
Python Tips

Release 0.1

Muhammad Yasoob Ullah Khalid

Sep 20, 2020

Contents

1 Preface 2

2 Author 3

3 Table of Contents 4
3.1 *args and **kwargs . 4
3.2 Debugging . 6
3.3 Generators . 7
3.4 Map, Filter and Reduce . 11
3.5 set Data Structure . 12
3.6 Ternary Operators . 14
3.7 Decorators . 15
3.8 Global & Return . 24
3.9 Mutation . 27
3.10 __slots__ Magic . 29
3.11 Virtual Environment . 31
3.12 Collections . 32
3.13 Enumerate . 38
3.14 Zip and unzip . 39
3.15 Object introspection . 41
3.16 Comprehensions . 42
3.17 Exceptions . 44
3.18 Classes . 46
3.19 Lambdas . 50
3.20 One-Liners . 51
3.21 for/else . 54
3.22 Python C extensions . 55
3.23 open Function . 62
3.24 Targeting Python 2+3 . 64
3.25 Coroutines . 65
3.26 Function caching . 67

i

3.27 Context Managers . 68

ii

Python Tips, Release 0.1

Note: You can sign up to my mailing list so that you remain in sync with any major
updates to this book or my future projects!

Contents 1

CHAPTER 1

Preface

Python is an amazing language with a strong and friendly community of program-
mers. However, there is a lack of documentation on what to learn after getting the
basics of Python down your throat. Through this book I aim to solve this problem. I
would give you bits of information about some interesting topics which you can fur-
ther explore.

The topics which are discussed in this book open up your mind towards some nice
corners of Python language. This book is an outcome of my desire to have something
like this when I was beginning to learn Python.

If you are a beginner, intermediate or even an advanced programmer there is some-
thing for you in this book.

Please note that this book is not a tutorial and does not teach you Python. The topics
are not explained in depth, instead only the minimum required information is given.

I am sure you are as excited as I am so let’s start!

Note: This book is a continuous work in progress. If you find anything which you can
further improve (I know you will find a lot of stuff) then kindly submit a pull request!

2

CHAPTER 2

Author

I am Muhammad Yasoob Ullah Khalid. I have been programming extensively in
Python for over 3 years now. I have been involved in a lot of Open Source projects. I
regularly blog about interesting Python topics over at my blog . In 2014 I also spoke at
EuroPython which was held in Berlin. It is the biggest Python conference in Europe.
If you have an interesting Internship opportunity for me then I would definitely like
to hear from you!

3

CHAPTER 3

Table of Contents

3.1 *args and **kwargs

I have come to see that most new python programmers have a hard time figuring out
the *args and **kwargs magic variables. So what are they ? First of all, let me tell you
that it is not necessary to write *args or **kwargs. Only the * (asterisk) is necessary.
You could have also written *var and **vars. Writing *args and **kwargs is just a
convention. So now let’s take a look at *args first.

3.1.1 Usage of *args

*args and **kwargs are mostly used in function definitions. *args and **kwargs allow
you to pass an unspecified number of arguments to a function, so when writing the
function definition, you do not need to know how many arguments will be passed to
your function. *args is used to send a non-keyworded variable length argument list
to the function. Here’s an example to help you get a clear idea:

def test_var_args(f_arg, *argv):
print("first normal arg:", f_arg)
for arg in argv:

print("another arg through *argv:", arg)

test_var_args('yasoob', 'python', 'eggs', 'test')

This produces the following result:

4

Python Tips, Release 0.1

first normal arg: yasoob
another arg through *argv: python
another arg through *argv: eggs
another arg through *argv: test

I hope this cleared away any confusion that you had. So now let’s talk about **kwargs

3.1.2 Usage of **kwargs

**kwargs allows you to pass keyworded variable length of arguments to a function.
You should use **kwargs if you want to handle named arguments in a function. Here
is an example to get you going with it:

def greet_me(**kwargs):
for key, value in kwargs.items():

print("{0} = {1}".format(key, value))

>>> greet_me(name="yasoob")
name = yasoob

So you can see how we handled a keyworded argument list in our function. This is just
the basics of **kwargs and you can see how useful it is. Now let’s talk about how you
can use *args and **kwargs to call a function with a list or dictionary of arguments.

3.1.3 Using *args and **kwargs to call a function

So here we will see how to call a function using *args and **kwargs. Just consider that
you have this little function:

def test_args_kwargs(arg1, arg2, arg3):
print("arg1:", arg1)
print("arg2:", arg2)
print("arg3:", arg3)

Now you can use *args or **kwargs to pass arguments to this little function. Here’s
how to do it:

first with *args
>>> args = ("two", 3, 5)
>>> test_args_kwargs(*args)
arg1: two
arg2: 3
arg3: 5

now with **kwargs:
>>> kwargs = {"arg3": 3, "arg2": "two", "arg1": 5}
>>> test_args_kwargs(**kwargs)

(continues on next page)

3.1. *args and **kwargs 5

Python Tips, Release 0.1

(continued from previous page)

arg1: 5
arg2: two
arg3: 3

Order of using *args **kwargs and formal args

So if you want to use all three of these in functions then the order is

some_func(fargs, *args, **kwargs)

3.1.4 When to use them?

It really depends on what your requirements are. The most common use case is when
making function decorators (discussed in another chapter). Moreover it can be used in
monkey patching as well. Monkey patching means modifying some code at runtime.
Consider that you have a class with a function called get_info which calls an API and
returns the response data. If we want to test it we can replace the API call with some
test data. For instance:

import someclass

def get_info(self, *args):
return "Test data"

someclass.get_info = get_info

I am sure that you can think of some other use cases as well.

3.2 Debugging

Debugging is also something which once mastered can greatly enhance your bug hunt-
ing skills. Most newcomers neglect the importance of the Python debugger (pdb). In
this section I am going to tell you only a few important commands. You can learn
more about it from the official documentation.

Running from the command line

You can run a script from the command line using the Python debugger. Here is an
example:

$ python -m pdb my_script.py

It would cause the debugger to stop the execution on the first statement it finds. This
is helpful if your script is short. You can then inspect the variables and continue exe-
cution line-by-line.

Running from inside a script

3.2. Debugging 6

Python Tips, Release 0.1

You can set break points in the script itself so that you can inspect the variables and
stuff at particular points. This is possible using the pdb.set_trace() method. Here is
an example:

import pdb

def make_bread():
pdb.set_trace()
return "I don't have time"

print(make_bread())

Try running the above script after saving it. You would enter the debugger as soon as
you run it. Now it’s time to learn some of the commands of the debugger.

Commands:

• c: continue execution

• w: shows the context of the current line it is executing.

• a: print the argument list of the current function

• s: Execute the current line and stop at the first possible occasion.

• n: Continue execution until the next line in the current function is reached or it
returns.

The difference between next and step is that step stops inside a called function, while
next executes called functions at (nearly) full speed, only stopping at the next line in
the current function.

These are just a few commands. pdb also supports post mortem. It is also a really
handy function. I would highly suggest you to look at the official documentation and
learn more about it.

Note:

It might seem unintuitive to use pdb.set_trace() if you are new to this. Fortu-
nately, if you are using Python 3.7+ then you can simply use the breakpoint() [built-
in function](https://docs.python.org/3/library/functions.html#breakpoint). It auto-
matically imports pdb and calls pdb.set_trace().

3.3 Generators

First lets understand iterators. According to Wikipedia, an iterator is an object that
enables a programmer to traverse a container, particularly lists. However, an iterator
performs traversal and gives access to data elements in a container, but does not per-
form iteration. You might be confused so lets take it a bit slow. There are three parts
namely:

• Iterable

3.3. Generators 7

Python Tips, Release 0.1

• Iterator

• Iteration

All of these parts are linked to each other. We will discuss them one by one and later
talk about generators.

3.3.1 Iterable

An iterable is any object in Python which has an __iter__ or a __getitem__ method
defined which returns an iterator or can take indexes (You can read more about them
here). In short an iterable is any object which can provide us with an iterator. So
what is an iterator?

3.3.2 Iterator

An iterator is any object in Python which has a next (Python2) or __next__ method
defined. That’s it. That’s an iterator. Now let’s understand iteration.

3.3.3 Iteration

In simple words it is the process of taking an item from something e.g a list. When
we use a loop to loop over something it is called iteration. It is the name given to the
process itself. Now as we have a basic understanding of these terms let’s understand
generators.

3.3.4 Generators

Generators are iterators, but you can only iterate over them once. It’s because they do
not store all the values in memory, they generate the values on the fly. You use them
by iterating over them, either with a ‘for’ loop or by passing them to any function
or construct that iterates. Most of the time generators are implemented as functions.
However, they do not return a value, they yield it. Here is a simple example of a
generator function:

def generator_function():
for i in range(10):

yield i

for item in generator_function():
print(item)

Output: 0
1
2

(continues on next page)

3.3. Generators 8

Python Tips, Release 0.1

(continued from previous page)

3
4
5
6
7
8
9

It is not really useful in this case. Generators are best for calculating large sets of
results (particularly calculations involving loops themselves) where you don’t want to
allocate the memory for all results at the same time. Many Standard Library functions
that return lists in Python 2 have been modified to return generators in Python 3
because generators require fewer resources.

Here is an example generator which calculates fibonacci numbers:

generator version
def fibon(n):

a = b = 1
for i in range(n):

yield a
a, b = b, a + b

Now we can use it like this:

for x in fibon(1000000):
print(x)

This way we would not have to worry about it using a lot of resources. However, if
we would have implemented it like this:

def fibon(n):
a = b = 1
result = []
for i in range(n):

result.append(a)
a, b = b, a + b

return result

It would have used up all our resources while calculating a large input. We have dis-
cussed that we can iterate over generators only once but we haven’t tested it. Before
testing it you need to know about one more built-in function of Python, next(). It
allows us to access the next element of a sequence. So let’s test out our understanding:

def generator_function():
for i in range(3):

yield i

gen = generator_function()

(continues on next page)

3.3. Generators 9

Python Tips, Release 0.1

(continued from previous page)

print(next(gen))
Output: 0
print(next(gen))
Output: 1
print(next(gen))
Output: 2
print(next(gen))
Output: Traceback (most recent call last):
File "<stdin>", line 1, in <module>
StopIteration

As we can see that after yielding all the values next() caused a StopIteration error.
Basically this error informs us that all the values have been yielded. You might be
wondering why we don’t get this error when using a for loop? Well the answer is
simple. The for loop automatically catches this error and stops calling next. Did you
know that a few built-in data types in Python also support iteration? Let’s check it out:

my_string = "Yasoob"
next(my_string)
Output: Traceback (most recent call last):
File "<stdin>", line 1, in <module>
TypeError: str object is not an iterator

Well that’s not what we expected. The error says that str is not an iterator. Well it’s
right! It’s an iterable but not an iterator. This means that it supports iteration but we
can’t iterate over it directly. So how would we iterate over it? It’s time to learn about
one more built-in function, iter. It returns an iterator object from an iterable. While
an int isn’t an iterable, we can use it on string!

int_var = 1779
iter(int_var)
Output: Traceback (most recent call last):
File "<stdin>", line 1, in <module>
TypeError: 'int' object is not iterable
This is because int is not iterable

my_string = "Yasoob"
my_iter = iter(my_string)
print(next(my_iter))
Output: 'Y'

Now that is much better. I am sure that you loved learning about generators. Do bear
it in mind that you can fully grasp this concept only when you use it. Make sure that
you follow this pattern and use generators whenever they make sense to you. You
won’t be disappointed!

3.3. Generators 10

Python Tips, Release 0.1

3.4 Map, Filter and Reduce

These are three functions which facilitate a functional approach to programming. We
will discuss them one by one and understand their use cases.

