
and 003) from the hash table.

¢ This is done via the ICollection interface. This is a special data type which can
be used to store the keys of a hashtable collections. We then assign the keys of
the hashtable collection to the variable ‘keys’.

4. Next for each key value, we get the associated value in the hashtable by using
the statement ht[k].

If the above code is entered properly and the program is run the following output
will be displayed.

Output:

¥ Aileff/C/Guru99/DemoApplication/DemoApplica

ey Vadve pairs
0f the hashtable

Let’s look at some more methods available for hash tables.

¢ ContainsKey - This method is used to see if a key is present in the Hashtable.
Below is the general syntax of this statement. The statement will return true if
the key exists, else it will return the value false.

Hashtable.Containskey(key)

¢ ContainsValue - This method is used to see if a Value is present in the
Hashtable. Below is the general syntax of this statement. The statement will
return true if the Value exists, else it will return the value false.

Hashtable.ContainsValue(key)

Let’s change the code in our Console application to showcase how we can use the
“Containskey” and “ContainsValue” method.

Searching for a key

ht.Add("ee1"

ht.Add("002", "C#"); Seaxching for a

ht.Add("e@3", "ASP.Net"); ,
J : 1 vae

le.WriteLine(ht.ContainsKey("281"));

2

ole.WriteLine(ht.ContainsValue("C#"));"

ole.ReadKey();

Code Explanation:-

1. First, we use the ContainsKey method to see if the key is present in the
hashtable. This method will return true if the key is present in the hashtable.
This method should return true since the key does exist in the hashtable.

2. We then use the ContainsValue method to see if the value is present in the

hashtable. This method will return ‘true’ since the Value does exist in the
hashtable.

If the above code is entered properly and the program is run the following output
will be displayed.

Output:

filey///CGuru99/DemoApplication/Derr

QUIpUt Shows the

valve of frve

From the output, you can clearly see that both the key and value being searched
are present in the hash table.

Summary

e The Array List collection is used to store a group of elements. The advantage of
the Array list collection is that it is dynamic in nature. You can add and remove
elements on the fly to the array list collection.

e A Stack is based on the last in first out concept. The operation of adding an
element to the stack is called the push operation. The operation of removing an
element to the stack is called the pop operation.

¢ A Queue is based on the first in first out concept. The operation of adding an
element to the queue is called the enqueue operation. The operation of
removing an element to the queue is called the dequeue operation.

¢ A Hashtable is used to store elements which comprises of key values pairs. To
access the value of an element , you need to know the key of the element.

Chapter 6: Windows Forms Application

So far we have seen how to work with C# to create console based applications. But
in a real life scenario teams normally use Visual Studio and C# to create either
Windows Forms or Web-based applications.

A windows form application is any application, which is designed to run on a
computer. It will not run on web browser because then it becomes a web
application.

This chapter will focus on how we can create Windows-based applications. We will
also learn some basics on how to work with the various elements of Windows
applications.

Windows Forms Basics

A Windows forms application is one that runs on the desktop computer. A
Windows forms application will normally have a collection of controls such as
labels, textboxes, list boxes, etc.

Below is an example of a simple Windows form application. It shows a simple
Login screen, which is accessible by the user. The user will enter the required
credentials and then will click the Login button to proceed.

User Name TEXT‘UUX
Fassword Omrrms

&

Laloel Confrols

So an example of the controls available in the above application

1. This is a collection of label controls which are normally used to describe
adjacent controls. So in our case, we have 2 textboxes, and the labels are used
to tell the user that one textbox is for entering the user name and the other
for the password.

2. The 2 textboxes are used to hold the username and password which will be
entered by the user.

3. Finally, we have the button control. The button control will normally have
some code attached to perform a certain set of actions. So for example in the
above case, we could have the button perform an action of validating the user
name and password which is entered by the user.

C# Hello World

Now let’s look at an example of how we can implement a simple ‘hello world’
application in Visual Studio. For this, we would need to implement the below-
mentioned steps

Step 1) The first step involves the creation of a new project in Visual Studio. After
launching Visual Studio, you need to choose the menu option New->Project.

o

FILE EDIT VIEW DEBUG TEAM TOOLS

| New

Project From EBxisting Code...

wsvuver wiiacd rievw o cremium
NS—— 19
Ctrle Shift«5 iﬂo] 3

You can find inft hd

sl Fead : b Frllraa
enhancements i Choose the the following

Account Settings... sections.

project option

Recent Projects and Solutions
B E'r.lt

Command Window Web Publ

Step 2) The next step is to choose the project type as a Windows Forms
application. Here we also need to mention the name and location of our project.

b Recent NET Framework 4.5 - Sortby: Default

; E] Windows Forms Application 2 fisyal C Choose Windows
4 Templates cB - e Fm'fm APPﬂcaﬁm

4 |nstalled

b Visual Basic WP Application

4 Visual C# = [3
Console Application Visual C#

Window:

Window: I Class Library = &l‘fg a ngme ﬂ.ﬂd
- ..) Portable Class Library 2 Mﬁﬂﬂ fm' m
-] WPF Browser Application Wispdfal C aPPﬁca'ﬂm

Empty Project

Windows Service

Click the 0K button

| Name: DemnoApplicatior]| e
| Location: CAGurudd : o m
Solution: Create new solution -

Solution name: DemodApplication

1. In the project dialog box, we can see various options for creating different
types of projects in Visual Studio. Click the Windows option on the left-hand
side.

2. When we click the Windows options in the previous step, we will be able to
see an option for Windows Forms Application. Click this option.

3. We then give a name for the application which in our case is
DemoApplication. We also need to provide a location to store our application.

4. Finally, we click the ‘OK’ button to let Visual Studio to create our project.

If the above steps are followed, you will get the below output in Visual Studio.

Output:-

Forml.cs [Design] ® X Output Solution Explorer

You will S22 o
form

dasitjnar
come vp

You will actually see a Form Designer displayed in Visual Studio. It’s on this Form
Designer that you will start building your Windows Forms application.

Form1.cs [Design] Clutput solution Explorer & X
Nam & -

emofpplication’ (1 p

Properties
5-B References
¥_1 App.config

S Forml.cs

¢+ Program.cs

-\ [

AN Progyam

In the Solution explorer, you will also be able to see the DemoApplication
Solution. This solution will contain the below 2 project files

1. A Form application called Formsi.cs. This file will contain all of the code for
the Windows Form application.

2. The Main program called Program.cs is default code file which is created
when a new application is created in Visual Studio. This code will contain the
startup code for the application as a whole.

On the right-hand side of Visual Studio, you will also see a ToolBox. The toolbox
contains all the controls which can be added to a Windows Forms. Controls like a
text box or a label are just some of the controls which can be added to a Windows
Forms.

Below is a screenshot of how the Toolbox looks like.

Pointer
BackgroundWorker
BindingNavigator
Binding>ource
El-l_.lﬂl!:ll'l.

CheckBox
CheckedListBox
ColorDialog

ComboBox

5 [l

ContedMenuStrip

AN
am
n

DataGridView

DiataSet

DateTimePicker

LhrectoryEntry
DirectorySearcher
DomainUpDown
ErrorProvider
Eventlog
FileSystemWatcher
FlowlLayoutPanel
FolderBrowserDialog
FontDialog
GroupBox
HelpProwvider

HScrollBar

E BCEIESIEOR DElI

Step 3) In this step, we will now add a label to the Form which will display “Hello
World.” From the toolbox , you will need to choose the Label control and simply
drag it onto the Form.

ComboBox
ContextMenuStnip
DataGridView
Databet
DateTimePicker

a
-

DirectoryEntry
DirectorySearcher
DomainUplown
ErrorProvider

EventlLog

EH
P
=
(X
7
&

FileSysternWatcher
FlowLayoutPanel
FolderErowserChalog
FontDhalog

GroupBox

= E R E

HelpProvider

HScrollBar

IrmageList

> 1 &

LinkLabel
ListBox

Once you drag the label to the form, you can actually see the label embedded on
the form as shown below.

L.abel added 10
the form

Step 4) The next step is to actually go to the properties of the control and Change
the text to ‘Hello World’.

To go to the properties of control, you need to right-click the control and choose
the Properties menu option

View Code

Choose the
properties

Lock Controls :
Select 'Form1’ mnu OPﬂon
Cut Ctrl+X

Copy Ctrl+C

Paste Special

Celete

Properties

e The properties panel also shows up in Visual Studio. So for the label control, in
the properties control, go to the Text section and enter “Hello World”.
e Each Control has a set of properties which describe the control.

Froperties

labell Systerm.Windows.Forms.Label

st |54 (D F F
B Accessibility
AccessibleDescniption

AccessibleMame

AccessibleRole Default

Appearance
BackColor B Control

BorderStyle MNone

Cursor Default
Flatstyle standard

e,n.rar n ‘H 31“1 H Font Microsoft Sans Senf, 8.25pt

FareColor ControlT e
TR Image (none)
wmd ‘n m ImageAlign MiddleCenter
Imagelndex (none)
Taxr Propgri"‘j' ImageX.ey (nonej

Imagelist (none)

RightToleft No

Tet HelloWorld
Topleft

If you follow all of the above steps and run your program in Visual Studio, you will
get the following output

Output:-

Wl forml 1=

The FOrm runs
Helowol g W ond Hello world

is displaued

In the output, you can clearly see that the Windows Form is displayed. You can
also see ‘Hello World’ is displayed on the form.

