

1

Index

Introduction .. 4

JavaScript Tips ... 5

Use proper variable names ... 7

Be careful with comparison using the loose equality

operator .. 8

Check property exists in an object 9

Conditionally add a property to an object 10

Use includes to check for multiple criteria 11

Remove duplicates from an array using Set 12

Use spread operator to shallow copy arrays and

objects .. 13

Avoid delete keyword ... 14

Use Array.isArray to determine the array 15

Use of falsy bouncer ... 16

Use Array.some to check occurrence in array 17

Readable numbers .. 18

Pass function arguments as an object 19

Object destructuring on arrays 21

Skip values in array destructuring 22

Format the output of JSON.stringify 23

Filter with JSON.stringify .. 24

2

Power of JSON.stringify replacer parameter 25

Don’t extend built-ins ... 26

Use of optional chaining on function call 27

Convert to a flat array using Array.flat 28

Use console.time to debug performance 29

Logging using console.group 30

Conditional log message using console.assert 31

Display tabular data using console.table 32

Default assignment for required arguments of the

function ... 33

Avoid default exports ... 34

Use of object destructuring 35

Lock an object using the Object.freeze 36

Understanding of closures .. 37

Smooth scroll to a specific element 38

Use Object.entries to access key and value 39

Use of nullish coalescing operator with numbers 40

Use semicolons manually to avoid issues generated

by ASI .. 41

Use of template literals with expressions and function

call ... 42

Use of template literals with variable substitutions

and multiline string ... 43

3

Get an array of keys using Object.keys 44

Ways of a function declaration 45

Use of increment (++) and decrement (--) 46

Property renaming in object destructuring 47

Object nested destructuring 48

Use id to find a single element 49

Use let instead of var for blocked statement 50

Use of default parameters .. 51

Add dynamic property to an object 52

Use curly brackets ({}) instead of new Object() 53

Use square brackets ([]) instead of new Array() 54

Declare common variables outside of the loop 55

Create an object from key-value pairs using

Object.fromEntries ... 56

Tests every element of the array using Array.every . 57

Read property using optional chaining (?.) 58

Easy way to swap two variables 59

Improve variable logging using console.log 60

Mask numbers using slice and padStart 61

String to a number using the plus (+) operator 62

5

JavaScript Tips

JavaScript is one of the most popular scripting or

programming language.

In 1995, Brendan Eich from Netscape designed and

implemented a new language for the Netscape

Navigator browser. It was initially named Mocha, then

LiveScript, and finally JavaScript.

JavaScript is everywhere.

• More than 94% of websites use JavaScript.

• JavaScript completes its ninth year in a row as the

most commonly used programming language.

(2021 StackOverflow developer survey)

I have used the following two images in some code

snippets with different meanings in different examples.

Image Meaning

Code is okay
Can improve code
Incorrect way

6

Better code
Improved code
Correct way

7

Use proper variable names

• Use the specific naming convention. Mostly used

camel-case naming convention.

• The variable name should be concise and

descriptive.

• It should explain the purpose.

• It is easy to pronounce.

8

Be careful with comparison using the loose

equality operator

Loose Equality Operator (== OR !=) performs the

automatic type conversion before comparison if

needed.

Like in the above example, you can get unexpected

output with Loose Equality Operator.

9

Check property exists in an object

The in operator returns the boolean value true/false.

The in operator returns true if a property exists in the

object or its prototype chain.

10

Conditionally add a property to an object

Use spread operator (...) to spread an object into

another object conditionally.

Use condition with && operator to add a new property

to an object. It will add a property to an object if the

condition match.

11

Use includes to check for multiple criteria

The includes() method determines whether an array

includes a certain value among its entries. It returns

true if a value exists, otherwise, it returns false.

Instead of extending the statement with more || (OR)

conditions, rewrite the conditional by using the

includes method.

More readable and concise alternative.

12

Remove duplicates from an array using Set

Set is a new data object introduced in ES6. The Set only

lets you store unique values of any type. When you

pass an array to a new Set(array), it will remove

duplicate values.

The spread syntax (...) is used to include all the items

of the Set to a new array.

13

Use spread operator to shallow copy arrays

and objects

Use the spread operator (...) to create a shallow copy

of the object and array.

The spread operator (...) allows us to make copies of

the original data (whether it is an array or object) and

create a new copy of it.

It is an easy and clean way.

14

Avoid delete keyword

Avoid a delete keyword to remove a property from an

object. This way mutates the original object and hence

leads to unpredictable behavior and makes debugging

difficult.

A better way to delete a property without mutating the

original object is by using the rest operator (...). Use

the rest operator (...) to create a new copy without the

given property name.

15

Use Array.isArray to determine the array

The Array.isArray() method determines if the given argument is an

Array or not.

• Returns true if the value is Array.

• Returns false if the value is not Array.

16

Use of falsy bouncer

A falsy value is a value that is considered false when

examined as a Boolean.

Falsy Bouncer means removing all falsy values from an

array.