3.4.1 Map

Map applies a function to all the items in an input_list. Here is the blueprint:

Blueprint

map(function_to_apply, list_of_inputs)

Most of the times we want to pass all the list elements to a function one-by-one and
then collect the output. For instance:

items = [1, 2, 3, 4, 5]
squared = []
for i in items:

squared.append(i**2)

Map allows us to implement this in a much simpler and nicer way. Here you go:

items = [1, 2, 3, 4, 5]
squared = list(map(lambda x: x**2, items))

Most of the times we use lambdas with map so I did the same. Instead of a list of inputs
we can even have a list of functions!

def multiply(x):
return (x*x)

def add(x):
return (x+x)

funcs = [multiply, add]
for i in range(5):

value = list(map(lambda x: x(i), funcs))
print(value)

Output:
[0, 0]
[1, 2]
[4, 4]
[9, 6]
[16, 8]

3.4. Map, Filter and Reduce 11

Python Tips, Release 0.1

3.4.2 Filter

As the name suggests, filter creates a list of elements for which a function returns
true. Here is a short and concise example:

number_list = range(-5, 5)
less_than_zero = list(filter(lambda x: x < 0, number_list))
print(less_than_zero)

Output: [-5, -4, -3, -2, -1]

The filter resembles a for loop but it is a builtin function and faster.

Note: If map & filter do not appear beautiful to you then you can read about list/
dict/tuple comprehensions.

3.4.3 Reduce

Reduce is a really useful function for performing some computation on a list and re-
turning the result. It applies a rolling computation to sequential pairs of values in a
list. For example, if you wanted to compute the product of a list of integers.

So the normal way you might go about doing this task in python is using a basic for
loop:

product = 1
list = [1, 2, 3, 4]
for num in list:

product = product * num

product = 24

Now let’s try it with reduce:

from functools import reduce
product = reduce((lambda x, y: x * y), [1, 2, 3, 4])

Output: 24

3.5 set Data Structure

set is a really useful data structure. sets behave mostly like lists with the distinction
that they can not contain duplicate values. It is really useful in a lot of cases. For
instance you might want to check whether there are duplicates in a list or not. You
have two options. The first one involves using a for loop. Something like this:

3.5. set Data Structure 12

Python Tips, Release 0.1

some_list = ['a', 'b', 'c', 'b', 'd', 'm', 'n', 'n']

duplicates = []
for value in some_list:

if some_list.count(value) > 1:
if value not in duplicates:

duplicates.append(value)

print(duplicates)
Output: ['b', 'n']

But there is a simpler and more elegant solution involving sets. You can simply do
something like this:

some_list = ['a', 'b', 'c', 'b', 'd', 'm', 'n', 'n']
duplicates = set([x for x in some_list if some_list.count(x) > 1])
print(duplicates)
Output: set(['b', 'n'])

Sets also have a few other methods. Below are some of them.

Intersection

You can intersect two sets. For instance:

valid = set(['yellow', 'red', 'blue', 'green', 'black'])
input_set = set(['red', 'brown'])
print(input_set.intersection(valid))
Output: set(['red'])

Difference

You can find the invalid values in the above example using the difference method. For
example:

valid = set(['yellow', 'red', 'blue', 'green', 'black'])
input_set = set(['red', 'brown'])
print(input_set.difference(valid))
Output: set(['brown'])

You can also create sets using the new notation:

a_set = {'red', 'blue', 'green'}
print(type(a_set))
Output: <type 'set'>

There are a few other methods as well. I would recommend visiting the official docu-
mentation and giving it a quick read.

3.5. set Data Structure 13

Python Tips, Release 0.1

3.6 Ternary Operators

Ternary operators are more commonly known as conditional expressions in Python.
These operators evaluate something based on a condition being true or not. They
became a part of Python in version 2.4

Here is a blueprint and an example of using these conditional expressions.

Blueprint:

value_if_true if condition else value_if_false

Example:

is_nice = True
state = "nice" if is_nice else "not nice"

It allows to quickly test a condition instead of a multiline if statement. Often times it
can be immensely helpful and can make your code compact but still maintainable.

Another more obscure and not widely used example involves tuples. Here is some
sample code:

Blueprint:

(if_test_is_false, if_test_is_true)[test]

Example:

nice = True
personality = ("mean", "nice")[nice]
print("The cat is ", personality)
Output: The cat is nice

This works simply because True == 1 and False == 0, and so can be done with lists in
addition to tuples.

The above example is not widely used and is generally disliked by Pythonistas for not
being Pythonic. It is also easy to confuse where to put the true value and where to put
the false value in the tuple.

Another reason to avoid using a tupled ternery is that it results in both elements of the
tuple being evaluated, whereas the if-else ternary operator does not.

Example:

condition = True
print(2 if condition else 1/0)
#Output is 2

print((1/0, 2)[condition])
#ZeroDivisionError is raised

3.6. Ternary Operators 14

Python Tips, Release 0.1

This happens because with the tupled ternary technique, the tuple is first built, then
an index is found. For the if-else ternary operator, it follows the normal if-else logic
tree. Thus, if one case could raise an exception based on the condition, or if either case
is a computation-heavy method, using tuples is best avoided.

ShortHand Ternary

In python there is also the shorthand ternary tag which is a shorter version of the
normal ternary operator you have seen above.

Syntax was introduced in Python 2.5 and can be used in python 2.5 or greater.

Example

>>> True or "Some"
True
>>>
>>> False or "Some"
'Some'

The first statement (True or “Some”) will return True and the second statement (False or
“Some”) will return Some.

This is helpful in case where you quickly want to check for the output of a function
and give a useful message if the output is empty:

>>> output = None
>>> msg = output or "No data returned"
>>> print(msg)
No data returned

Or as a simple way to define function parameters with dynamic default values:

>>> def my_function(real_name, optional_display_name=None):
>>> optional_display_name = optional_display_name or real_name
>>> print(optional_display_name)
>>> my_function("John")
John
>>> my_function("Mike", "anonymous123")
anonymous123

3.7 Decorators

Decorators are a significant part of Python. In simple words: they are functions which
modify the functionality of other functions. They help to make our code shorter and
more Pythonic. Most beginners do not know where to use them so I am going to share
some areas where decorators can make your code more concise.

First, let’s discuss how to write your own decorator.

3.7. Decorators 15

Python Tips, Release 0.1

It is perhaps one of the most difficult concepts to grasp. We will take it one step at a
time so that you can fully understand it.

3.7.1 Everything in Python is an object:

First of all let’s understand functions in Python:

def hi(name="yasoob"):
return "hi " + name

print(hi())
output: 'hi yasoob'

We can even assign a function to a variable like
greet = hi
We are not using parentheses here because we are not calling the function hi
instead we are just putting it into the greet variable. Let's try to run this

print(greet())
output: 'hi yasoob'

Let's see what happens if we delete the old hi function!
del hi
print(hi())
#outputs: NameError

print(greet())
#outputs: 'hi yasoob'

3.7.2 Defining functions within functions:

So those are the basics when it comes to functions. Let’s take your knowledge one step
further. In Python we can define functions inside other functions:

def hi(name="yasoob"):
print("now you are inside the hi() function")

def greet():
return "now you are in the greet() function"

def welcome():
return "now you are in the welcome() function"

print(greet())
print(welcome())
print("now you are back in the hi() function")

(continues on next page)

3.7. Decorators 16

Python Tips, Release 0.1

(continued from previous page)

hi()
#output:now you are inside the hi() function
now you are in the greet() function
now you are in the welcome() function
now you are back in the hi() function

This shows that whenever you call hi(), greet() and welcome()
are also called. However the greet() and welcome() functions
are not available outside the hi() function e.g:

greet()
#outputs: NameError: name 'greet' is not defined

So now we know that we can define functions in other functions. In other words: we
can make nested functions. Now you need to learn one more thing, that functions can
return functions too.

3.7.3 Returning functions from within functions:

It is not necessary to execute a function within another function, we can return it as an
output as well:

def hi(name="yasoob"):
def greet():

return "now you are in the greet() function"

def welcome():
return "now you are in the welcome() function"

if name == "yasoob":
return greet

else:
return welcome

a = hi()
print(a)
#outputs: <function greet at 0x7f2143c01500>

#This clearly shows that `a` now points to the greet() function in hi()
#Now try this

print(a())
#outputs: now you are in the greet() function

Just take a look at the code again. In the if/else clause we are returning greet and
welcome, not greet() and welcome(). Why is that? It’s because when you put a pair of
parentheses after it, the function gets executed; whereas if you don’t put parenthesis
after it, then it can be passed around and can be assigned to other variables without

3.7. Decorators 17

Python Tips, Release 0.1

executing it. Did you get it? Let me explain it in a little bit more detail. When we
write a = hi(), hi() gets executed and because the name is yasoob by default, the
function greet is returned. If we change the statement to a = hi(name = "ali") then
the welcome function will be returned. We can also do print hi()() which outputs now
you are in the greet() function.

3.7.4 Giving a function as an argument to another function:

def hi():
return "hi yasoob!"

def doSomethingBeforeHi(func):
print("I am doing some boring work before executing hi()")
print(func())

doSomethingBeforeHi(hi)
#outputs:I am doing some boring work before executing hi()
hi yasoob!

Now you have all the required knowledge to learn what decorators really are. Deco-
rators let you execute code before and after a function.

3.7.5 Writing your first decorator:

In the last example we actually made a decorator! Let’s modify the previous decorator
and make a little bit more usable program:

def a_new_decorator(a_func):

def wrapTheFunction():
print("I am doing some boring work before executing a_func()")

a_func()

print("I am doing some boring work after executing a_func()")

return wrapTheFunction

def a_function_requiring_decoration():
print("I am the function which needs some decoration to remove my foul smell")

a_function_requiring_decoration()
#outputs: "I am the function which needs some decoration to remove my foul smell"

a_function_requiring_decoration = a_new_decorator(a_function_requiring_decoration)
#now a_function_requiring_decoration is wrapped by wrapTheFunction()

(continues on next page)

3.7. Decorators 18

Python Tips, Release 0.1

(continued from previous page)

a_function_requiring_decoration()
#outputs:I am doing some boring work before executing a_func()
I am the function which needs some decoration to remove my foul smell
I am doing some boring work after executing a_func()

Did you get it? We just applied the previously learned principles. This is exactly what
the decorators do in Python! They wrap a function and modify its behaviour in one
way or another. Now you might be wondering why we did not use the @ anywhere
in our code? That is just a short way of making up a decorated function. Here is how
we could have run the previous code sample using @.

@a_new_decorator
def a_function_requiring_decoration():

"""Hey you! Decorate me!"""
print("I am the function which needs some decoration to "

"remove my foul smell")

a_function_requiring_decoration()
#outputs: I am doing some boring work before executing a_func()
I am the function which needs some decoration to remove my foul smell
I am doing some boring work after executing a_func()

#the @a_new_decorator is just a short way of saying:
a_function_requiring_decoration = a_new_decorator(a_function_requiring_decoration)

I hope you now have a basic understanding of how decorators work in Python. Now
there is one problem with our code. If we run:

print(a_function_requiring_decoration.__name__)
Output: wrapTheFunction

That’s not what we expected! Its name is “a_function_requiring_decoration”. Well,
our function was replaced by wrapTheFunction. It overrode the name and docstring
of our function. Luckily, Python provides us a simple function to solve this problem
and that is functools.wraps. Let’s modify our previous example to use functools.
wraps:

from functools import wraps

def a_new_decorator(a_func):
@wraps(a_func)
def wrapTheFunction():

print("I am doing some boring work before executing a_func()")
a_func()
print("I am doing some boring work after executing a_func()")

return wrapTheFunction

@a_new_decorator
def a_function_requiring_decoration():

(continues on next page)

3.7. Decorators 19

Python Tips, Release 0.1

(continued from previous page)

"""Hey yo! Decorate me!"""
print("I am the function which needs some decoration to "

"remove my foul smell")

print(a_function_requiring_decoration.__name__)
Output: a_function_requiring_decoration

Now that is much better. Let’s move on and learn some use-cases of decorators.