Adding Controls to a form

We had already seen how to add a control to a form when we added the label
control in the earlier section to display “Hello World.”

Let’s look at the other controls available for Windows forms and see some of their
common properties.

In our example, we will create one form which will have the following
functionality.

The ability for the user to enter name and address.
An option to choose the city in which the user resides in
The ability for the user to enter an option for the gender.

B W=

An option to choose a course which the user wants to learn. There will
choices for both C# and ASP.Net

So let’s look at each control in detail and add them to build the form with the
above-mentioned functionality.

Group Box — A group box is used for grouping logical controls into a section.
Let’s take an example, if you had a collection of controls for entering details such
as name and address of a person. Ideally, these are details of a person, so you
would want to have these details in a separate section on the Form. For this
purpose, you can have a group box. Let’s see how we can implement this with an
example shown below

Step 1) The first step is to drag the Groupbox control onto the Windows Form
from the toolbox as shown below

Tﬂﬂlhﬂ:{ e

ComboBox
ContextMenu5trip
DataGndView
Databet
DateTimePicker

-
r

DirectoryEntry
DirectorySearcher Project DemoApplication
DemainUpDown

ErrorProwvider

EventLog

i
P
=
(X

FileSysternWatcher

FlowLayoutPanel

FolderBrowserDhalog

FontDhalog

Bouex..
HelpProvider

HScrollBar

32 mCHE

ImageList

Step 2) Once the groupbox has been added, go to the properties window by
clicking on the groupbox control. In the properties window, go to the Text
property and change it to “User Details”.

AccessibleRole Drefault
Appearance

BackColor B Control
Backgroundlmage (none)

Backgroundlmagelayout Tile

Cursor Default
Flat5tyle Standard

Font Microsoft 5ans Senf, 8.25pt

ForeColor ControlText
RightToleft _ Mo
B User Detais
UseWartCursor False

Behavior

ContextMenuStrip (none)

Enabled True

ImeMode NoControl
Tablndex 3
UseCompatibleTextRende False

Visible True

One you make the above changes, you will see the following output

Output:-

User Details

In the output, you can clearly see that the Groupbox was added to the form. You
can also see that the text of the groupbox was changed to “User Details.”

Label Control — Next comes the Label Control. The label control is used to
display a text or a message to the user on the form. The label control is normally

used along with other controls. Common examples is wherein a label is added
along with the textbox control.

The label gives an indication to the user on what is expected to fill up in the
textbox. Let’s see how we can implement this with an example shown below. We
will add 2 labels, one which will be called ‘name’ and the other called ‘address.’
They will be used in conjunction with the textbox controls which will be added in
the later section.

Step 1) The first step is to drag the label control on to the Windows Form from
the toolbox as shown below. Make sure you drag the label control 2 times so that
you can have one for the ‘name’ and the other for the ‘address’.

e R B T R
Eventlog
FileSystemWatcher
FlowlLayoutPanel
FolderBrowserDialog
FontDialog
GroupBox
HelpProwvider
H5crollBar

ImageList Forml.cs [Design]®

Use the el
ListWiew wn Tr m

Masked TextBox

Step 2) Once the label has been added, go to the properties window by clicking on
the label control. In the properties window, go to the Text property of each label
control.

r L)
Flat5tyle
Font
ForeColar

Image

Imagehlign

Imagelndex
Imagekey
ImageList
RightTol ft
Text
Texthlign

Standard

Microsoft Sans Serf, 8.25pt
ControlText
(none)

MiddleCenter
(none)
(none)

(none)

Mo

Mame

ToplLeft

Usefnemanic True
LseWartCursor False
Behavior

AllowDrop False

AutoEllipsis False
One you make the above changes, you will see the following output

Output:-

o Login

User Details

Mame

Address

NowW have the
labels on the
form

You can actually see the label controls added to the form.

¢ Textbox — A textbox is used for allowing a user to enter some text on the
forms application. Let’s see how we can implement this with an example shown
below. We will add 2 textboxes to the form , one for the Name and the other for
the address to be entered for the user

Step 1) The first step is to drag the textbox control onto the Windows Form from
the toolbox as shown below

PropertyGnd
RadioButton
RichTextBox
SaveFileDialog
SerialPort
ServiceController
SplitContainer
Splitter
StatusStrip

TabControl

Timer

ToolStrip

Step 2) Once the text boxes have been added, go to the properties window by
clicking on the textbox control. In the properties window, go to the Name property
and add a meaningful name to each textbox. For example, name the textbox for
the user as txtUser and that for the address as txtAddress. A naming convention
and standard should be made for controls because it becomes easier to add extra
functionality to these controls, which we will see later on.

UseSystemPasswordChar False
Visible True
WordWrap True
Data

(Application5ettings)

{DataBindings)

Tag
1 Design

(MName) txtName
GenerateMember True
Locked False
Modifiers Private
Focus

CausesValidation True
Layout

Anchor Top, Left
Dock Mone

One you make the above changes, you will see the following output

Output:-

User Details

Mame

Xt bOX
Controls on the

Address

form

In the output, you can clearly see that the Textboxes was added to the form.

List box — A Listbox is used to showcase a list of items on the Windows form.
Let’s see how we can implement this with an example shown below. We will add a
list box to the form to store some city locations.

Step 1) The first step is to drag the list box control onto the Windows Form from
the toolbox as shown below

PR | e e R e e e

Label
LinkLabel

ListWiew
MaskedTextBox
MenuStrip
ATl Project DemoApplication
MonthCalendar

Motifylcon Forml.cs [Design]®

Step 2) Once the list box has been added, go to the properties window by clicking

on the list box control.

. swnaCollectionEdir

Enter the strings in the collection (one per line):

el
H}'drehad @

enter the
\ . Click the

Gl
s Ok button

1. First, change the property of the Listbox box control , in our case we have
changed this to IstCity

2. Click on the Items property. This will allow you to add different items which
can show up in the list box. In our case, we have selected items “collection”.

3. In the String Collection Editor, which pops up, enter the city names. In our

case, we have entered “Mumbai”, “Bangalore” and “Hyderabad”.
4. Finally, click on the ‘OK’ button.

One you make the above changes, you will see the following output

Output:-

o Login -

Uzer Details

Mame

s The IStoX
withe
Valves

Mumbai
Bangalore

Hydrebad

In the output, you can clearly see that the Listbox was added to the form. You can
also see that the list box has been populated with the city values.

RadioButton - A Radiobutton is used to showcase a list of items out of which the
user can choose one. Let’s see how we can implement this with an example shown
below. We will add a radio button for a male/female option.

Step 1) The first step is to drag the ‘radiobutton’ control onto the Windows Form
from the toolbox as shown below.

PictureBox

PrintDialog

ot Dl g sl i
PrintDocument 4
PrintPreviewControl RM‘O bb I I On

o1 PrntPreviewDialog
Process Oon‘rrm
ProgressBar

RichTextBox

Step 2) Once the Radiobutton has been added, go to the properties window by
clicking on the Radiobutton control.

Properties -

Text

TextAlign
TextlmageRelation
UseMnemonic
UseVisualStyleBackColor
UseWartCursor
Behavior
AllowDrop
AutoCheck
Autokllipsis
ContextMenuStrip
Enabled

Tablndex

Tab5top

UseCompatibleTextRende

Visible

Data
(ApplicationSettings)
(DataBindings)

Tag

Do
T

GenerateMember

rdMale System.Windows.Forms.RadioButto
Lk
RightToleft

No
Male
Middleleft
Owverlay
True

True

False

False
True
False
(none)
True
T
True
False
True

rdMale
True

1. First, you need to change the text property of both Radio controls. Go the
properties windows and change the text to male of one radiobutton and the
text of the other to female.

2. Similarly, change the name property of both Radio controls. Go the
properties windows and change the name to ‘rdMale’ of one radiobutton and
to ‘rdfemale’ for the other one.

One you make the above changes, you will see the following output

Output:-

Iser Details

Mame

Address

Mumbai
Bangalore
Hydrebad

You will see the Radio buttons added to the Windows form.

Checkbox - A checkbox is used to provide a list of options in which the user can
choose multiple choices. Let’s see how we can implement this with an example
shown below. We will add 2 checkboxes to our Windows forms. These checkboxes
will provide an option to the user on whether they want to learn C# or ASP.Net.

Step 1) The first step is to drag the checkbox control onto the Windows Form
from the toolbox as shown below

BindingMavigator
BindingSource

Button

CheckedListBox
ColorDialog

ComboBox

Li] |
| |
g
G

- (m]
Fai
=

e
1

ContextMenuStrip

Step 2) Once the checkbox has been added, go to the properties window by
clicking on the Checkbox control.