Blueprint:

from functools import wraps
def decorator_name(f):

@wraps(f)
def decorated(*args, **kwargs):

if not can_run:
return "Function will not run"

return f(*args, **kwargs)
return decorated

@decorator_name
def func():

return("Function is running")

can_run = True
print(func())
Output: Function is running

can_run = False
print(func())
Output: Function will not run

Note: @wraps takes a function to be decorated and adds the functionality of copying
over the function name, docstring, arguments list, etc. This allows us to access the
pre-decorated function’s properties in the decorator.

Use-cases:

Now let’s take a look at the areas where decorators really shine and their usage makes
something really easy to manage.

Authorization

Decorators can help to check whether someone is authorized to use an endpoint in a
web application. They are extensively used in Flask web framework and Django. Here
is an example to employ decorator based authentication:

Example :

3.7. Decorators 20

Python Tips, Release 0.1

from functools import wraps

def requires_auth(f):
@wraps(f)
def decorated(*args, **kwargs):

auth = request.authorization
if not auth or not check_auth(auth.username, auth.password):

authenticate()
return f(*args, **kwargs)

return decorated

Logging

Logging is another area where the decorators shine. Here is an example:

from functools import wraps

def logit(func):
@wraps(func)
def with_logging(*args, **kwargs):

print(func.__name__ + " was called")
return func(*args, **kwargs)

return with_logging

@logit
def addition_func(x):

"""Do some math."""
return x + x

result = addition_func(4)
Output: addition_func was called

I am sure you are already thinking about some clever uses of decorators.

3.7.6 Decorators with Arguments

Come to think of it, isn’t @wraps also a decorator? But, it takes an argument like any
normal function can do. So, why can’t we do that too?

This is because when you use the @my_decorator syntax, you are applying a wrapper
function with a single function as a parameter. Remember, everything in Python is an
object, and this includes functions! With that in mind, we can write a function that
returns a wrapper function.

3.7. Decorators 21

Python Tips, Release 0.1

Nesting a Decorator Within a Function

Let’s go back to our logging example, and create a wrapper which lets us specify a
logfile to output to.

from functools import wraps

def logit(logfile='out.log'):
def logging_decorator(func):

@wraps(func)
def wrapped_function(*args, **kwargs):

log_string = func.__name__ + " was called"
print(log_string)
Open the logfile and append
with open(logfile, 'a') as opened_file:

Now we log to the specified logfile
opened_file.write(log_string + '\n')

return func(*args, **kwargs)
return wrapped_function

return logging_decorator

@logit()
def myfunc1():

pass

myfunc1()
Output: myfunc1 was called
A file called out.log now exists, with the above string

@logit(logfile='func2.log')
def myfunc2():

pass

myfunc2()
Output: myfunc2 was called
A file called func2.log now exists, with the above string

Decorator Classes

Now we have our logit decorator in production, but when some parts of our appli-
cation are considered critical, failure might be something that needs more immediate
attention. Let’s say sometimes you want to just log to a file. Other times you want an
email sent, so the problem is brought to your attention, and still keep a log for your
own records. This is a case for using inheritence, but so far we’ve only seen functions
being used to build decorators.

Luckily, classes can also be used to build decorators. So, let’s rebuild logit as a class
instead of a function.

3.7. Decorators 22

Python Tips, Release 0.1

class logit(object):

_logfile = 'out.log'

def __init__(self, func):
self.func = func

def __call__(self, *args):
log_string = self.func.__name__ + " was called"
print(log_string)
Open the logfile and append
with open(self._logfile, 'a') as opened_file:

Now we log to the specified logfile
opened_file.write(log_string + '\n')

Now, send a notification
self.notify()

return base func
return self.func(*args)

def notify(self):
logit only logs, no more
pass

This implementation has an additional advantage of being much cleaner than the
nested function approach, and wrapping a function still will use the same syntax as
before:

logit._logfile = 'out2.log' # if change log file
@logit
def myfunc1():

pass

myfunc1()
Output: myfunc1 was called

Now, let’s subclass logit to add email functionality (though this topic will not be cov-
ered here).

class email_logit(logit):
'''
A logit implementation for sending emails to admins
when the function is called.
'''
def __init__(self, email='admin@myproject.com', *args, **kwargs):

self.email = email
super(email_logit, self).__init__(*args, **kwargs)

(continues on next page)

3.7. Decorators 23

Python Tips, Release 0.1

(continued from previous page)

def notify(self):
Send an email to self.email
Will not be implemented here
pass

From here, @email_logit works just like @logit but sends an email to the admin in
addition to logging.

3.8 Global & Return

You might have encountered some functions written in python which have a return
keyword in the end of the function. Do you know what it does? It is similar to return
in other languages. Lets examine this little function:

def add(value1, value2):
return value1 + value2

result = add(3, 5)
print(result)
Output: 8

The function above takes two values as input and then output their addition. We could
have also done:

def add(value1,value2):
global result
result = value1 + value2

add(3,5)
print(result)
Output: 8

So first lets talk about the first bit of code which involves the return keyword. What
that function is doing is that it is assigning the value to the variable which is calling
that function which in our case is result. In most cases and you won’t need to use the
global keyword. However lets examine the other bit of code as well which includes
the global keyword. So what that function is doing is that it is making a global vari-
able result. What does global mean here? Global variable means that we can access
that variable outside the scope of the function as well. Let me demonstrate it with an
example:

first without the global variable
def add(value1, value2):

result = value1 + value2

add(2, 4)

(continues on next page)

3.8. Global & Return 24

Python Tips, Release 0.1

(continued from previous page)

print(result)

Oh crap, we encountered an exception. Why is it so?
the python interpreter is telling us that we do not
have any variable with the name of result. It is so
because the result variable is only accessible inside
the function in which it is created if it is not global.
Traceback (most recent call last):
File "", line 1, in
result

NameError: name 'result' is not defined

Now lets run the same code but after making the result
variable global
def add(value1, value2):

global result
result = value1 + value2

add(2, 4)
result
6

So hopefully there are no errors in the second run as expected. In practical program-
ming you should try to stay away from global keyword as it only makes life difficult
by introducing unwanted variables to the global scope.

3.8.1 Multiple return values

So what if you want to return two variables from a function instead of one? There are
a couple of approaches which new programmers take. The most famous approach is
to use global keyword. Let’s take a look at a useless example:

def profile():
global name
global age
name = "Danny"
age = 30

profile()
print(name)
Output: Danny

print(age)
Output: 30

Note:Don’t try to use the above mentioned method. I repeat, don’t try to use the
above mentioned method!

Some try to solve this problem by returning a tuple, list or dict with the required

3.8. Global & Return 25

Python Tips, Release 0.1

values after the function terminates. It is one way to do it and works like a charm:

def profile():
name = "Danny"
age = 30
return (name, age)

profile_data = profile()
print(profile_data[0])
Output: Danny

print(profile_data[1])
Output: 30

Or by more common convention:

def profile():
name = "Danny"
age = 30
return name, age

profile_name, profile_age = profile()
print(profile_name)
Output: Danny
print(profile_age)
Output: 30

Keep in mind that even in the above example we are returning a tuple (despite the
lack of paranthesis) and not separate multiple values. If you want to take it one step
further, you can also make use of namedtuple. Here is an example:

from collections import namedtuple
def profile():

Person = namedtuple('Person', 'name age')
return Person(name="Danny", age=31)

Use as namedtuple
p = profile()
print(p, type(p))
Person(name='Danny', age=31) <class '__main__.Person'>
print(p.name)
Danny
print(p.age)
#31

Use as plain tuple
p = profile()
print(p[0])
Danny
print(p[1])

(continues on next page)

3.8. Global & Return 26

Python Tips, Release 0.1

(continued from previous page)

#31

Unpack it immediatly
name, age = profile()
print(name)
Danny
print(age)
#31

This is a better way to do it along with returning lists and dicts. Don’t use global
keyword unless you know what you are doing. global might be a better option in a
few cases but is not in most of them.

3.9 Mutation

The mutable and immutable datatypes in Python cause a lot of headache for new
programmers. In simple words, mutable means ‘able to be changed’ and immutable
means ‘constant’. Want your head to spin? Consider this example:

foo = ['hi']
print(foo)
Output: ['hi']

bar = foo
bar += ['bye']
print(foo)
Output: ['hi', 'bye']

What just happened? We were not expecting that! We were expecting something like
this:

foo = ['hi']
print(foo)
Output: ['hi']

bar = foo
bar += ['bye']

print(foo)
Expected Output: ['hi']
Output: ['hi', 'bye']

print(bar)
Output: ['hi', 'bye']

It’s not a bug. It’s mutability in action. Whenever you assign a variable to another
variable of mutable datatype, any changes to the data are reflected by both variables.

3.9. Mutation 27

Python Tips, Release 0.1

The new variable is just an alias for the old variable. This is only true for mutable
datatypes. Here is a gotcha involving functions and mutable data types:

def add_to(num, target=[]):
target.append(num)
return target

add_to(1)
Output: [1]

add_to(2)
Output: [1, 2]

add_to(3)
Output: [1, 2, 3]

You might have expected it to behave differently. You might be expecting that a fresh
list would be created when you call add_to like this:

def add_to(num, target=[]):
target.append(num)
return target

add_to(1)
Output: [1]

add_to(2)
Output: [2]

add_to(3)
Output: [3]

Well again it is the mutability of lists which causes this pain. In Python the default
arguments are evaluated once when the function is defined, not each time the function
is called. You should never define default arguments of mutable type unless you know
what you are doing. You should do something like this:

def add_to(element, target=None):
if target is None:

target = []
target.append(element)
return target

Now whenever you call the function without the target argument, a new list is cre-
ated. For instance:

add_to(42)
Output: [42]

add_to(42)

(continues on next page)

3.9. Mutation 28

Python Tips, Release 0.1

(continued from previous page)

Output: [42]

add_to(42)
Output: [42]

3.10 __slots__ Magic

In Python every class can have instance attributes. By default Python uses a dict to
store an object’s instance attributes. This is really helpful as it allows setting arbitrary
new attributes at runtime.

However, for small classes with known attributes it might be a bottleneck. The dict
wastes a lot of RAM. Python can’t just allocate a static amount of memory at object
creation to store all the attributes. Therefore it sucks a lot of RAM if you create a lot
of objects (I am talking in thousands and millions). Still there is a way to circumvent
this issue. It involves the usage of __slots__ to tell Python not to use a dict, and
only allocate space for a fixed set of attributes. Here is an example with and without
__slots__:

Without __slots__:

class MyClass(object):
def __init__(self, name, identifier):

self.name = name
self.identifier = identifier
self.set_up()

...

With __slots__:

class MyClass(object):
__slots__ = ['name', 'identifier']
def __init__(self, name, identifier):

self.name = name
self.identifier = identifier
self.set_up()

...

The second piece of code will reduce the burden on your RAM. Some people have
seen almost 40 to 50% reduction in RAM usage by using this technique.

On a sidenote, you might want to give PyPy a try. It does all of these optimizations by
default.

Below you can see an example showing exact memory usage with and with-
out __slots__ done in IPython thanks to https://github.com/ianozsvald/ipython_
memory_usage

3.10. __slots__ Magic 29

Python Tips, Release 0.1

Python 3.4.3 (default, Jun 6 2015, 13:32:34)
Type "copyright", "credits" or "license" for more information.

IPython 4.0.0 -- An enhanced Interactive Python.
? -> Introduction and overview of IPython's features.
%quickref -> Quick reference.
help -> Python's own help system.
object? -> Details about 'object', use 'object??' for extra details.

In [1]: import ipython_memory_usage.ipython_memory_usage as imu

In [2]: imu.start_watching_memory()
In [2] used 0.0000 MiB RAM in 5.31s, peaked 0.00 MiB above current, total RAM␣
↪→usage 15.57 MiB

In [3]: %cat slots.py
class MyClass(object):

__slots__ = ['name', 'identifier']
def __init__(self, name, identifier):

self.name = name
self.identifier = identifier

num = 1024*256
x = [MyClass(1,1) for i in range(num)]
In [3] used 0.2305 MiB RAM in 0.12s, peaked 0.00 MiB above current, total RAM␣
↪→usage 15.80 MiB

In [4]: from slots import *
In [4] used 9.3008 MiB RAM in 0.72s, peaked 0.00 MiB above current, total RAM␣
↪→usage 25.10 MiB

In [5]: %cat noslots.py
class MyClass(object):

def __init__(self, name, identifier):
self.name = name
self.identifier = identifier

num = 1024*256
x = [MyClass(1,1) for i in range(num)]
In [5] used 0.1758 MiB RAM in 0.12s, peaked 0.00 MiB above current, total RAM␣
↪→usage 25.28 MiB

In [6]: from noslots import *
In [6] used 22.6680 MiB RAM in 0.80s, peaked 0.00 MiB above current, total RAM␣
↪→usage 47.95 MiB

3.10. __slots__ Magic 30

Python Tips, Release 0.1

3.11 Virtual Environment

Have you ever heard of virtualenv? If you are a beginner, then you might not have
heard about it but if you are a seasoned programmer then it may well be a vital part
of your toolset.

So what is virtualenv? Virtualenv is a tool which allows us to make isolated python
environments. Imagine you have an application that needs version 2 of a library, but
another application requires version 3. How can you use and develop both these ap-
plications?

If you install everything into /usr/lib/python2.7/site-packages (or whatever your
platform’s standard location is), it’s easy to end up in a situation where you uninten-
tionally upgrade a package.

In another case, imagine that you have an application which is fully developed and
you do not want to make any change to the libraries it is using but at the same time
you start developing another application which requires the updated versions of those
libraries.

What will you do? Use virtualenv! It creates isolated environments for your python
application and allows you to install Python libraries in that isolated environment
instead of installing them globally.

To install it, just type this command in the shell:

$ pip install virtualenv

The most important commands are:

• $ virtualenv myproject

• $ source myproject/bin/activate

This first one makes an isolated virtualenv environment in the myproject folder and
the second command activates that isolated environment.

While creating the virtualenv you have to make a decision. Do you want this vir-
tualenv to use packages from your system site-packages or install them in the vir-
tualenv’s site-packages? By default, virtualenv will not give access to the global
site-packages.

If you want your virtualenv to have access to your systems site-packages, use the
--system-site-packages switch when creating your virtualenv like this:

$ virtualenv --system-site-packages mycoolproject

You can turn off the env by typing:

$ deactivate

Running python after deactivating will use your system installation of Python again.

Bonus

3.11. Virtual Environment 31

Python Tips, Release 0.1

You can use smartcd which is a library for bash and zsh and allows you to alter your
bash (or zsh) environment as you cd. It can be really helpful to activate and deactivate
a virtualenv when you change directories. I have used it quite a lot and love it. You
can read more about it on GitHub

This was just a short intro to virtualenv. There’s a lot more to it; this link has more
information.

3.12 Collections

Python ships with a module that contains a number of container data types called
Collections. We will talk about a few of them and discuss their usefulness.

The ones which we will talk about are:

• defaultdict

• OrderedDict

• Counter

• deque

• namedtuple

• enum.Enum (outside of the module; Python 3.4+)

3.12.1 defaultdict

I personally use defaultdict quite a bit. Unlike dict, with defaultdict you do not need
to check whether a key is present or not. So we can do:

from collections import defaultdict

colours = (
('Yasoob', 'Yellow'),
('Ali', 'Blue'),
('Arham', 'Green'),
('Ali', 'Black'),
('Yasoob', 'Red'),
('Ahmed', 'Silver'),

)

favourite_colours = defaultdict(list)

for name, colour in colours:
favourite_colours[name].append(colour)

print(favourite_colours)

(continues on next page)

3.12. Collections 32

Python Tips, Release 0.1

(continued from previous page)

output
defaultdict(<type 'list'>,
{'Arham': ['Green'],
'Yasoob': ['Yellow', 'Red'],
'Ahmed': ['Silver'],
'Ali': ['Blue', 'Black']
})

One other very important use case is when you are appending to nested lists inside a
dictionary. If a key is not already present in the dictionary then you are greeted with
a KeyError. defaultdict allows us to circumvent this issue in a clever way. First let
me share an example using dict which raises KeyError and then I will share a solution
using defaultdict.

Problem:

some_dict = {}
some_dict['colours']['favourite'] = "yellow"
Raises KeyError: 'colours'

Solution:

from collections import defaultdict
tree = lambda: defaultdict(tree)
some_dict = tree()
some_dict['colours']['favourite'] = "yellow"
Works fine

You can print some_dict using json.dumps. Here is some sample code:

import json
print(json.dumps(some_dict))
Output: {"colours": {"favourite": "yellow"}}

3.12.2 OrderedDict

OrderedDict keeps its entries sorted as they are initially inserted. Overwriting a value
of an existing key doesn’t change the position of that key. However, deleting and
reinserting an entry moves the key to the end of the dictionary.

Problem:

colours = {"Red" : 198, "Green" : 170, "Blue" : 160}
for key, value in colours.items():

print(key, value)
Output:
Green 170
Blue 160

(continues on next page)

3.12. Collections 33

Python Tips, Release 0.1

(continued from previous page)

Red 198
Entries are retrieved in an unpredictable order

Solution:

from collections import OrderedDict

colours = OrderedDict([("Red", 198), ("Green", 170), ("Blue", 160)])
for key, value in colours.items():

print(key, value)
Output:
Red 198
Green 170
Blue 160
Insertion order is preserved

3.12.3 Counter

Counter allows us to count the occurrences of a particular item. For instance it can be
used to count the number of individual favourite colours:

from collections import Counter

colours = (
('Yasoob', 'Yellow'),
('Ali', 'Blue'),
('Arham', 'Green'),
('Ali', 'Black'),
('Yasoob', 'Red'),
('Ahmed', 'Silver'),

)

favs = Counter(name for name, colour in colours)
print(favs)
Output: Counter({
'Yasoob': 2,
'Ali': 2,
'Arham': 1,
'Ahmed': 1
})

We can also count the most common lines in a file using it. For example:

with open('filename', 'rb') as f:
line_count = Counter(f)

print(line_count)

3.12. Collections 34

Python Tips, Release 0.1

3.12.4 deque

deque provides you with a double ended queue which means that you can append
and delete elements from either side of the queue. First of all you have to import the
deque module from the collections library:

from collections import deque

Now we can instantiate a deque object.

d = deque()

It works like python lists and provides you with somewhat similar methods as well.
For example you can do:

d = deque()
d.append('1')
d.append('2')
d.append('3')

print(len(d))
Output: 3

print(d[0])
Output: '1'

print(d[-1])
Output: '3'

You can pop values from both sides of the deque:

d = deque(range(5))
print(len(d))
Output: 5

d.popleft()
Output: 0

d.pop()
Output: 4

print(d)
Output: deque([1, 2, 3])

We can also limit the amount of items a deque can hold. By doing this when we achieve
the maximum limit of our deque it will simply pop out the items from the opposite
end. It is better to explain it using an example so here you go:

d = deque([0, 1, 2, 3, 5], maxlen=5)
print(d)

(continues on next page)

3.12. Collections 35

Python Tips, Release 0.1

(continued from previous page)

Output: deque([0, 1, 2, 3, 5], maxlen=5)

d.extend([6])
print(d)
#Output: deque([1, 2, 3, 5, 6], maxlen=5)

Now whenever you insert values after 5, the leftmost value will be popped from the
list. You can also expand the list in any direction with new values:

d = deque([1,2,3,4,5])
d.extendleft([0])
d.extend([6,7,8])
print(d)
Output: deque([0, 1, 2, 3, 4, 5, 6, 7, 8])

3.12.5 namedtuple

You might already be acquainted with tuples. A tuple is basically a immutable list
which allows you to store a sequence of values separated by commas. They are just
like lists but have a few key differences. The major one is that unlike lists, you can
not reassign an item in a tuple. In order to access the value in a tuple you use integer
indexes like:

man = ('Ali', 30)
print(man[0])
Output: Ali

Well, so now what are namedtuples? They turn tuples into convenient containers for
simple tasks. With namedtuples you don’t have to use integer indexes for accessing
members of a tuple. You can think of namedtuples like dictionaries but unlike dictio-
naries they are immutable.

from collections import namedtuple

Animal = namedtuple('Animal', 'name age type')
perry = Animal(name="perry", age=31, type="cat")

print(perry)
Output: Animal(name='perry', age=31, type='cat')

print(perry.name)
Output: 'perry'

You can now see that we can access members of a tuple just by their name using a ..
Let’s dissect it a little more. A named tuple has two required arguments. They are
the tuple name and the tuple field_names. In the above example our tuple name was
‘Animal’ and the tuple field_names were ‘name’, ‘age’ and ‘type’. Namedtuple makes
your tuples self-document. You can easily understand what is going on by having

3.12. Collections 36

Python Tips, Release 0.1

a quick glance at your code. And as you are not bound to use integer indexes to ac-
cess members of a tuple, it makes it more easy to maintain your code. Moreover, as
‘namedtuple‘ instances do not have per-instance dictionaries, they are lightweight
and require no more memory than regular tuples. This makes them faster than dic-
tionaries. However, do remember that as with tuples, attributes in namedtuples are
immutable. It means that this would not work:

from collections import namedtuple

Animal = namedtuple('Animal', 'name age type')
perry = Animal(name="perry", age=31, type="cat")
perry.age = 42

Output: Traceback (most recent call last):
File "", line 1, in
AttributeError: can't set attribute

You should use named tuples to make your code self-documenting. They are back-
wards compatible with normal tuples. It means that you can use integer indexes with
namedtuples as well:

from collections import namedtuple

Animal = namedtuple('Animal', 'name age type')
perry = Animal(name="perry", age=31, type="cat")
print(perry[0])
Output: perry

Last but not the least, you can convert a namedtuple to a dictionary. Like this:

from collections import namedtuple

Animal = namedtuple('Animal', 'name age type')
perry = Animal(name="Perry", age=31, type="cat")
print(perry._asdict())
Output: OrderedDict([('name', 'Perry'), ('age', 31), ...

3.12.6 enum.Enum (Python 3.4+)

Another useful collection is the enum object. It is available in the enum module, in
Python 3.4 and up (also available as a backport in PyPI named enum34.) Enums (enu-
merated type) are basically a way to organize various things.

Let’s consider the Animal namedtuple from the last example. It had a type field. The
problem is, the type was a string. This poses some problems for us. What if the user
types in Cat because they held the Shift key? Or CAT? Or kitten?

Enumerations can help us avoid this problem, by not using strings. Consider this
example:

3.12. Collections 37

Python Tips, Release 0.1

from collections import namedtuple
from enum import Enum

class Species(Enum):
cat = 1
dog = 2
horse = 3
aardvark = 4
butterfly = 5
owl = 6
platypus = 7
dragon = 8
unicorn = 9
The list goes on and on...

But we don't really care about age, so we can use an alias.
kitten = 1
puppy = 2

Animal = namedtuple('Animal', 'name age type')
perry = Animal(name="Perry", age=31, type=Species.cat)
drogon = Animal(name="Drogon", age=4, type=Species.dragon)
tom = Animal(name="Tom", age=75, type=Species.cat)
charlie = Animal(name="Charlie", age=2, type=Species.kitten)

And now, some tests.
>>> charlie.type == tom.type
True
>>> charlie.type
<Species.cat: 1>

This is much less error-prone. We have to be specific, and we should use only the
enumeration to name types.

There are three ways to access enumeration members. For example, all three methods
will get you the value for cat:

Species(1)
Species['cat']
Species.cat

This was just a quick drive through the collections module. Make sure you read the
official documentation after reading this.