Properties
chkC Systern.Windows.Forms.CheckBox
LIRS

Text c#
TextAlign MiddlelLeft
TextlmageRelation Overlay
UseMnemonic True
UseVisualStyleBackColor True
UseWartCursor False
Behavior
AllowDrop False
AutoCheck True
Autokllipsis False
ContextMenuStrip (none)
Enabled True
Tablndex 9
Tab5top True

ThreeState False

UseCompatibleTextRendernng False

Visible True
Data

(Application5ettings)

(DataBindings)

(Mame)

Generateblember

In the properties window,

1. First, you need to change the text property of both checkbox controls. Go the
properties windows and change the text to C# and ASP.Net.

2. Similarly, change the name property of both Radio controls. Go the
properties windows and change the name to chkC of one checkbox and to
chkASP for the other one.

One you make the above changes, you will see the following output

Output:-

User Details

R — O e

pos [O P
cH

Mumbai

Bangalore

Hydrebad [] asp

VN. B0t chack. box

confyols added

Button - A button is used to allow the user to click on a button which would then
start the processing of the form. Let’s see how we can implement this with an
example shown below. We will add a simple button called ‘Submit’ which will be
used to submit all the information on the form.

Step 1) The first step is to drag the button control onto the Windows Form from

the toolbox as shown below

T i e e R

4 All Windows Forms
Pointer
BackgroundWorker

BindingMavigator

BindingSource

CheckBox

CheckedListBox

Step 2) Once the Button has been added, go to the properties window by clicking

on the Button control.

Properties -

btnSubmit System.Windows.Forms.Button

= (D)5 #
RightTolLeft MNo
Text Submit
TextAlign MiddleCenter
TextlmageRelation Overlay
UseMnemonic True
UseVisualStyleBackColor True
UseWaitCursor Falze
Behavior
AllowDrop False
AutoEllipsis False
ContextMenuStrip none)
DialogResult MNone
Enabled True
Tablndex 11
TabStop True
UseCompatibleTextRendering False
Visible True
Data
{ApplicationSettings)

{DataBindings)

Tag

Design
(Name) = btnSubmit

GenerateMember True

1. First, you need to change the text property of the button control. Go the
properties windows and change the text to ‘submit’.

2. Similarly, change the name property of the control. Go the properties
windows and change the name to ‘btnSubmit’.

One you make the above changes, you will see the following output

Output:-

User Details

Mame) Male

G O Female Button Control

in PM

[]cH

Mumbai
Bangalore

Hydrebad [] ASP

Congrats, you now have your first basic Windows Form in place. Let’s now go to
the next topic to see how we can do Event handling for Controls.

C# Event Handling for Controls

When working with windows form, you can add events to controls. An event is
something that happens when an action is performed. Probably the most common
action is the clicking of a button on a form. In Windows forms , you can add code
which can be used to perform certain actions when a button is pressed on the
form.

Normally when a button is pressed on a form, it means that some processing
should take place.

Let’s take a look at one of the event and how it can be handled before we go onto
the button event scenario.

The below example will showcase an event for the Listbox control. So whenever an
item is selected in the listbox control, a message box should pop up which shows
the item selected. Let’s perform the following steps to achieve this.

Step 1) Double click on the Listbox in the form designer. By doing this, Visual
Studio will automatically open up the code file for the form. And it will
automatically add an event method to the code. This event method will be
triggered, whenever any item in the listbox is selected.

5 EVE

oid 1stCity SelectedIndexChanged(cbject sender

\ Code added oy Visuad Studio

Above is the snippet of code which is automatically added by Visual Studio, when
you double-click the List box control on the form. Now let’s add the below section
of code to this snippet of code, to add the required functionality to the listbox
event.

event Handler

SR N 055z oox o
Show the valve

1. This is the event handler method which is automatically created by Visual
Studio when you double-click the List box control. You don’t need to worry
about the complexity of the method name or the parameters passed to the
method.

2. Here we are getting the SelectedItem through the IstCity.SelectedItem
property. Remember that IstCity is the name of our Listbox control. We then
use the GetltemText method to get the actual value of the selected item. We
then assign this value to the text variable.

3. Finally, we use the MessageBox method to display the text variable value to
the user.

One you make the above changes, and run the program in Visual Studio you will
see the following output

Output:-
wd I.Ogin = | O x ct sender, EventArgs e)
User Details
Name]) Male +- Root
Address |] () Female C‘an 533 m

} the Selectod
| - item 18
v displayed in the

Bangalore

MeSSae00X

From the output, you can clearly see that when any item from the list box is
selected, a message box will pops up. This will show the selected item from the
listbox.

Now let’s look at the final control which is the button click Method. Again this
follows the same philosophy. Just double click the button in the Forms Designer
and it will automatically add the method for the button event handler. Then you
just need to add the below code.

P Button Click

tring name = txtName.Text;

2

g address = txtAddress.Text;

x.Show (name + address);

{3:

name and
the nome and address address valve

1. This is the event handler method which is automatically created by Visual
Studio when you double click the button control. You don’t need to worry on
the complexity of the method name or the parameters passed to the method.

2. Here we are getting values entered in the name and address textbox. The
values can be taken from the text property of the textbox. We then assign the
values to 2 variables, name, and address accordingly.

3. Finally, we use the MessageBox method to display the name and address
values to the user.

One you make the above changes, and run the program in Visual Studio you will
see the following output

Output:-

lUser Details

Name |Gunig9

Address |y torial

Mumbai
Bangalore
Hydrebad

enter the nouve EEINGELEEE: add
and adress

Login

i Click. the
Syomit button

|:| CH

|:| ASP

Submit '
- GuruSStutorial

1. First, enter a value in the name and address field.

2. Then click on the Submit button

Once you click the Submit button , a message box will pop, and it will correctly
show you what you entered in the user details section.

Other Controls

There are 2 further controls we can look at, one is the ‘Tree Control’ and the other
is the ‘Image control’. Let’s look at examples of how we can implement these
controls

¢ TreeControl — The tree control is used to list down items in a tree like
fashion. Probably the best example is when we see the Windows Explorer itself.
The folder structure in Windows explorer is like a tree like structure.

Let’s see how we can implement this with an example shown below.

Step 1) The first step is to drag the Tree control onto the Windows Form from the
toolbox as shown below

TabCaontrol

TableLayoutPanel

TextBox W%VWW

Timer

ToolStr p

(=¥

ToolStripContainer
ToolTip
TrackBar

TroE

WserollBar

WebBrowser

- Common Controls

I- Containers

Step 2) The next step is start adding nodes to the tree collection so that it can
come up in the tree accordingly. First, let’s follow the below sub-steps to add a
root node to the tree collection.

t Browser

wie: My Solution

 enfer the text
Select a node to edit: Rno.t properties: ! ﬂ_S Rmr

Root

Click on Add]
Root

[ModeFont (none)

@ Text L oot
TeolTipText
4 Behavior

Checked False

Contextheny (mone)
ContextMenuStrip (none)
Imagelndex [(defautt)
ImageKey I:l (default)

@ Text ode !

The text displayed in the label of the tree node.

Black

SAsditotenel] [HEaaa ol S| (Collection)

0K Cancel

1. Go to the properties toolbox for the tree view control. Click on the Node’s
property. This will bring up the TreeNode Editor

2. In the TreeNode Editor click on the Add Root button to add a root node to
the tree collection.

3. Next, change the text of the Root node and provide the text as Root and click
‘OK’ button. This will add Root node.

Step 3) The next step is start adding the child nodes to the tree collection. Let’s
follow the below sub-steps to add child root node to the tree collection.

BN [DF »

IR o e ForeColar
IternHeight
Select a node to edit: Checkbox properties: RightToLeft
4 it [*] B '
Iéik::cl‘n 'T| 4 Appearance @W'E Il TEXT ‘FW
: BackColar |:]
Checidbox s
ll ForeColor |:]
MName Moded
= NedeFont (none) Urawhode
Click. 0n Add T e 2
% ToolTipText
Child 4 Behavior
Checked False
ContextMenu {none)
ContextMenuStrip (none)
Imagelndex |:| (default)
ImageKey [(defauit) gl
a Text
; The text displayed in '-':""-' tree node.
Add Root g Add Child
UK [Can:eﬂ] PathSeparator

1. First, click on the Add child button. This will allow you to add child nodes to
the Tree collection.

2. For each child node, change the text property. Keep on repeating the previous
step and this step and add 2 additional nodes. In the end, you will have 3
nodes as shown above, with the text as Label, Button, and Checkbox

respectively.
3. Click on the OK button

Once you have made the above changes, you will see the following output.

Output:-

i
LUser Details
MName | | D Male
Address | Female
Mumbai
ok o control
......... T

You will actually be able to see the Tree view added to the form. When you run the
Windows form application, you can expand the root node and see the child nodes
in the list.

¢ PictureBox Control — This control is used to add images to the Windows
Forms. Let’s see how we can implement this with an example shown below.

Step 1) The first step is to drag the PictureBox control onto the Windows Form
from the toolbox as shown below

MumericUpDown

OpenfFileDialog Treeview

PageSetuplialog
Panel
PerformanceCou ntn.-_-r
:_'..'PlclureBﬂI 5
PrintDialog

PrntDocument
PrintPreviewControl
PrintPreviewDialog

Process

B
=
A
&
]
R
5l
EE}
]

ProgressBar

Step 2) The next step is to actually attach an image to the picture box control.
This can be done by following the below steps.

Select Resource
Resource contest [““““““““““““““““““““““““““““““““
® Local resource:
Impnlt @ C’“ck- ﬂ"li lmPorr * Properties

: ! ictureBox1 System.Windows.Forms.p :
() Project resource file: “ bm s i .
) It (D)5 # Click the Image

Click the 0K oUfton
bmﬁn A : le Default

. - 0 Bl Control
qro mage [none)
Choose the =
a e ! Mane
i I ' ul‘y r - - 4)l Default
l | oK | 1 © {none)

UseWaitCursor False
e P P e e B Asynchronous
i RTTE SRR i ; B Errorimage B System.Drawing.Bitmap
- + -. » ThisPC » Win ;'5=:_.: (C: w & <
5 A B2 System.Drawing.Bitmap
anize * New folder =i T W 0 False
g Videos aix Mame B Date modified i = S i i
C MenuStnp [none)
i Windows phone £ Windows.eld @ 373373015 1:38 AM £ Teve

s Windows8_05 (C
& LENOVO (D) |2

= ASPdotMET logo 1/22/2014 1:43 AM 5 ¢ MNormal

B Imane a1 1A.41F AN

1. First, click on the Image property for the PictureBox control. A new window
will pops out.

2. In this window, click on the Import button. This will be used to attach an
image to the picturebox control.

3. A dialog box will pop up in which you will be able to choose the image to
attach the picturebox

4. Click on the OK button

One you make the above changes, you will see the following output

ol Legin
User Details
e L=
cu
Mumbai
Bangalore
Hydrebad [asp

From the output, you can clearly see that an image is displayed on the form.

Summary

¢ A Windows forms application is one that runs on the desktop of a computer.
Visual Studio along with C# can be used to create a Windows Forms
application.

e Controls can be added to the Windows forms via the Toolbox in Visual Studio.
Controls such as labels , checkboxes , radio buttons, etc. can be added to the
form via the toolbox.

e One can also use advanced controls like the treeview control and the
picturebox control.

¢ Event handlers are used to respond to events generated from controls. The
most common one is the one added for the button clicked event.

Chapter 7: Database Access

Accessing Data from a database is one of the important aspects of any
programming language. It is an absolute necessity for any programming language
to have the ability to work with databases. C# is no different.

It has the ability to work with different types of databases. It can work with the
most common databases such as Oracle and Microsoft SQL Server.

It also has the ability to work with new forms of databases such as MongoDB and
MySQL.

Fundamentals of Database connectivity

C# and .Net has the ability to work with a majority of databases, the most
common being Oracle and Microsoft SQL Server. But with every database, the
logic behind working with all of them is mostly the same.

In our examples, we will look at working the Microsoft SQL Server as our
database. For learning purposes, one can download and use the Microsoft SQL
Server Express Edition, which is a free database software provided by
Microsoft.

In working with databases, the following are the concepts which are common
across all databases.

1. Connection — To work with the data in a database, the first obvious step is
the connection. The connection to a database normally consists of the below-
mentioned parameters.

a. Database name or Data Source — The first important parameter is
the database name to which the connection needs to be established. Each
connection can only work with one database at a time.

b. Credentials — The next important aspect is the username and password
which needs to be used to establish a connection to the database. It
ensures that the username and password have the necessary privileges to
connect to the database.

c. Optional parameters - For each database type, you can specify optional
parameters to provide more information on how .net should handle the
connection to the database. For example, one can specify a parameter for
how long the connection should stay active. If no operation is performed
for a specific period of time, then the parameter would determine if the
connection has to be closed.

2. Selecting data from the database — Once the connection has been
established, the next important aspect is to fetch the data from the database.
C# has the ability to execute ‘SQL’ select command against the database. The
‘SQL’ statement can be used to fetch data from a specific table in the
database.

3. Inserting data into the database — C# can also be used to insert records
into the database. Values can be specified in C# for each row that needs to be
inserted into the database.

4. Updating data into the database — C# can also be used to update
existing records into the database. New values can be specified in C# for each

row that needs to be updated into the database.

5. Deleting data from a database — C# can also be used to delete records
into the database. Select commands to specific which rows need to be deleted
can be specified in C#.

Ok, now that we have seen the theory of each operations, let’s jump into the
further sections to look at how we can perform database operations in C#.

Connections in .Net

Let’s now look at the code, which needs to be kept in place to create a connection
to a database. In our example, we will connect to a database which has the name
of Demodb. The credentials used to connect to the database are given below

e Username — sa
e Password — demo123

We will see a simple Windows forms application to work with databases. We will
have a simple button called “Connect” which will be used to connect to the
database.

So let’s follow the below steps to achieve this

Step 1) The first step involves the creation of a new project in Visual Studio. After
launching Visual Studio, you need to choose the menu option New->Project.

R
HELF

Dd Start Page - Microsoft Visu

TEAM TOOLS TEST

FILE EDIT VIEW DEBUG ANALYZE WINDOW

Mew Project... Chrl+ Shift+ M

& TWED SIE... SHITTF AT
s Team Project...
B File.. Ctrl+N
Project From Existing Code...
LAADUUIVEL ¥V AL

LISYY 111 ¢ .’emium

Ctrl+5hift+5

Account Settings...

Recent Files

Recent Projects and Solutions
Exit Alt+F4
¥

Command Window Web Publish Activity

Ready

2013

d
he following

You can find infc
enhancements i
sections.

Choose the
project option

Step 2) The next step is to choose the project type as a Windows Forms

application. Here, we also need to mention the name and location for our project.

\ecent .NET Framewark 4.5 Sart by:

Choose Windows
Forms Applicafion

§ 4 Installed X e S
| | Windows Forms Application

| 4 Templates =
b \ictial Bacic .:.:.J WPF Application Visual C#
C#

E Console Application Visual C#

v W ..Elfﬁi Class Library Visual C# &ivg a-‘ nm and
I. WS / E&g Portable Class Library Visual C# wMﬂm 'Fm’ W

i [) WPF Browser Application Vigafal C4 “Ca‘ﬂm
Browse to - app

: K:j Empty Project Visual C#
B Windows
B section

C#
| | Windows Service Visual C#

Click the 0K button

8 | Name: Der'no#.pplicationl :))))
| | Location: CAGurudg - Browse...
| Solution: Create new solution -

E Solution name: Demobpplication

1. In the project dialog box, we can see various options for creating different
types of projects in Visual Studio. Click the Windows option on the left-hand
side.

2. When we click the Windows options in the previous step, we will be able to
see an option for Windows Forms Application. Click this option.

3. We then give a name for the application which in our case is
“DemoApplication”. We also need to provide a location to store our
application.

4. Finally, we click the ‘OK’ button to let Visual Studio to create our project.

Step 3) Now add a button from the toolbox to the Windows form. Put the text
property of the Button as Connect. This is how it will look like

connect button

Step 4) Now double click the form so that an event handler is added to the code
for the button click event. In the event handler, add the below code.

oid buttonl_Click(object sender, Ever o5 e Vﬂnﬂblﬂ dEGWaﬁon
p tionstr‘ing;

BGPEGFGO?E‘Inlt‘al C%tal DHnodb

2

B Assign connaction
x.Show ("Connection Open ! "); |@ OPGH connection

cnn.Close(); '5“\
Close connection

Code Explanation:-

1. The first step is to create variables, which will be used to create the
connection string and the connection to the SQL Server database.

2. The next step is to actually create the connection string. The connecting
string needs to be specified in a correct way in order for C# to understand the
connection string. The connection string consists of the following parts
a. Data Source — This is the name of the server on which the database

resides. In our case, it resides on a machine called WIN- 50GP30FGO75.
b. The Initial Catalog is used to specify the name of the database

c. The UserID and Password are the credentials required to connect to the
database.

3. Next, we assign the connecting string to the variable cnn. The variable cnn,
which is of type SqlConnection is actually used to establish the connection to
the database.

4. Next, we use the Open method of the cnn variable to open a connection to the
database. We then just display a message to the user that the connection is
established.

5. Once the operation is completed successfully, we then close the connection to
the database. It is always a good practice to close the connection to the
database if nothing else is required to be done on the database.

When the above code is set, and the project is executed using Visual Studio, you
will get the below output. Once the form is displayed, click the Connect button.

Output:-

L5 Login =

When you click on “connect” button, from the output you can clearly see that the
database connection was established. Hence, the message box was displayed.

Access data

To showcase how data can be accessed using C#, let us assume that we have the
following artifacts in our database.