3.13 Enumerate

Enumerate is a built-in function of Python. Its usefulness can not be summarized in
a single line. Yet most of the newcomers and even some advanced programmers are

3.13. Enumerate 38

Python Tips, Release 0.1

unaware of it. It allows us to loop over something and have an automatic counter.
Here is an example:

my_list = ['apple', 'banana', 'grapes', 'pear']
for counter, value in enumerate(my_list):

print counter, value

Output:
0 apple
1 banana
2 grapes
3 pear

And there is more! enumerate also accepts an optional argument that allows us to
specify the starting index of the counter.

my_list = ['apple', 'banana', 'grapes', 'pear']
for c, value in enumerate(my_list, 1):

print(c, value)

Output:
1 apple
2 banana
3 grapes
4 pear

An example of where the optional argument of enumerate comes in handy is creating
tuples containing the index and list item using a list. Here is an example:

my_list = ['apple', 'banana', 'grapes', 'pear']
counter_list = list(enumerate(my_list, 1))
print(counter_list)
Output: [(1, 'apple'), (2, 'banana'), (3, 'grapes'), (4, 'pear')]

3.14 Zip and unzip

Zip

Zip is a useful function that allows you to combine two lists easily.

After calling zip, an iterator is returned. In order to see the content wrapped inside,
we need to first convert it to a list.

Example:

first_name = ['Joe','Earnst','Thomas','Martin','Charles']

last_name = ['Schmoe','Ehlmann','Fischer','Walter','Rogan','Green']

(continues on next page)

3.14. Zip and unzip 39

Python Tips, Release 0.1

(continued from previous page)

age = [23, 65, 11, 36, 83]

print(list(zip(first_name,last_name, age)))

Output
#
[('Joe', 'Schmoe', 23), ('Earnst', 'Ehlmann', 65), ('Thomas', 'Fischer', 11), (
↪→'Martin', 'Walter', 36), ('Charles', 'Rogan', 83)]

One advantage of zip is that it improves readability of for loops.

For example, instead of needing multiple inputs, you only need one zipped list for the
following for loop:

first_name = ['Joe','Earnst','Thomas','Martin','Charles']
last_name = ['Schmoe','Ehlmann','Fischer','Walter','Rogan','Green']
age = [23, 65, 11, 36, 83]

for first_name, last_name, age in zip(first_name, last_name, age):
print(f"{first_name} {last_name} is {age} years old")

Output
#
Joe Schmoe is 23 years old
Earnst Ehlmann is 65 years old
Thomas Fischer is 11 years old
Martin Walter is 36 years old
Charles Rogan is 83 years old

Unzip

We can use the zip function to unzip a list as well. This time, we need an input of a list
with an asterisk before it.

The outputs are the separated lists.

Example:

full_name_list = [('Joe', 'Schmoe', 23),
('Earnst', 'Ehlmann', 65),
('Thomas', 'Fischer', 11),
('Martin', 'Walter', 36),
('Charles', 'Rogan', 83)]

first_name, last_name, age = list(zip(*full_name_list))
print(f"first name: {first_name}\nlast name: {last_name} \nage: {age}")

Output

first name: ('Joe', 'Earnst', 'Thomas', 'Martin', 'Charles')

(continues on next page)

3.14. Zip and unzip 40

Python Tips, Release 0.1

(continued from previous page)

last name: ('Schmoe', 'Ehlmann', 'Fischer', 'Walter', 'Rogan')
age: (23, 65, 11, 36, 83)

3.15 Object introspection

In computer programming, introspection is the ability to determine the type of an
object at runtime. It is one of Python’s strengths. Everything in Python is an object
and we can examine those objects. Python ships with a few built-in functions and
modules to help us.

3.15.1 dir

In this section we will learn about dir and how it facilitates us in introspection.

It is one of the most important functions for introspection. It returns a list of attributes
and methods belonging to an object. Here is an example:

my_list = [1, 2, 3]
dir(my_list)
Output: ['__add__', '__class__', '__contains__', '__delattr__', '__delitem__',
'__delslice__', '__doc__', '__eq__', '__format__', '__ge__', '__getattribute__',
'__getitem__', '__getslice__', '__gt__', '__hash__', '__iadd__', '__imul__',
'__init__', '__iter__', '__le__', '__len__', '__lt__', '__mul__', '__ne__',
'__new__', '__reduce__', '__reduce_ex__', '__repr__', '__reversed__', '__rmul__
↪→',
'__setattr__', '__setitem__', '__setslice__', '__sizeof__', '__str__',
'__subclasshook__', 'append', 'count', 'extend', 'index', 'insert', 'pop',
'remove', 'reverse', 'sort']

Our introspection gave us the names of all the methods of a list. This can be handy
when you are not able to recall a method name. If we run dir() without any argument
then it returns all names in the current scope.

3.15.2 type and id

The type function returns the type of an object. For example:

print(type(''))
Output: <type 'str'>

print(type([]))
Output: <type 'list'>

print(type({}))

(continues on next page)

3.15. Object introspection 41

Python Tips, Release 0.1

(continued from previous page)

Output: <type 'dict'>

print(type(dict))
Output: <type 'type'>

print(type(3))
Output: <type 'int'>

id returns the unique ids of various objects. For instance:

name = "Yasoob"
print(id(name))
Output: 139972439030304

3.15.3 inspect module

The inspect module also provides several useful functions to get information about
live objects. For example you can check the members of an object by running:

import inspect
print(inspect.getmembers(str))
Output: [('__add__', <slot wrapper '__add__' of

There are a couple of other methods as well which help in introspection. You can
explore them if you wish.

3.16 Comprehensions

Comprehensions are a feature of Python which I would really miss if I ever have to
leave it. Comprehensions are constructs that allow sequences to be built from other se-
quences. Several types of comprehensions are supported in both Python 2 and Python
3:

• list comprehensions

• dictionary comprehensions

• set comprehensions

• generator comprehensions

We will discuss them one by one. Once you get the hang of using list comprehensions
then you can use any of them easily.

3.16. Comprehensions 42

Python Tips, Release 0.1

3.16.1 list comprehensions

List comprehensions provide a short and concise way to create lists. It consists of
square brackets containing an expression followed by a for clause, then zero or more
for or if clauses. The expressions can be anything, meaning you can put in all kinds
of objects in lists. The result would be a new list made after the evaluation of the
expression in context of the if and for clauses.

Blueprint

variable = [out_exp for out_exp in input_list if out_exp == 2]

Here is a short example:

multiples = [i for i in range(30) if i % 3 == 0]
print(multiples)
Output: [0, 3, 6, 9, 12, 15, 18, 21, 24, 27]

This can be really useful to make lists quickly. It is even preferred by some instead of
the filter function. List comprehensions really shine when you want to supply a list
to a method or function to make a new list by appending to it in each iteration of the
for loop. For instance you would usually do something like this:

squared = []
for x in range(10):

squared.append(x**2)

You can simplify it using list comprehensions. For example:

squared = [x**2 for x in range(10)]

3.16.2 dict comprehensions

They are used in a similar way. Here is an example which I found recently:

mcase = {'a': 10, 'b': 34, 'A': 7, 'Z': 3}

mcase_frequency = {
k.lower(): mcase.get(k.lower(), 0) + mcase.get(k.upper(), 0)
for k in mcase.keys()

}

mcase_frequency == {'a': 17, 'z': 3, 'b': 34}

In the above example we are combining the values of keys which are same but in
different typecase. I personally do not use dict comprehensions a lot. You can also
quickly switch keys and values of a dictionary:

3.16. Comprehensions 43

Python Tips, Release 0.1

{v: k for k, v in some_dict.items()}

3.16.3 set comprehensions

They are also similar to list comprehensions. The only difference is that they use braces
{}. Here is an example:

squared = {x**2 for x in [1, 1, 2]}
print(squared)
Output: {1, 4}

3.16.4 generator comprehensions

They are also similar to list comprehensions. The only difference is that they don’t
allocate memory for the whole list but generate one item at a time, thus more memory
efficient.

multiples_gen = (i for i in range(30) if i % 3 == 0)
print(multiples_gen)
Output: <generator object <genexpr> at 0x7fdaa8e407d8>
for x in multiples_gen:

print(x)
Outputs numbers

3.17 Exceptions

Exception handling is an art which once you master grants you immense powers. I
am going to show you some of the ways in which we can handle exceptions.

In basic terminology we are aware of the try/except structure. The code that can
cause an exception to occur is put in the try block and the handling of the exception
is implemented in the except block. The code in the except block will only execute if
the try block runs into an exception. Here is a simple example:

try:
file = open('test.txt', 'rb')

except IOError as e:
print('An IOError occurred. {}'.format(e.args[-1]))

In the above example we are handling only the IOError exception. What most begin-
ners do not know is that we can handle multiple exceptions.

3.17. Exceptions 44

Python Tips, Release 0.1

3.17.1 Handling multiple exceptions:

We can use three methods to handle multiple exceptions. The first one involves
putting all the exceptions which are likely to occur in a tuple. Like so:

try:
file = open('test.txt', 'rb')

except (IOError, EOFError) as e:
print("An error occurred. {}".format(e.args[-1]))

Another method is to handle individual exceptions in separate except blocks. We can
have as many except blocks as we want. Here is an example:

try:
file = open('test.txt', 'rb')

except EOFError as e:
print("An EOF error occurred.")
raise e

except IOError as e:
print("An error occurred.")
raise e

This way if the exception is not handled by the first except block then it may be han-
dled by a following block, or none at all. Now the last method involves trapping ALL
exceptions:

try:
file = open('test.txt', 'rb')

except Exception as e:
Some logging if you want
raise e

This can be helpful when you have no idea about the exceptions that may be thrown
by your program. If you are just looking to catch all execptions, but don’t actually care
about what they are, you can even exclude the Exception as e part.

Note:: catching all exceptions may have unintended consequences because catching all
exceptions may also catch the ones you want to occur; for example, in many command-
line based programs, pressing control+c will terminate the program, but if you catch
all excepts, the KeyboardInterrupt will be caught as an exception, so pressing con-
trol+c will NOT terminate the program.

finally clause

We wrap our main code in the try clause. After that we wrap some code in an except
clause which gets executed if an exception occurs in the code wrapped in the try
clause. In this example we will use a third clause as well which is the finally clause.
The code which is wrapped in the finally clause will run whether or not an exception
occurred. It might be used to perform clean-up after a script. Here is a simple example:

3.17. Exceptions 45

Python Tips, Release 0.1

try:
file = open('test.txt', 'rb')

except IOError as e:
print('An IOError occurred. {}'.format(e.args[-1]))

finally:
print("This would be printed whether or not an exception occurred!")

Output: An IOError occurred. No such file or directory
This would be printed whether or not an exception occurred!

try/else clause

Often times we might want some code to run if no exception occurs. This can easily
be achieved by using an else clause. One might ask: why, if you only want some code
to run if no exception occurs, wouldn’t you simply put that code inside the try? The
answer is that then any exceptions in that code will be caught by the try, and you
might not want that. Most people don’t use it and honestly I have myself not used it
widely. Here is an example:

try:
print('I am sure no exception is going to occur!')

except Exception:
print('exception')

else:
any code that should only run if no exception occurs in the try,
but for which exceptions should NOT be caught
print('This would only run if no exception occurs. And an error here '

'would NOT be caught.')
finally:

print('This would be printed in every case.')

Output: I am sure no exception is going to occur!
This would only run if no exception occurs. And an error here would NOT be␣
↪→caught
This would be printed in every case.

The else clause would only run if no exception occurs and it would run before the
finally clause.

3.18 Classes

Classes are the core of Python. They give us a lot of power but it is really easy to
misuse this power. In this section I will share some obscure tricks and caveats related
to classes in Python. Let’s get going!

3.18. Classes 46

Python Tips, Release 0.1

3.18.1 1. Instance & Class variables

Most beginners and even some advanced Python programmers do not understand the
distinction between instance and class variables. Their lack of understanding forces
them to use these different types of variables incorrectly. Let’s understand them.