1. A table called demotb. This table will be used to store the ID and names of
various Tutorials.

2. The table will have 2 columns, one called “TutorialID” and the other called
“TutorialName.”

3. For the moment, the table will have 2 rows as shown below.

TutorialID TutorialName
1 C#
2 ASP.Net

Let’s change the code in our form, so that we can query for this data and display
the information via a Messagebox. Note that all the code entered below is a
continuation of the code written for the data connection in the previous section.

Step 1) Let’s split the code into 2 parts so that it will be easy to understand for the
user.

e The first will be to construct our “select” statement, which will be used to read
the data from the database.

o We will then execute the “select” statement against the database and fetch all
the table rows accordingly.

cnn.open();

Define the data : e : | Define ‘
sgl,Output=""; Statement

sgql = "Select TutoriallD,TutorialName from demotb";
command = new S smmand(sql, cnn); @@ s The command
oo s statement

:"dataReader‘ = command.ExecuteReader();

while (dataReader.Read())

{
Output = Output + dataReader.GetValue(®) + " - " + dataReader.GetValue(1l) + "\n";

ox.Show(Output);

Code Explanation:-

1. The first step is to create the following variables

a. SQLCommand — The ‘SQLCommand’ is a class defined within C#. This
class is used to perform operations of reading and writing into the
database. Hence, the first step is to make sure that we create a variable
type of this class. This variable will then be used in subsequent steps of
reading data from our database.

b. The datareader object is used to get all the data specified by the SQL
query. We can then read all the table rows one by one using the data
reader.

c. We then define 2 string variables, one is “SQL” to hold our SQL command
string. The next is the “Output” which will contain all the table values.

2. The next step is to actually define the SQL statement, which will be used
against our database. In our case, it is “Select TutorialID, TutorialName from
demotb”. This will fetch all the rows from the table demotb.

3. Next, we create the command object which is used to execute the SQL
statement against the database. In the SQL command, you have to pass the
connection object and the SQL string.

4. Next, we will execute the data reader command, which will fetch all the rows
from the demotb table.

5. Now that we have all the rows of the table with us, we need a mechanism to
access the row one by one. For this, we will use the while statement. The
while statement will be used to access the rows from the data reader one at a
time. We then use the GetValue method to get the value of TutorialID and
TutorialName.

Step 2) In the final step, we will just display the output to the user and close all
the objects related to the database operation.

while (dataReader.Read())

{
Output = Output + dataReader.GetValue(®) + " - " + dataReader.GetValue(l) + "\n";

}

.Show(OQutput);
dataReader.Close();
command.Dispose();
chn.Close();

Code Explanation:-

1. We will continue our code by displaying the value of the Output variable
using the MessageBox. The Output variable will contain all the values from
the demotb table.

2. We finally close all the objects related to our database operation. Remember
this is always a good practice.

When the above code is set, and the project is run using Visual Studio, you will get
the below output. Once the form is displayed, click the Connect button.

Output:-

I - - e -

oy Login

o da;l-a‘ f-rﬂm
> P et the

oK

M=)

From the output, you can clearly see that the program was able to get the values
from the database. The data is then displayed in the message box.

C# Insert Database

Just like Accessing data, C# has the ability to insert records into the database as
well. To showcase how to insert records into our database, let’s take the same table
structure which was used above.

TutorialID TutorialName
1 C#
2 ASP.Net

Let’s change the code in our form, so that we can insert the following row into the
table

TutorialID TutorialName

3 VB.Net

So let’s add the following code to our program. The below code snippet will be

used to insert an existing record in our database.
apter(); a Define
variables

sql = "Insert into demotb (TutoriallD,TutorialName) values(3,'" + "VB.Net" + "')";

Defineg the
sqlcommand

command = n¢ sql, cnn); Dﬂﬂnﬂm

adapter.InsertCommand = new SqlCommand(sql, cnn); insert
adapter.InsertCommand. ExecuteNonQuery(); statement

Associate

the insert command.Dispose(); |@le———nwm—0— 7 EEPHIEI|
command cnn.Close(); ObJQCTS

Code Explanation:-

1. The first step is to create the following variables

a. SQLCommand — This data type is used to define objects which are used to
perform SQL operations against a database. This object will hold the SQL
command which will run against our SQL Server database.

b. The dataadapter object is used to perform specific SQL operations such as
insert, delete and update commands.

c. We then define a string variable, which is “SQL” to hold our SQL
command string.

2. The next step is to actually define the SQL statement which will be used
against our database. In our case, we are issuing an insert statement, which
will insert the record of TutorialID=1 and TutorialName=VB.Net

3. Next, we create the command object which is used to execute the SQL
statement against the database. In the SQL command, you have to pass the
connection object and the SQL string

4. In our data adapter command, we now associate the insert SQL command to
our adapter. We also then issue the ExecuteNonQuery method which is used
to execute the Insert statement against our database. The ‘ExecuteNonQuery’
method is used in C# to issue any DML statements against the database. By
DML statements, we mean the insert, delete, and update operation. In C# , if
you want to issue any of these statements against a table , you need to use the
ExecuteNonQuery method.

5. We finally close all the objects related to our database operation. Remember
this is always a good practice.

When the above code is set, and the project is executed using Visual Studio, you
will get the below output. Once the form is displayed, click the Connect button.

Output:-

o] Login -

Connect

Vo

Click the
connect
ovtton

If you actually go to SQL Server Express and see the rows in the demotb table, you
will see the row inserted as shown below

Results L_J,_j Messages

C# Update Database

Just like Accessing data, C# has the ability to update existing records from the
database as well. To showcase how to update records into our database, let’s take
the same table structure which was used above.

TutoriallD TutorialName
1 C#

5 ASP.Net

3 VB.Net

Let’s change the code in our form, so that we can update the following row. The
old row value is TutorialID as “3” and Tutorial Name as “VB.Net”. Which we will
update it to “VB.Net complete” while the row value for Tutorial ID will remain
same.

Old row

TutorialID TutorialName
3 VB.Net
New row

TutorialID TutorialName

3 VB.Net complete

So let’s add the following code to our program. The below code snippet will be
used to update an existing record in our database.

d command;
ter adapter = new S dapter();

Define
variables

sql =

Define the . AN Define the

adapter.UpdateCommand = new Sq mand(sql, cnn); | statement
adapter.UpdateCommand.ExecuteN uery();

Associate
fhe VPdaj‘a “command.Dispose(); |
command cnn.Close(); @,

Code Explanation:-

1. The first step is to create the following variables

a. SQLCommand — This data type is used to define objects which are used to
perform SQL operations against a database. This object will hold the SQL
command which will run against our SQL Server database.

b. The dataadapter object is used to perform specific SQL operations such as
insert, delete and update commands.

c. We then define a string variable, which is SQL to hold our SQL command
string.

2. The next step is to actually define the SQL statement which will be used
against our database. In our case we are issuing an update statement, this will
update the Tutorial name to “VB.Net Complete” while the TutorialID is
unchanged and kept as 3.

3. Next, we will create the command object, which is used to execute the SQL
statement against the database. In the SQL command, you have passed the
connection object and the SQL string.

4. In our data adapter command, we now associate the insert SQL command to
our adapter. We also then issue the ExecuteNonQuery method which is used
to execute the Update statement against our database.

5. We finally close all the objects related to our database operation. Remember
this is always a good practice.

When the above code is set, and the project is executed using Visual Studio, you
will get the below output. Once the form is displayed, click the Connect button.

Output:-

o] Login

Connect

)

Click the
connect
ovtton

If you actually go to SQL Server Express and see the rows in the demotb table, you
will see the row was successfully updated as shown below.

[Results | 4 Messages

TutoralMame TutorallD
1 1
2 ASP Met 2

|3 VB .Met Complete 3 RM

Deleting Records

Just like Accessing data, C# has the ability to delete existing records from the
database as well. To showcase how to delete records into our database, let’s take
the same table structure which was used above.

TutoriallD TutorialName

1 C#

5 ASP.Net

3 VB.Net complete

Let’s change the code in our form, so that we can delete the following row

TutorialID TutorialName

3 VB.Net complete

So let’s add the following code to our program. The below code snippet will be
used to delete an existing record in our database.

mand command;
r adapter = new Sqgl
Sq].:"".

Define sq
statement

sql = "Delete demotb where TutcrialID=3";fﬁj*-_ﬁ*

ASsociate

the delete command = new SqglCommand(sgl, cnn);

G d adapter.DeleteCommand = new SglCommand(sql, cnn);
adapter.DeleteCommand. ExecuteNonQuery();

command.Dispose();
cnn.Close();

Code Explanation:-

1. The Key difference in this code is that we are now issuing the delete SQL
statement. The delete statement is used to delete the row in the demotb table
in which the TutorialID has a value of 3.

2. In our data adapter command, we now associate the insert SQL command to
our adapter. We also then issue the ExecuteNonQuery method which is used
to execute the Delete statement against our database.

When the above code is set, and the project is executed using Visual Studio, you
will get the below output. Once the form is displayed, click the Connect button.

Output:-

o] Login -

Connect

)

Click the
connect
ovutton

If you actually go to SQL Server Express and see the rows in the demotb table, you
will see the row was successfully deleted as shown below.

[Results | |3 Messages

...

Connecting Controls to Data

In the earlier sections, we have seen how to we can use C# commands such as
SQLCommand and SQLReader to fetch data from a database. We also saw how we
read each row of the table and use a messagebox to display the contents of a table
to the user.

But obviously, users don’t want to see data sent via message boxes and would
want better controls to display the data. Let’s take the below data structure in a
table

TutoriallD TutorialName

1 C#

2 ASP.Net

3 VB.Net complete

From the above data structure, the user would ideally want to see the TutorialID
and Tutorial Name displayed in a textbox. Secondly, they might want to have
some sort of button control which could allow them to go to the next record or to
the previous record in the table. This would require a bit of extra coding from the
developer’s end.

The good news is that C# has the ability to reduce the additional coding effort by
allowing binding of controls to data. What this means is that C# can automatically
populate the value of the textbox as per a particular field of the table.

So, you can have 2 textboxes in a windows form. You can then link one text box to
the TutorialID field and another textbox to the TutorialName field. This linking is
done in the Visual Studio designer itself, and you don’t need to write extra code for
this.

Visual Studio will ensure that it actually writes the code for you to ensure the
linkage works. Then when you run your application, the textbox controls will
automatically connect to the database, fetch the data and display it in the textbox
controls. No coding is required from the developer’s end to achieve this.

Let’s look at a code example of how we can achieve binding of controls.

In our example, we are going to create 2 textboxes on the windows form. They are
going to represent the Tutorial ID and Tutorial Name respectively. They will be
bound to the Tutorial ID and TutorialName fields of the database accordingly.

Let’s follow the below-mentioned steps to achieve this.

Step 1) Construct the basic form. In the form drag and drop 2 components- labels
and textboxes. Then carry out the following substeps

Put the text value of the first label as TutorialID

Put the text value of the second label as TutorialName
Put the name property of the first textbox as txtID

Put the name property of the second textbox as txtName

B W=

Below is the how the form would look like once the above-mentioned steps are
performed.

a Login |=][3][x]

I L0oeis and

Texiooxes

Step 2) The next step is to add a binding Navigator to the form. The binding
Navigator control has the ability to automatically navigate through each row of the
table. To add the binding navigator, just go to the toolbox and drag it to the form.

Login el | | B
0 of {0} | b B

TutorallD |

Tutaral Mame |

0 u]
d C“””E’d Toolbox i

[)

4 All Windows Forms
Pointer
BackgroundWorker

BindingSource

Button

CheckBox

CheckedListBox

ColorDhalo

Step 3) The next step is to actually add a binding to our database. This can be
done by going to any of the Textbox control and clicking on the DataBindings-
>Text property. The Binding Navigator is used to establish a link from your
application to a database.

When you perform this step, Visual Studio will automatically add the required
code to the application to make sure the application is linked to the database.
Normally the database in Visual Studio is referred to as a Project Data Source. So
to ensure the connection is established between the application and the database,
the first step is to create a project data source.

The following screen will show up. Click on the link- “Add Project Data Source”.
When you click on the project data source , you will be presented with a wizard,
this will allow you to define the database connection.

Properties
et Systern.Windows.Forms. TextBox
o |34 || F

MaxlLength

Output

Multiline

PasswordChar

ReadCnly

ShortcutsEnabled

Tablndex

Tab5top

g stemPasswordChar

Visible

WordWrap
B Data
ppicinncetine ";E Add Project Data Source...
B (DataBindings)

(Advanced)

Click the 'Add Project Data Source...' link to connect to data.

Tag

PIRRES (none)

Step 4) Once you click on the Add Project Data Source link , you will be presented
with a wizard which will be used to create a connection to the demotb database.
The following steps show in detail what needs to be configured during each step of
the wizard.

1. In the screen which pops up , choose the Data Source type as Database and
then click on next button.

Data Source Configuration Wizard

ii) Choose a Data Source Type

Where will the application get data from?

....................................

" © ¥ &

Database | Service Object SharePoint

Lets you connect € atabase and choose the database objects for your application.

Mext = Cancel

In the next screen, you need to start the creation of the connection string to
the database. The connection string is required for the application to
establish a connection to the database. It contains the parameters such as
server name, database name, and the name of the driver.

Click on the New connection button
Choose the Data Source as Microsoft SQL Server
. Click the Continue button.

Choose Microsoft SaL
%Ngr ;e to connect to the database?

Data Source Configuration Wizard ? %

b4 | | Mew Connection...

[ata source:

Description .
Usfe this selection to connect to Ly C/ﬁck on mw

Microsoft Access Database File 6
Microsoft ODBC Data SDurce

e e - | Microsoft SQL Server 2005 or above, or _

Microsoft SQL Server Database File to Microsoft SOL Azure using the .MET i s

Oracle Database Framework Data Provider for SQL te det Omngmm —_—
<other= Server, 3

Data provider:

|.NET Framework Data Provider for 5L & v| QH C/ﬁCk Omﬂnug

Always use this selection | Continue ‘ |

Cancel |

< Previous Cancel

3. Next, you need to add the credentials to connect to the database
a. Choose the server name on which the SQL Server resides
b. Enter the user id and password to connect to the database
c. Choose the database as demotb
d. Click the ‘ok’ button.

Enter information to connect to the selected data source or click "Change” to
choose a different data source and/or provider.

Data source:

|Micru:rsnf't SCL Server (5glClient)

Ch

SEREr name:

lonnec

|WIN-51]GPEH]FGO?5

_afresh

Log on to the server

() Use Windows Authentication

(® Use 50L Server Authentication

T applica

Lzer name: |5a

Password: |""-u

[] Save my password

Connect to a database

(®) Select or enter a database name:

Demodb

() Attach a database file:

Advanced...

Choose the servey
namée

enter the yser
name and
password

s s sa s s s s s i s et

Choose the
datoose

Click 0K

< Previous

Test Connection

4. In this screen, we will confirm all the settings which were carried on the

previous SCreens.

a. Choose the option “Yes” to include sensitive data in the connection string
b. Click on the “Next” button.

i_—.lj Choose Your Data Connection

Which data connection should your application use to connect to the database?

| win-50gp30fgo75.Demedb.dbo

W | | Mew Connection...

sensitive data in the connection string?

Click Next

< Previous Mext =

This connection string appears to contain sensitive data (for example, a password], which is required to connect to the
database, However, storing sensitive data in the connection string can be a security risk. Do you want to include this

() Mo, exclude sensitive data from the connection string. | will set this information in my application code,

® Yes, include sensitive data in the connection string. o &

Connection string that you will save in the application (expand to see details) ——

Choose Nes

Cancel

5. In the next screen, click on the “Next” button to confirm the creation of the

connection string

uration Wizard

ii) Save the Connection 5tring to the Application Configuration File

Storing connection strings in your application configuration file eases maintenance and deployment. To save the
cennection string in the application configuration file, enter a narme in the box and then click Mext,

Do you want to save the connection string to the application configuration file?
Yes, save the connection as

|Demu:rdbCu:rnnectiu:rnString|

Click on
Next

< Previous Mext = Cancel

6. In this step,

1. Choose the tables of Demotb, which will be shown in the next screen.
2. This table will now become an available data source in the C# project

ii) Choose Your Database Objects

Which database objects do you want in your dataset?
CIWVIERETTT
4 M BB Dernothb
H TutorialMame 1
H TutoriallD
. WViews
| Stored Procedures
B /x Functions

Click on

Finish

DataSet name:
DemodbDataset

_

< Previous Finish Cancel

When you click the Finish button, Visual Studio will now ensure that the
application is able to query all the rows in the table Demotb.

Step 5) Now that the data source is defined, we now need to connect the
TutorialID and TutorialName textbox to the demotb table. When you click on the
Text property of either the TutorialID or TutorialName textbox , you will now see
that the binding source to Demotb is available.

For the first text box choose the Tutorial ID. Repeat this step for the second
textbox and choose the field as TutorialName. The below steps shows how we can
navigate to each control and change the binding accordingly.

1. Click on the Tutorial ID control.

i SICIEY
W4 Jotor [> M |4 X
Tutorial Name l:l ‘rgX‘r bux

2. In the Properties window , you will see the properties of the TutorialID
textbox. Go to the text property and click on the down arrow button.

MaxLength

&0 10 The Texr
propertyy and click in
the arvow oviton

WordWrap
= Data
(Application5ettings)
B (DataBindings)
(Advanced)
Tag (none)

J Tﬂ't i T -- |:r| |:|nE:|

Tag
B Design

3. When you click the down arrow button , you will see the demotbBinding
Source option. And under this , you will see the options of TutorialName and

TutorialID. Choose the Tutorial ID one.