The basic difference is:

• Instance variables are for data which is unique to every object

• Class variables are for data shared between different instances of a class

Let’s take a look at an example:

class Cal(object):
pi is a class variable
pi = 3.142

def __init__(self, radius):
self.radius is an instance variable
self.radius = radius

def area(self):
return self.pi * (self.radius ** 2)

a = Cal(32)
a.area()
Output: 3217.408
a.pi
Output: 3.142
a.pi = 43
a.pi
Output: 43

b = Cal(44)
b.area()
Output: 6082.912
b.pi
Output: 3.142
b.pi = 50
b.pi
Output: 50

There are not many issues while using immutable class variables. This is the major
reason due to which beginners do not try to learn more about this subject because
everything works! If you also believe that instance and class variables can not cause
any problem if used incorrectly then check the next example.

class SuperClass(object):
superpowers = []

def __init__(self, name):
(continues on next page)

3.18. Classes 47

Python Tips, Release 0.1

(continued from previous page)

self.name = name

def add_superpower(self, power):
self.superpowers.append(power)

foo = SuperClass('foo')
bar = SuperClass('bar')
foo.name
Output: 'foo'

bar.name
Output: 'bar'

foo.add_superpower('fly')
bar.superpowers
Output: ['fly']

foo.superpowers
Output: ['fly']

That is the beauty of the wrong usage of mutable class variables. To make your code
safe against this kind of surprise attacks then make sure that you do not use mutable
class variables. You may use them only if you know what you are doing.

3.18.2 2. New style classes

New style classes were introduced in Python 2.1 but a lot of people do not know about
them even now! It is so because Python also supports old style classes just to maintain
backward compatibility. I have said a lot about new and old but I have not told you
about the difference. Well the major difference is that:

• Old base classes do not inherit from anything

• New style base classes inherit from object

A very basic example is:

class OldClass():
def __init__(self):

print('I am an old class')

class NewClass(object):
def __init__(self):

print('I am a jazzy new class')

old = OldClass()
Output: I am an old class

(continues on next page)

3.18. Classes 48

Python Tips, Release 0.1

(continued from previous page)

new = NewClass()
Output: I am a jazzy new class

This inheritance from object allows new style classes to utilize some magic. A major
advantage is that you can employ some useful optimizations like __slots__. You can
use super() and descriptors and the likes. Bottom line? Always try to use new-style
classes.

Note: Python 3 only has new-style classes. It does not matter whether you subclass
from object or not. However it is recommended that you still subclass from object.

3.18.3 3. Magic Methods

Python’s classes are famous for their magic methods, commonly called dunder (dou-
ble underscore) methods. I am going to discuss a few of them.

• __init__

It is a class initializer. Whenever an instance of a class is created its __init__ method
is called. For example:

class GetTest(object):
def __init__(self):

print('Greetings!!')
def another_method(self):

print('I am another method which is not'
' automatically called')

a = GetTest()
Output: Greetings!!

a.another_method()
Output: I am another method which is not automatically
called

You can see that __init__ is called immediately after an instance is created. You can
also pass arguments to the class during its initialization. Like this:

class GetTest(object):
def __init__(self, name):

print('Greetings!! {0}'.format(name))
def another_method(self):

print('I am another method which is not'
' automatically called')

a = GetTest('yasoob')
Output: Greetings!! yasoob

Try creating an instance without the name arguments
(continues on next page)

3.18. Classes 49

Python Tips, Release 0.1

(continued from previous page)

b = GetTest()
Traceback (most recent call last):
File "<stdin>", line 1, in <module>

TypeError: __init__() takes exactly 2 arguments (1 given)

I am sure that now you understand the __init__ method.

• __getitem__

Implementing getitem in a class allows its instances to use the [] (indexer) operator.
Here is an example:

class GetTest(object):
def __init__(self):

self.info = {
'name':'Yasoob',
'country':'Pakistan',
'number':12345812

}

def __getitem__(self,i):
return self.info[i]

foo = GetTest()

foo['name']
Output: 'Yasoob'

foo['number']
Output: 12345812

Without the __getitem__ method we would have got this error:

>>> foo['name']

Traceback (most recent call last):
File "<stdin>", line 1, in <module>

TypeError: 'GetTest' object has no attribute '__getitem__'

3.19 Lambdas

Lambdas are one line functions. They are also known as anonymous functions in
some other languages. You might want to use lambdas when you don’t want to use a
function twice in a program. They are just like normal functions and even behave like
them.

Blueprint

3.19. Lambdas 50

Python Tips, Release 0.1

lambda argument: manipulate(argument)

Example

add = lambda x, y: x + y

print(add(3, 5))
Output: 8

Here are a few useful use cases for lambdas and just a few ways in which they are
used in the wild:

List sorting

a = [(1, 2), (4, 1), (9, 10), (13, -3)]
a.sort(key=lambda x: x[1])

print(a)
Output: [(13, -3), (4, 1), (1, 2), (9, 10)]

Parallel sorting of lists

data = zip(list1, list2)
data = sorted(data)
list1, list2 = map(lambda t: list(t), zip(*data))

3.20 One-Liners

In this chapter I will show you some one-liner Python commands which can be really
helpful.

Simple Web Server

Ever wanted to quickly share a file over a network? Well you are in luck. Python has
a feature just for you. Go to the directory which you want to serve over the network
and write the following code in your terminal:

Python 2
python -m SimpleHTTPServer

Python 3
python -m http.server

Pretty Printing

You can print a list and dictionary in a beautiful format in the Python repl. Here is the
relevant code:

3.20. One-Liners 51

Python Tips, Release 0.1

from pprint import pprint

my_dict = {'name': 'Yasoob', 'age': 'undefined', 'personality': 'awesome'}
print(dir(my_dict))
['__add__', '__class__', '__contains__', '__delattr__', '__delitem__', '__dir__
↪→', '__doc__', '__eq__', '__format__', '__ge__', '__getattribute__', '__getitem__
↪→', '__gt__', '__hash__', '__iadd__', '__imul__', '__init__', '__init_subclass__
↪→', '__iter__', '__le__', '__len__', '__lt__', '__mul__', '__ne__', '__new__', '_
↪→_reduce__', '__reduce_ex__', '__repr__', '__reversed__', '__rmul__', '__setattr_
↪→_', '__setitem__', '__sizeof__', '__str__', '__subclasshook__', 'append', 'clear
↪→', 'copy', 'count', 'extend', 'index', 'insert', 'pop', 'remove', 'reverse',
↪→'sort']

pprint(dir(my_dict))
['__add__',
'__class__',
'__contains__',
'__delattr__',
'__delitem__',
'__dir__',
'__doc__',
'__eq__',
'__format__',
'__ge__',
'__getattribute__',
'__getitem__',
'__gt__',
'__hash__',
'__iadd__',
'__imul__',
'__init__',
'__init_subclass__',
'__iter__',
'__le__',
'__len__',
'__lt__',
'__mul__',
'__ne__',
'__new__',
'__reduce__',
'__reduce_ex__',
'__repr__',
'__reversed__',
'__rmul__',
'__setattr__',
'__setitem__',
'__sizeof__',
'__str__',
'__subclasshook__',
'append',

(continues on next page)

3.20. One-Liners 52

Python Tips, Release 0.1

(continued from previous page)

'clear',
'copy',
'count',
'extend',
'index',
'insert',
'pop',
'remove',
'reverse',
'sort']

This is more effective on nested dict s. Moreover, if you want to pretty print json
quickly from a file then you can simply do:

cat file.json | python -m json.tool

Profiling a script

This can be extremely helpful in pinpointing the bottlenecks in your scripts:

python -m cProfile my_script.py

Note: cProfile is a faster implementation of profile as it is written in c

CSV to json

Run this in the terminal:

python -c "import csv,json;print json.dumps(list(csv.reader(open('csv_file.csv
↪→'))))"

Make sure that you replace csv_file.csv to the relevant file name.

List Flattening

You can quickly and easily flatten a list using itertools.chain.from_iterable from
the itertools package. Here is a simple example:

a_list = [[1, 2], [3, 4], [5, 6]]
print(list(itertools.chain.from_iterable(a_list)))
Output: [1, 2, 3, 4, 5, 6]

or
print(list(itertools.chain(*a_list)))
Output: [1, 2, 3, 4, 5, 6]

One-Line Constructors

Avoid a lot of boilerplate assignments when initializing a class

3.20. One-Liners 53

Python Tips, Release 0.1

class A(object):
def __init__(self, a, b, c, d, e, f):

self.__dict__.update({k: v for k, v in locals().items() if k != 'self'})

Additional one-liners can be found on the Python website.

3.21 for/else

Loops are an integral part of any language. Likewise for loops are an important part
of Python. However there are a few things which most beginners do not know about
them. We will discuss a few of them one-by-one.

Let’s first start off with what we know. We know that we can use for loops like this:

fruits = ['apple', 'banana', 'mango']
for fruit in fruits:

print(fruit.capitalize())

Output: Apple
Banana
Mango

That is the very basic structure of a for loop. Now let’s move on to some of the lesser
known features of for loops in Python.

3.21.1 else Clause

for loops also have an else clause which most of us are unfamiliar with. The else
clause executes after the loop completes normally. This means that the loop did not
encounter a break statement. They are really useful once you understand where to use
them. I, myself, came to know about them a lot later.

The common construct is to run a loop and search for an item. If the item is found, we
break out of the loop using the break statement. There are two scenarios in which the
loop may end. The first one is when the item is found and break is encountered. The
second scenario is that the loop ends without encountering a break statement. Now
we may want to know which one of these is the reason for a loop’s completion. One
method is to set a flag and then check it once the loop ends. Another is to use the else
clause.

This is the basic structure of a for/else loop:

for item in container:
if search_something(item):

Found it!
process(item)
break

(continues on next page)

3.21. for/else 54

Python Tips, Release 0.1

(continued from previous page)

else:
Didn't find anything..
not_found_in_container()

Consider this simple example which I took from the official documentation:

for n in range(2, 10):
for x in range(2, n):

if n % x == 0:
print(n, 'equals', x, '*', n/x)
break

It finds factors for numbers between 2 to 10. Now for the fun part. We can add an ad-
ditional else block which catches the numbers which have no factors and are therefore
prime numbers:

for n in range(2, 10):
for x in range(2, n):

if n % x == 0:
print(n, 'equals', x, '*', n/x)
break

else:
loop fell through without finding a factor
print(n, 'is a prime number')

3.22 Python C extensions

An interesting feature offered to developers by the CPython implementation is the
ease of interfacing C code to Python.

There are three key methods developers use to call C functions from their python
code - ctypes, SWIG and Python/C API. Each method comes with its own merits and
demerits.

Firstly, why would you want to interface C with Python?

A few common reasons are :

• You want speed and you know C is about 50x faster than Python.

• Certain legacy C libraries work just as well as you want them to, so you don’t
want to rewrite them in python.

• Certain low level resource access - from memory to file interfaces.

• Just because you want to.

3.22. Python C extensions 55

Python Tips, Release 0.1

3.22.1 CTypes

The Python ctypes module is probably the easiest way to call C functions from Python.
The ctypes module provides C compatible data types and functions to load DLLs so
that calls can be made to C shared libraries without having to modify them. The fact
that the C side needn’t be touched adds to the simplicity of this method.

Example

Simple C code to add two numbers, save it as add.c

//sample C file to add 2 numbers - int and floats

int add_int(int, int);
float add_float(float, float);

int add_int(int num1, int num2){
return num1 + num2;

}

float add_float(float num1, float num2){
return num1 + num2;

}

Next compile the C file to a .so file (DLL in windows) This will generate an adder.so
file.