5 =
r
O g4

P[ﬂpErtiE; L L T L L L L L L L !
txtlD Systern.Windows.Forms,
of |34 | %

MaxLength

ultiline ;
bsoword Char @ None

ad0inhy 4 jgd demotbBindingSource
ortcutstnallog o B TutorialName

o B TutoriallD
Bbindex

b e
sbStop I @® Other Data Sources

eSystemPasswordChar

sible

‘ordWrap

ata
Wil I TS st e}
":prhc_at“_"n":ttmg"l *§ Add Project Data Source...
(DataBindings) ’
: - Currently data bound to TuteriallD',
(Advanced)

Tag
et demotbBindingSource - TutoriallD

Repeat the above 3 steps for the Tutorial Name text box.

1. So click on the Tutorial Name text box

2. Go to the properties window

3. Choose the Text property

4. Choose the TutorialName option under demotbBindingSource

Step 6) Next we need to change the Binding Source property of the
BindingNavigator to point to our Demotb data source. The reason we do this is
because the Binding Navigator needs to also know which table it needs to refer to.

The Binding Navigator is used to select the next or previous record in the table. So
even though the data source is added to the project as a whole and to the text box
control, we still need to ensure the Binding Navigator also has a link to our data
source. In order to do this, we need to click the Binding navigator object, go to the
Binding Source property and choose the one that is available

]

" Login

K 4o of{0} | > M | X[@- S OV\ODS@W‘Biﬂdiﬂ@

Naigator on the
form

Next, we need to go to the Properties window so that we can make the change to
Binding Source property.

bindingNavigator1 System.Windows.Forms.BindingNavigator

HECHT IR 2
AllowltemReorder False
AllowMerge True
ContextMenuStrip (none)
Enabled True
ImefMode MoControl
ShowltemToolTips True
Tablndex 5
Tab5top False
Visible True
Data
(ApplicationSettings)
(Dataindings)
BindingSourcer = demotbBindingSource .
ltermns (Collection) |
Tag
Design
(MName) bindingNavigator1

GenerateMember True

When all of the above steps are executed successfully, you will get the below-
mentioned output.

Output:-

o ~Login
1

TutoriallD Data [S
Tutors Name || awfomaticaliy

Now when the project is launched, you can see that the textboxes automatically
get the values from the table.

4 4 |2 of 2

Click on the Next
outton

TutarallD :]

Tutoral Mame | |ASP . Net

DA Changes

When you click the Next button on the Navigator, it automatically goes to the next

record in the table. And the values of the next record automatically come in the
text boxes

Using DataGrids

Data Grids are used to display data from a table in a grid like format. When a user
see’s table data, they normally prefer seeing all the table rows in one shot. This can
be achieved if we can display the data in a grid on the form.

C# and Visual Studio have inbuilt data grids, this can be used to display data. Let’s
take a look at an example of this. In our example, we will have a data grid, which
will be used to display the Tutorial ID and Tutorial Name values from the demotb
table.

Step 1) Drag the DataGridView control from the toolbox to the Form in Visual
Studio. The DataGridView control is used in Visual Studio to display the rows of a
table in a grid-like format.

e

Dato&rid on e
W ‘Form b -:-" I;:i-n.n-ji-r;gb'-n:uurce

Button
CheckBox

CheckedListBox

Form1.Desi

i e L @

Datasrd
. View
ﬁ?rei—t!- ::Er::r_:r Confrm

DirectorySearcher

DemainUplown

ErrorProvider

Eventlog

Step 2) In the next step, we need to connect our data grid to the database. In the
last section, we had created a project data source. Let’s use the same data source
in our example.

1. First, you need to choose the grid and click on the arrow in the grid. This will
bring up the grid configuration options.

2. In the configuration options, just choose the data source as
demotbBindingSource which was the data source created in the earlier
section.

Choose the
data. grid

b

Form1.Designer.cs™ Program.cs Forml.cs [Design]® & X

o =
Tutorial Mame TutoriallD

Choose the
dafa. sovrce

Enable Adding
Enable Editing

Enable Deleting

B Enable Column Reordering

@ demodbDataSet [ﬁ demotbBindingSource Bl demotbTableAda pter

If all the above steps are executed as shown, you will get the below-mentioned
output.

Output:-

o] Login 1=

TutarialMame TutarallD
s s e
B

ASP Net 2 Data brd
: with the
Valyes

From the output, you can clearly see that the grid was populated by the values
from the database.

Summary

C# has the ability to work with databases such as Oracle and Microsoft SQL
Server.

C# has all the commands which are required to work with databases. This
involves establishing a connection to the database. You can perform operations
such as select, update, insert and delete using the commands in C#.

The datareader object in C# is used to hold all the data returned by the
database. The While loop in C# can be used to read the data rows one at a time.
The data adapter object is used to perform SQL operations such as insert,
delete, and update against the database.

C# has the ability to bind controls to the various fields in a table. They are
bound by defining a data source in C#. The data source is used to pull the data
from the database and populate them in the controls.

The binding navigator is used to automatically navigate through the rows in a
table.

The data grid in C# has the ability to connect to the database and display all
the values from the table in a grid-like format.

Chapter 8: File Operations

C# has a wide array of file operations. These operations include opening a file,
reading or writing to a file.

There can be an instances wherein you want to work with files directly, in which
case you would use the file operations available in C#.

Some of the basic file operations are mentioned below.

1. Reading — This operation is the basic read operation wherein data is read from a
file.

2. Writing - This operation is the basic write operation wherein data is written to a
file. By default, all existing contents are removed from the file, and new content is
written.

1. Appending — This operation also involves writing information to a file. The
only difference is that the existing data in a file is not overwritten. The new
data to be written is added at the end of the file.

This tutorial focuses on how to work with files in C#.

Basic File I/0 Commands

C# and .Net has the ability to work with files with the help of several File I/O
commands. Let’s have a look at some of these commands. For our example, we
will assume that we have a file in the D drive called Example.txt.

The file will be a simple text file and have 2 lines as shown below

e Gurug9 - .Net
e Gurugg -C#

For our example, we will create a simple Console application and work with our
File I/O commands. The console application is the basic one which was created in
the earlier chapters. In the console application, all code is written to the
Program.cs file.

1. File.Exists — The File exists method is used to check if a particular file
exists. So now let’s see the code which can be used to check if our Example.txt
file actually exists or not. Enter the below code in the program.cs file.

String Varible
With the ile name

path = @"D:\Example.txt";

Check the existence
0f the file
D'ISPWd & confirmation Messane
Console.ReadKey();

Code Explanation:-

1. First, we are setting a string variable with the path to our Example.txt file.

2. Next, we use the File.Exists method to check if the file really exists or not. If
the File exists, a true value will be returned.

3. If we get a true value and the file does exist, then we write the message “File
Exists” to the console.

When the above code is set, and the project is executed using Visual Studio, you
will get the below output.

Output:-

B filef/C/Guru99/DemoApplicationnew/DemoApp

File Exists

QUIpUT Shows that

the filg exists

From the above output, you can clearly see that the File.Exists command was
executed successfully, and the correct message was displayed in the console
window.

2. File.ReadAlllines — The method is used to read all the lines one by one in a
file. The lines are then stored in a string array variable. Let’s look at an
example. Enter the below code in the program.cs file.

%fr‘mg Yo

id Main(string[] args)

string @"D . \EXEW
string[] lines; Reading all the lines

lines=File.ReadAlllLines(path); @ from the file

e.WritelLine(lines[@]);
e.WritelLine(lines[1]);

>le.ReadKey();

Code Explanation:-

1. First, we are declaring a string array variable. This will be used to store the
result which will be returned by the File.ReadAllLines method.

2. Next, we use the File.ReadAllLines method to read all the lines from our text
file. The result is then passed to the lines variable.

3. Since we know that our file contains only 2 lines, we can access the value of
the array variables via the lines[0] and lines[1] command.

When the above code is set, and the project is run using Visual Studio, you will get
the below output.

Output:-

Ailey///C/Guru99/DemoApplicationnew/DemoApplicationnew

QUIpUT Snowss the 2

linegs of the file

From the output, you can clearly see that the File.ReadAllLines command
returned both the lines from our file Example.txt

3. File.ReadAllText — This method is used to read all the lines in a file at
once. The lines are then stored in a string variable. Let’s look at an example.
Enter the below code in the program.cs file.

%’rr‘m@ variaole

Pl Re0ding ol the
lings from the file

-WriteLine(lines); @

Console.ReadKey(); Wﬂﬂn@ fhe Sﬁ'\ﬂ@
0 the Console

Code Explanation:-

1. First, we are declaring a string variable called Lines. This will be used to store
the result which will be returned by the File.ReadAllText method.

2. Next, we use the File.ReadAllText method to read all the lines from our text
file. The result is then passed to the lines variable.

3. We can directly use the Console.Writeline method to display the value of the
Lines variable.

When the above code is set, and the project is run using Visual Studio, you will get
the below output.

Output:-

file:/f/C/Guru9s/DemoApplicationnew/DemoApplicationnew,

QUIpUT SnowSS the 2

ines of the file

From the output, you can clearly see that the File.ReadAlltext command returned
both the lines from our file Example.txt

4. File.Copy — The method is used to make a copy of an existing file. Let’s look
at an example. Enter the below code in the program.cs file.

el -~ e =l el 11,
Clda> P-I Ul a

{
static void Main(string[] args)
{

string path = @"D:\Example.txt"; @

string copypath = @"D:\ExampleNew.txt"; @ Desfination file

File.Copy(path, copypath); 4
Cor . ReadKey () ;

Code Explanation:-

1. First, we are declaring a string variable called path. This will be the location
of our Example.txt file. This file will be the source file used for the copy
operation.