#For Linux
$ gcc -shared -Wl,-soname,adder -o adder.so -fPIC add.c

#For Mac
$ gcc -shared -Wl,-install_name,adder.so -o adder.so -fPIC add.c

Now in your python code -

from ctypes import *

#load the shared object file
adder = CDLL('./adder.so')

#Find sum of integers
res_int = adder.add_int(4,5)
print "Sum of 4 and 5 = " + str(res_int)

#Find sum of floats
a = c_float(5.5)
b = c_float(4.1)

add_float = adder.add_float
add_float.restype = c_float
print "Sum of 5.5 and 4.1 = ", str(add_float(a, b))

3.22. Python C extensions 56

Python Tips, Release 0.1

And the output is as follows

Sum of 4 and 5 = 9
Sum of 5.5 and 4.1 = 9.60000038147

In this example the C file is self explanatory - it contains two functions, one to add two
integers and another to add two floats.

In the python file, first the ctypes module is imported. Then the CDLL function of the
ctypes module is used to load the shared lib file we created. The functions defined
in the C lib are now available to us via the adder variable. When adder.add_int() is
called, internally a call is made to the add_int C function. The ctypes interface allows
us to use native python integers and strings by default while calling the C functions.

For other types such as boolean or float, we have to use the correct ctypes. This is
seen while passing parameters to the adder.add_float(). We first create the required
c_float types from python decimal values, and then use them as arguments to the C
code. This method is simple and clean, but limited. For example it’s not possible to
manipulate objects on the C side.

3.22.2 SWIG

Simplified Wrapper and Interface Generator, or SWIG for short is another way to inter-
face C code to Python. In this method, the developer must develop an extra interface
file which is an input to SWIG (the command line utility).

Python developers generally don’t use this method, because it is in most cases unnec-
essarily complex. This is a great method when you have a C/C++ code base, and you
want to interface it to many different languages.

Example (from the SWIG website)

The C code, example.c that has a variety of functions and variables

#include <time.h>
double My_variable = 3.0;

int fact(int n) {
if (n <= 1) return 1;
else return n*fact(n-1);

}

int my_mod(int x, int y) {
return (x%y);

}

char *get_time()
{

time_t ltime;
time(<ime);

(continues on next page)

3.22. Python C extensions 57

Python Tips, Release 0.1

(continued from previous page)

return ctime(<ime);
}

The interface file - this will remain the same irrespective of the language you want to
port your C code to :

/* example.i */
%module example
%{
/* Put header files here or function declarations like below */
extern double My_variable;
extern int fact(int n);
extern int my_mod(int x, int y);
extern char *get_time();
%}

extern double My_variable;
extern int fact(int n);
extern int my_mod(int x, int y);
extern char *get_time();

And now to compile it

unix % swig -python example.i
unix % gcc -c example.c example_wrap.c \

-I/usr/local/include/python2.1
unix % ld -shared example.o example_wrap.o -o _example.so

Finally, the Python output

>>> import example
>>> example.fact(5)
120
>>> example.my_mod(7,3)
1
>>> example.get_time()
'Sun Feb 11 23:01:07 1996'
>>>

As we can see, SWIG achieves the same result, but requires a slightly more involved
effort. But it’s worth it if you are targeting multiple languages.

3.22.3 Python/C API

The C/Python API is probably the most widely used method - not for its simplicity
but for the fact that you can manipulate python objects in your C code.

This method requires your C code to be specifically written for interfacing with Python
code. All Python objects are represented as a PyObject struct and the Python.h header

3.22. Python C extensions 58

Python Tips, Release 0.1

file provides various functions to manipulate it. For example if the PyObject is also a
PyListType (basically a list), then we can use the PyList_Size() function on the struct
to get the length of the list. This is equivalent to calling len(list) in python. Most of
the basic functions/opertions that are there for native Python objects are made avail-
able in C via the Python.h header.

Example

To write a C extension that adds all the elements in a python list. (all elements are
numbers)

Let’s start with the final interface we’d like to have, here is the python file that uses
the C extension :

#Though it looks like an ordinary python import, the addList module is␣
↪→implemented in C
import addList

l = [1,2,3,4,5]
print "Sum of List - " + str(l) + " = " + str(addList.add(l))

The above looks like any ordinary python file, which imports and uses another python
module called addList. The only difference is that the addList module is not written
in Python at all, but rather in C.

Next we’ll have a look at the C code that get’s built into the addList Python module.
This may seem a bit daunting at first, but once you understand the various compo-
nents that go into writing the C file, it’s pretty straightforward.

adder.c

//Python.h has all the required function definitions to manipulate the Python␣
↪→objects
#include <Python.h>

//This is the function that is called from your python code
static PyObject* addList_add(PyObject* self, PyObject* args){

PyObject * listObj;

//The input arguments come as a tuple, we parse the args to get the various␣
↪→variables
//In this case it's only one list variable, which will now be referenced by␣

↪→listObj
if (! PyArg_ParseTuple(args, "O", &listObj))

return NULL;

//length of the list
long length = PyList_Size(listObj);

//iterate over all the elements
long i, sum =0;

(continues on next page)

3.22. Python C extensions 59

Python Tips, Release 0.1

(continued from previous page)

for(i = 0; i < length; i++){
//get an element out of the list - the element is also a python objects
PyObject* temp = PyList_GetItem(listObj, i);
//we know that object represents an integer - so convert it into C long
long elem = PyInt_AsLong(temp);
sum += elem;

}

//value returned back to python code - another python object
//build value here converts the C long to a python integer
return Py_BuildValue("i", sum);

}

//This is the docstring that corresponds to our 'add' function.
static char addList_docs[] =

"add(): add all elements of the list\n";

/* This table contains the relavent info mapping -
<function-name in python module>, <actual-function>,
<type-of-args the function expects>, <docstring associated with the function>

*/
static PyMethodDef addList_funcs[] = {

{"add", (PyCFunction)addList_add, METH_VARARGS, addList_docs},
{NULL, NULL, 0, NULL}

};

/*
addList is the module name, and this is the initialization block of the module.
<desired module name>, <the-info-table>, <module's-docstring>
*/
PyMODINIT_FUNC initaddList(void){

Py_InitModule3("addList", addList_funcs,
"Add all ze lists");

}

A step by step explanation :

• The <Python.h> file consists of all the required types (to represent Python object
types) and function definitions (to operate on the python objects).

• Next we write the function which we plan to call from python. Conventionally
the function names are {module-name}_{function-name}, which in this case is
addList_add. More about the function later.

• Then fill in the info table - which contains all the relevant info of the functions
we desire to have in the module. Every row corresponds to a function, with the
last one being a sentinel value (row of null elements).

• Finally the module initialization block which is of the signature PyMODINIT_FUNC
init{module-name}.

3.22. Python C extensions 60

Python Tips, Release 0.1

The function addList_add accepts arguments as a PyObject type struct (args is also a
tuple type - but since everything in python is an object, we use the generic PyObject
notion). The incoming arguments is parsed (basically split the tuple into individual
elements) by PyArg_ParseTuple(). The first parameter is the argument variable to be
parsed. The second argument is a string that tells us how to parse each element in the
args tuple. The character in the Nth position of the string tells us the type of the Nth
element in the args tuple, example - ‘i’ would mean integer, ‘s’ would mean string and
‘O’ would mean a Python object. Next multiple arguments follow, these are where
you would like the PyArg_ParseTuple() function to store all the elements that it has
parsed. The number of such arguments is equal to the number of arguments which
the module function expects to receive, and positional integrity is maintained. For
example if we expected a string, integer and a python list in that order, the function
signature would be

int n;
char *s;
PyObject* list;
PyArg_ParseTuple(args, "siO", &s, &n, &list);

In this case we only have to extract a list object, and store it in the variable listObj.
We then use the PyList_Size() function on our list object and get the length. This is
similar to how you would call len(list) in python.

Now we loop through the list, get each element using the PyList_GetItem(list,
index) function. This returns a PyObject*. But since we know that the Python ob-
jects are also PyIntType, we just use the PyInt_AsLong(PyObj *) function to get the
required value. We do this for every element and finally get the sum.

The sum is converted to a python object and is returned to the Python code with the
help of Py_BuildValue(). Here the “i” indicates that the value we want to build is a
python integer object.

Now we build the C module. Save the following code as setup.py

#build the modules

from distutils.core import setup, Extension

setup(name='addList', version='1.0', \
ext_modules=[Extension('addList', ['adder.c'])])

and run

python setup.py install

This should now build and install the C file into the python module we desire.

After all this hard work, we’ll now test if the module works -

#module that talks to the C code
import addList

(continues on next page)

3.22. Python C extensions 61

Python Tips, Release 0.1

(continued from previous page)

l = [1,2,3,4,5]
print "Sum of List - " + str(l) + " = " + str(addList.add(l))

And here is the output

Sum of List - [1, 2, 3, 4, 5] = 15

So as you can see, we have developed our first successful C Python extension using
the Python.h API. This method does seem complex at first, but once you get used to it
it can prove to be quite useful.

Other ways to interface C code to Python is to use an alternative and faster build of
python - Cython. But Cython is a slightly different language than the main stream
python we see. Hence that method is not covered here.

3.23 open Function

open opens a file. Pretty simple, eh? Most of the time, we see it being used like this:

f = open('photo.jpg', 'r+')
jpgdata = f.read()
f.close()

The reason I am writing this article is that most of the time, I see open used like this.
There are three errors in the above code. Can you spot them all? If not, read on. By the
end of this article, you’ll know what’s wrong in the above code, and, more importantly,
be able to avoid these mistakes in your own code. Let’s start with the basics:

The return value from open is a file handle, given out from the operating system to
your Python application. You will want to return this file handle once you’re finished
with the file, if only so that your application won’t reach the limit of the number of
open file handles it can have at once.

Explicitly calling close closes the file handle, but only if the read was successful. If
there is any error just after f = open(...), f.close() will not be called (depending on
the Python interpreter, the file handle may still be returned, but that’s another story).
To make sure that the file gets closed whether an exception occurs or not, pack it into
a with statement:

with open('photo.jpg', 'r+') as f:
jpgdata = f.read()

The first argument of open is the filename. The second one (the mode) determines how
the file gets opened.

• If you want to read the file, pass in r

• If you want to read and write the file, pass in r+

3.23. open Function 62

Python Tips, Release 0.1

• If you want to overwrite the file, pass in w

• If you want to append to the file, pass in a

While there are a couple of other valid mode strings, chances are you won’t ever use
them. The mode matters not only because it changes the behavior, but also because it
may result in permission errors. For example, if we were to open a jpg-file in a write-
protected directory, open(.., 'r+') would fail. The mode can contain one further
character; we can open the file in binary (you’ll get a string of bytes) or text mode (a
string of characters).

In general, if the format is written by humans, it tends to be text mode. jpg image files
are not generally written by humans (and are indeed not readable by humans), and
you should therefore open them in binary mode by adding a b to the mode string (if
you’re following the opening example, the correct mode would be rb). If you open
something in text mode (i.e. add a t, or nothing apart from r/r+/w/a), you must also
know which encoding to use. For a computer, all files are just bytes, not characters.

Unfortunately, open does not allow explicit encoding specification in Python 2.x. How-
ever, the function io.open is available in both Python 2.x and 3.x (where it is an alias
of open), and does the right thing. You can pass in the encoding with the encoding
keyword. If you don’t pass in any encoding, a system – and Python – specific default
will be picked. You may be tempted to rely on these defaults, but the defaults are
often wrong, or the default encoding cannot actually express all characters in the file
(this will happen often on Python 2.x and/or Windows). So go ahead and pick an en-
coding. Encoding is the way to instruct computers about how the numbers should be
stored as bytes in memory. utf-8 is a terrific one and is supported by major browsers
and programming languages. When you write a file, you can just pick the encoding to
your liking (or the liking of the program that will eventually read your file).

How do you find out which encoding a file you’re reading was written in? Well, unfor-
tunately, there is no foolproof way to detect the encoding - the same bytes can repre-
sent different, but equally valid characters in different encodings. Therefore, you must
rely on metadata (for example, in HTTP headers) to know the encoding. Increasingly,
formats just define the encoding to be UTF-8.

Armed with this knowledge, let’s write a program that reads a file, determines
whether it’s JPG (hint: These files start with the bytes FF D8), and writes a text file
that describe the input file.

import io

with open('photo.jpg', 'rb') as inf:
jpgdata = inf.read()

if jpgdata.startswith(b'\xff\xd8'):
text = u'This is a JPEG file (%d bytes long)\n'

else:
text = u'This is a random file (%d bytes long)\n'

with io.open('summary.txt', 'w', encoding='utf-8') as outf:
outf.write(text % len(jpgdata))

3.23. open Function 63

Python Tips, Release 0.1

I am sure that now you will use open correctly!

3.24 Targeting Python 2+3

In a lot of cases you might want to develop programs which can be run in both Python
2+ and 3+.

Just imagine that you have a very popular Python module which is used by hundreds
of people but not all of them have the same version of Python (2 or 3). In that case
you have two choices. The first one is to distribute 2 modules, one for Python 2 and
the other for Python 3. The other choice is to modify your current code and make it
compatible with both Python 2 and 3.

In this section I am going to highlight some of the tricks which you can employ to
make a script compatible with both of them.

Future imports

The first and most important method is to use __future__ imports. It allows you to
import Python 3 functionality in Python 2. Here are a couple examples:

Context managers were new in Python 2.6+. For using them in Python 2.5 you can
use:

from __future__ import with_statement

print was changed to a function in Python 3. If you want to use it in Python 2 you can
import it from __future__:

print
Output:

from __future__ import print_function
print(print)
Output: <built-in function print>

Dealing with module renaming

First, tell me how you import packages in your script ? Most of us do this :

import foo
or
from foo import bar

Do you know that you can do something like this as well?

import foo as foo

I know its function is the same as the above listed code but it is vital for making your
script compatible with Python 2 and 3. Now examine the code below :

3.24. Targeting Python 2+3 64

Python Tips, Release 0.1

try:
import urllib.request as urllib_request # for Python 3

except ImportError:
import urllib2 as urllib_request # for Python 2

So let me explain the above code a little. We are wrapping our importing code in a
try/except clause. We are doing it because in Python 2 there is no urllib.request
module so this would result in an ImportError. The functionality of urllib.request
is provided by the urllib2 module in Python 2. So, when using Python 2, we try to
import urllib.request and if we get an ImportError then we tell Python to import
urllib2 instead.

The final thing you need to know about is the as keyword. It is mapping the imported
module to urllib_request. So that all of the classes and methods within urllib2 are
available to us via the alias urllib_request.

Obsolete Python 2 builtins

Another thing to keep in mind is that there are 12 Python 2 builtins which have been
removed from Python 3. Make sure that you don’t use them in Python 2 in order to
make your code compatible with Python 3. Here is a way to enforce that you abandon
these 12 builtins in Python 2 as well:

from future.builtins.disabled import *

Now whenever you try to use the modules which are abandoned in Python 3, it raises
a NameError like this:

from future.builtins.disabled import *

apply()
Output: NameError: obsolete Python 2 builtin apply is disabled

External standard-library backports

There are a few packages in the wild which provide Python 3 functionality in Python
2. For instance, we have:

• enum pip install enum34

• singledispatch pip install singledispatch

• pathlib pip install pathlib

For further reading, the Python documentation has a comprehensive guide of steps
you need to take to make your code compatible with both Python 2 and 3.

3.25 Coroutines

Coroutines are similar to generators with a few differences. The main differences are:

3.25. Coroutines 65

Python Tips, Release 0.1

• generators are data producers

• coroutines are data consumers

First of all let’s review the generator creation process. We can make generators like
this:

def fib():
a, b = 0, 1
while True:

yield a
a, b = b, a+b

We then commonly use it in a for loop like this:

for i in fib():
print(i)

It is fast and does not put a lot of pressure on memory because it generates the values
on the fly rather than storing them in a list. Now, if we use yield in the above example,
more generally, we get a coroutine. Coroutines consume values which are sent to it. A
very basic example would be a grep alternative in Python:

def grep(pattern):
print("Searching for", pattern)
while True:

line = (yield)
if pattern in line:

print(line)

Wait! What does yield return? Well we have turned it into a coroutine. It does not
contain any value initially, instead we supply it values externally. We supply values
by using the .send() method. Here is an example:

search = grep('coroutine')
next(search)
Output: Searching for coroutine
search.send("I love you")
search.send("Don't you love me?")
search.send("I love coroutines instead!")
Output: I love coroutines instead!

The sent values are accessed by yield. Why did we run next()? It is required in or-
der to start the coroutine. Just like generators, coroutines do not start the function
immediately. Instead they run it in response to the __next__() and .send() meth-
ods. Therefore, you have to run next() so that the execution advances to the yield
expression.

We can close a coroutine by calling the .close() method:

3.25. Coroutines 66

Python Tips, Release 0.1

search = grep('coroutine')
...
search.close()

There is a lot more to coroutines. I suggest you check out this awesome presentation
by David Beazley.

3.26 Function caching

Function caching allows us to cache the return values of a function depending on the
arguments. It can save time when an I/O bound function is periodically called with
the same arguments. Before Python 3.2 we had to write a custom implementation.
In Python 3.2+ there is an lru_cache decorator which allows us to quickly cache and
uncache the return values of a function.

Let’s see how we can use it in Python 3.2+ and the versions before it.

3.26.1 Python 3.2+

Let’s implement a Fibonacci calculator and use lru_cache.

from functools import lru_cache

@lru_cache(maxsize=32)
def fib(n):

if n < 2:
return n

return fib(n-1) + fib(n-2)

>>> print([fib(n) for n in range(10)])
Output: [0, 1, 1, 2, 3, 5, 8, 13, 21, 34]

The maxsize argument tells lru_cache about how many recent return values to cache.

We can easily uncache the return values as well by using:

fib.cache_clear()

3.26.2 Python 2+

There are a couple of ways to achieve the same effect. You can create any type of
caching mechanism. It entirely depends upon your needs. Here is a generic cache:

from functools import wraps

(continues on next page)

3.26. Function caching 67

Python Tips, Release 0.1

(continued from previous page)

def memoize(function):
memo = {}
@wraps(function)
def wrapper(*args):

try:
return memo[args]

except KeyError:
rv = function(*args)
memo[args] = rv
return rv

return wrapper

@memoize
def fibonacci(n):

if n < 2: return n
return fibonacci(n - 1) + fibonacci(n - 2)

fibonacci(25)

Note: memoize won’t cache unhashable types (dict, lists, etc. . .) but only the im-
mutable types. Keep that in mind when using it.

Here is a fine article by Caktus Group in which they caught a bug in Django which
occurred due to lru_cache. It’s an interesting read. Do check it out.

3.27 Context Managers

Context managers allow you to allocate and release resources precisely when you want
to. The most widely used example of context managers is the with statement. Suppose
you have two related operations which you’d like to execute as a pair, with a block of
code in between. Context managers allow you to do specifically that. For example:

with open('some_file', 'w') as opened_file:
opened_file.write('Hola!')

The above code opens the file, writes some data to it and then closes it. If an error
occurs while writing the data to the file, it tries to close it. The above code is equivalent
to:

file = open('some_file', 'w')
try:

file.write('Hola!')
finally:

file.close()

While comparing it to the first example we can see that a lot of boilerplate code is
eliminated just by using with. The main advantage of using a with statement is that it
makes sure our file is closed without paying attention to how the nested block exits.

3.27. Context Managers 68

Python Tips, Release 0.1

A common use case of context managers is locking and unlocking resources and clos-
ing opened files (as I have already shown you).

Let’s see how we can implement our own Context Manager. This should allow us to
understand exactly what’s going on behind the scenes.

3.27.1 Implementing a Context Manager as a Class:

At the very least a context manager has an __enter__ and __exit__ method defined.
Let’s make our own file-opening Context Manager and learn the basics.

class File(object):
def __init__(self, file_name, method):

self.file_obj = open(file_name, method)
def __enter__(self):

return self.file_obj
def __exit__(self, type, value, traceback):

self.file_obj.close()

Just by defining __enter__ and __exit__ methods we can use our new class in a with
statement. Let’s try:

with File('demo.txt', 'w') as opened_file:
opened_file.write('Hola!')

Our __exit__ method accepts three arguments. They are required by every __exit__
method which is a part of a Context Manager class. Let’s talk about what happens
under-the-hood.

1. The with statement stores the __exit__ method of the File class.

2. It calls the __enter__ method of the File class.

3. The __enter__ method opens the file and returns it.

4. The opened file handle is passed to opened_file.

5. We write to the file using .write().

6. The with statement calls the stored __exit__ method.

7. The __exit__ method closes the file.

3.27.2 Handling Exceptions

We did not talk about the type, value and traceback arguments of the __exit__
method. Between the 4th and 6th step, if an exception occurs, Python passes the type,
value and traceback of the exception to the __exit__ method. It allows the __exit__
method to decide how to close the file and if any further steps are required. In our
case we are not paying any attention to them.

3.27. Context Managers 69

Python Tips, Release 0.1

What if our file object raises an exception? We might be trying to access a method on
the file object which it does not supports. For instance:

with File('demo.txt', 'w') as opened_file:
opened_file.undefined_function('Hola!')

Let’s list the steps which are taken by the with statement when an error is encountered:

1. It passes the type, value and traceback of the error to the __exit__ method.

2. It allows the __exit__ method to handle the exception.

3. If __exit__ returns True then the exception was gracefully handled.

4. If anything other than True is returned by the __exit__ method then the excep-
tion is raised by the with statement.

In our case the __exit__ method returns None (when no return statement is encoun-
tered then the method returns None). Therefore, the with statement raises the excep-
tion:

Traceback (most recent call last):
File "<stdin>", line 2, in <module>

AttributeError: 'file' object has no attribute 'undefined_function'

Let’s try handling the exception in the __exit__ method:

class File(object):
def __init__(self, file_name, method):

self.file_obj = open(file_name, method)
def __enter__(self):

return self.file_obj
def __exit__(self, type, value, traceback):

print("Exception has been handled")
self.file_obj.close()
return True

with File('demo.txt', 'w') as opened_file:
opened_file.undefined_function()

Output: Exception has been handled

Our __exit__ method returned True, therefore no exception was raised by the with
statement.

This is not the only way to implement Context Managers. There is another way and
we will be looking at it in the next section.

3.27.3 Implementing a Context Manager as a Generator

We can also implement Context Managers using decorators and generators. Python
has a contextlib module for this very purpose. Instead of a class, we can implement a

3.27. Context Managers 70

Python Tips, Release 0.1

Context Manager using a generator function. Let’s see a basic, useless example:

from contextlib import contextmanager

@contextmanager
def open_file(name):

f = open(name, 'w')
try:

yield f
finally:

f.close()

Okay! This way of implementing Context Managers appear to be more intuitive and
easy. However, this method requires some knowledge about generators, yield and
decorators. In this example we have not caught any exceptions which might occur. It
works in mostly the same way as the previous method.

Let’s dissect this method a little.

1. Python encounters the yield keyword. Due to this it creates a generator instead
of a normal function.

2. Due to the decoration, contextmanager is called with the function name
(open_file) as its argument.

3. The contextmanager decorator returns the generator wrapped by the
GeneratorContextManager object.

4. The GeneratorContextManager is assigned to the open_file function. There-
fore, when we later call the open_file function, we are actually calling the
GeneratorContextManager object.

So now that we know all this, we can use the newly generated Context Manager like
this:

with open_file('some_file') as f:
f.write('hola!')

3.27. Context Managers 71

	Preface
	Author
	Table of Contents
	*args and **kwargs
	Debugging
	Generators
	Map, Filter and Reduce
	set Data Structure
	Ternary Operators
	Decorators
	Global & Return
	Mutation
	__slots__ Magic
	Virtual Environment
	Collections
	Enumerate
	Zip and unzip
	Object introspection
	Comprehensions
	Exceptions
	Classes
	Lambdas
	One-Liners
	for/else
	Python C extensions
	open Function
	Targeting Python 2+3
	Coroutines
	Function caching
	Context Managers