2. Next, we are declaring a string variable called copypath. This will be the
location of a new file called ExampleNew.txt file. This will be the destination
file in which the contents will be written from the source file Example.txt.

3. We then call the File.Copy method to copy the file Example.txt file to the file
ExampleNew.txt.

When the above code is set, and the project is run using Visual Studio, the file
Example.txt will be copied to ExampleNew.txt.

5. File.Delete — The method is used to delete an existing file. Let’s look at an
example. Enter the below code in the program.cs file.

Path of file to
delefe

Code Explanation:-

1. First, we are declaring a string variable called path. This will be the location
of our Example.txt file. This is the file which will be deleted.
2. Next, we are calling the File.Delete method to delete the file.

When the above code is set, and the project is run using Visual Studio, the file
Example.txt will be deleted from the D drive.

Streams — Reading and Writing to files

In C# file operations, normally streams are used to read and write to files. A
stream is an additional layer created between an application and a file. The stream
is used to ensure smooth read and write operations to the file.

Streams are normally used when reading data from large files. By using streams,
the data from large files in broken down into small chunks and sent to the stream.
These chunks of data can then be read from the application.

The reason for breaking it down into small chunks is because of the performance
impact of reading a big file at one shot. If you were to read the data from say, a
100 MB file at one shot, your application could just hang and become unstable.
The best approach is then to use streams to break the file down into manageable
chunks.

So when a write operation is carried out on the file, the data to be written, is first
written to the stream. From the stream, the data is then written to the file. The
same goes for the read operation. In the read operation, data is first transferred
from the file to the stream. The data is then read from the application via the
stream. Let’s look at an example of how we can read and write using streams.

For our example, we will assume that we have a file in the D drive called
Example.txt. The file will be a simple text file and have 2 lines as shown below

e Gurugg - .Net
e Gurugg -C#

For our example, we will create a simple Console application and work with File
streams

1. Stream Reader — The stream reader is used to read data from a file using
streams. The data from the file is first read into the stream. Thereafter the
application reads the data from the stream.

Let’s look at an example of how we can use streams for reading data from a file.
Enter the below code in the program.cs file.

D@f“ﬂn@1?m string path = @"D:\Example.txt";

OpenText(path)){

Raad'm@ 20ch ling

Daﬁmn@ / while ((s = sr.ReadlLine()) != null) 0f the stream

fQMPDranj Conscle.Writeline(s);
string

Console.ReadKey();
Code Explanation:-

1. First, we are declaring a stream reader object. The stream reader object is
used in C# to define a stream from the file to the application. The data will be
pushed from the file to the stream whenever data is read from the file. The
File.OpenText is used to open the file “Example.txt” in read-only mode. The
handler to the file is then sent to the stream reader object.

2. Next, we are defining a temporary variable ‘s’ which will be used to read all
the data from the file.

3. We then use the stream reader method ReadLine to read each line from the
stream buffer. When we perform this operation, each line will be first
transferred from the file to the buffer. Then the string line will be transferred
from the buffer to the variable ‘s’. We then write the contents of the string ‘s’
to the console.

When the above code is set, and the project is run using Visual Studio, you will get
the below output.

Output:-

File:/fC/Guru99/DemoApplicationnew/DemoApplicationnew

QUFpUT Snows the 2.

linegs of the file

From the output, you can clearly see that the Stream Reader read both the lines
from the file. Finally, the lines of the string read from the stream were sent to the
Console.

2. Stream Writer — The stream writer is used to write data to a file using
streams. The data from the application is first written into the stream.
Thereafter the stream writes the data to the file. Let’s look at an example of
how we can use streams for writing data from a file. Enter the below code in
the program.cs file.

Open Streamwirifer Bt PEREERRER Ll el A G

sr.Writeline("Guru99 - ASP.Net"); Wrife 10 the

ooect

Read the contents -

Console.ReadKey();
Code Explanation:-

1. First, we are declaring a stream writer object. The stream writer object is
used in C# to define a stream. The stream is then used to write data from the
application to the file. The data will be pushed from the application to the
stream whenever data needs to be written. The File.AppendText command is
used to open the file “Example.txt” in an append mode. The handler to the
file is then sent to the stream writer object.

2. We are using the stream write method Writeline to write the line “Gurugg —
ASP.Net” to the stream. From the stream, the line will then be written to the
file.

3. We then close the stream writer after writing to the file. It’s normally a good
practice to close file handlers when the file is no longer required for writing
purposes.

4. Finally, we are reading the contents of the file again and writing it to the
console log. This is to check as to whether the line was really written to the

file.

When the above code is set, and the project is run using Visual Studio, you will get
the below output.

Output:-

® Ailey/fCIGuru99/DemoApplicationnew/DemoAppli

con Sge that the
new ling was added

From the output, you can see that the line “Gurugg — ASP.Net” was added to the
file successfully. All the 3 lines of text can be clearly seen in the console.

C# Serialization

The concept of Serialization and deserialization is used whenever data pertaining
to objects have to be sent from one application to another. Serialization is used to
export application data into a file. The destination application then uses
deserialization to extract the data from the application for further use.

Serialization is a concept in which C# class objects are written or serialized to files.
Let’ say you had a C# class called Tutorial. And the class has 2 properties of ID
and Tutorials name.

Serializing can be used to directly write the data properties of the Tutorial class to
a file. Deserialization is used to read the data from the file and construct the
Tutorial object again.

Let’s look at an example of how we can achieve this.
In our example, we are going to perform the below high-level steps in the code

1. Create a class called Tutorial which has 2 properties , namely ID and Name

2. We will then create an object from the class and assign a value of “1” to the ID
property and a value of “.Net” to the name property.

3. We will then use serialization to serialize the above object to a file called
Example.txt

4. Finally, we will use deserialization to deserialize the object from the file and
display the values in the Console.

Enter the below code in the program.cs file of the console application.

Step 1) The first step is to add the class which will be used for serialization

Class 1o serialdize

Code Explanation:-

1. The class which needs to be serialized needs to have the [Serializable]
attribute. This is a keyword in C#. This keyword is then attached to the

Tutorial class. If you don’t mention this attribute, you will get an error when
you try to serialize the class.

2. Next is the definition of the class which will be serialized. Here we are
defining a class called “Tutorial” and providing 2 properties, one is “ID” and
the other is “Name.”

Step 2) In this step, first we will create the object of the Tutorial class and
serialize it to the file called Example.txt

Program.cs® & X
Initiguize an doject

¢ void Main(string[] args)

ob J = new Tutorial . C/rmfg w ‘F“a

obj.Name ".Net";

IFormatter formatte ter();
Stream stream = new xample.txt", FileMode.Create, FileAccess.Write);

formatter.Serialize(stream, obj); o
stream.Close(); Seriodize the Ob_]wr

Code Explanation:-

1. First, we create an object of the Tutorial class. We then assign the value of “1”
to ID and “.net” to the name property.

2. We then use the formatter class which is used to serialize or convert the
object to a binary format. The data in the file in serialization is done in binary
format. Next, we create a file stream object. The file stream object is used to
open the file Example.txt for writing purposes. The keywords
FileMode.Create and FileMode.Write is used to specifically mention that the
file should be opened for writing purposes.

3. Finally, we use the Serialize method to transfer the binary data to the file. We
then close the stream, since the write operation is complete.

Step 3) Finally to ensure that the data is present in the file, we use deserialization
to deserialize the object from the file.

stream = "D:\\Example txt", FileMode.Open, FileAccess.Rea

al objnew

‘..Nr‘.ite.i_ihe(o.bjnéw.ID).;. :
e.WriteLine(objnew.Name); Create the file

Deseriadize the stream

Write the data 1o object
onsole.ReadKey(); the console

Code Explanation:-

1. We create the object “stream” to open the file Example.txt in read only mode.

2. We then use the formatter class which is used to deserialize the object, which
is stored in the Example.txt file. The object returned is set to the object
objnew.

3. Finally, we display the properties of the object “objnew” to the console using
the “ID” and “name” properties.

When the above code is set, and the project is run using Visual Studio, you will get
the below output.

Output:-

Ailey///C/Gurug9/DemoApplicationnew/DemoApplii

Vales from the

file are displaued

You can see from the above output that the values from the file were deserialized
properly and displayed in the console.

Summary

e C# has a number of File operations which can be performed on files. Most of
these operations are part of the class File.

¢ If you want to read data from a file, you can use the File.ReadAlltext or
File.ReadAllLines methods.

e Streams are used as an intermediate level between the application and the file.
o A StreamReader is used whenever data is required to be read from a file.
o A Streamwriter is used whenever data needs to be written to a file.
e Serialization is used to write class objects to files. De- Serialization is used to
recover the objects from the file.