Falsy values in JavaScript are false, null, 0, undefined,

NaN, and "" (empty string).

Pass the Boolean to Array.filter as the first argument

and it will serve as a falsy bouncer.

17

Use Array.some to check occurrence in array

If we want to check only occurrence means value exist

or not then use Array.some instead of Array.find.

The some() method checks if any array items pass a

test implemented by the provided function. If the

function returns true, some() returns true and stops.

The some() method does not change the original array.

18

Readable numbers

When working with large numbers it can be hard to

read them out.

The Numeric Separators allow us to use underscore (_)

as a separator in numeric literals, for example, you can

write 50000 as 50_000.

This feature improves readability.

19

Pass function arguments as an object

Parameters are part of a function definition. A

JavaScript function can have any number of

parameters. When we invoke a function and pass some

values to that function, these values are called function

arguments.

If a function has more than 1 parameter, it is hard to

figure out what these arguments mean when the

function is called. When you pass the arguments, the

order is important.

A better way is to create a function with object (with

properties) parameters like in the example. When we

pass the argument contained in an object it is pretty

20

much clear from the names of the properties. Also, the

order of properties doesn’t matter anymore.

21

Object destructuring on arrays

The destructuring assignment provides a clean way to

extract values from arrays and objects. Array

destructuring is a way that allows us to extract an

array’s value into new variables.

Each item in the array has an index. The property name

corresponds to the index of the item that returns the

value like in the example.

It is an easy way to get a specific item from an array in

a single line of code.

22

Skip values in array destructuring

Destructuring means breaking down a complex

structure into simpler parts.

Array destructuring is a way that allows us to extract

an array’s value into new variables. Sometimes we

don't need some values from the array means we want

to skip those values. During the destructuring arrays, if

you want to skip some values, use an empty

placeholder comma.

This is a clean way to skip values.

23

Format the output of JSON.stringify

The JSON.stringify() method converts a JavaScript

object to a JSON string.

The 3rd parameter to JSON.stringify() is called spacer.

You can pass String or Number value to insert

whitespace in the returned string.

If the 3rd parameter is a Number, it indicates the

number of spaces for indenting purposes.

If the 3rd parameter is a String, the string is used as

whitespace.

24

Filter with JSON.stringify

The JSON.stringify() method converts a JavaScript

object to a JSON string.

The 2nd parameter to JSON.stringify() is a replacer or

filter that can be a function or an array.

When 2nd parameter is passed as an array, it works as

a filter and includes only those properties in the JSON

string which are defined in an array.

25

Power of JSON.stringify replacer parameter

The JSON.stringify() method converts a JavaScript

object to a JSON string.

The 2nd parameter to JSON.stringify() is a replacer or

filter that can be a function or array.

When 2nd parameter is passed as a replacer function,

it alters the behavior of the stringification process. As a

function, it takes two parameters, the key and the

value being stringified.

26

Don’t extend built-ins

Extending built-in Objects/types or Array is not a good

practice in JavaScript.

A better way is to create your own utility library and

use it.

27

Use of optional chaining on function call

The optional chaining operator (?.) is a safe and

concise way to access properties that are potentially

null or undefined.

The chaining operator (.) throws an error if a reference

is null or undefined.

The optional chaining operator (?.) will return

undefined if a reference is null or undefined.

Just like with properties, we can use the optional

chaining operator with methods also.

Less code and clean way.

28

Convert to a flat array using Array.flat

Flattening an array is the process of reducing the

number of dimensions of an array to a lower number.

The flat() method creates a new array with all items of

subarray concatenated into it recursively up to the

specified depth.

29

Use console.time to debug performance

The console object has time() and timeEnd() methods.

These two methods help us to analyze the

performance of our code.

The console.time() method starts a timer to track how

long an operation takes. You can give each timer a

unique name. When you call console.timeEnd() with

the same name, the browser will output the time in

milliseconds.

30

Logging using console.group

The console object has group() and groupEnd()

methods.

The console.group() method starts a new inline group

in the web console log. This method takes an optional

argument label.

The console.groupEnd() method ends the group.

It organizes your messages and improves visibility.

31

Conditional log message using console.assert

The console object has an assert() method which helps

to log an error message conditionally.

The console.assert() method writes an error message

to the console if the assertion is false. If the assertion is

true, nothing happens.

32

Display tabular data using console.table

The console object has a table() method which allows

you to display arrays and objects to the console in

tabular form.

The console.table() method provides better data

visualization.

33

Default assignment for required arguments of

the function

You can use default parameters to make the function

arguments required.

If you don't provide the parameter, it will default to the

function which throws an error.

Note that null is considered a value, so passing null will

not result in a default assignment.

34

Avoid default exports

Problems with default exports are:

• Discoverability is very poor for default exports.

• Difficult to analyze by automated tools or provide

code autocompletion.

• Horrible experience for CommonJS.

• TypeScript auto-import struggles.

• Default exports make large-scale refactoring

impossible.

35

Use of object destructuring

Object destructuring provides a unique way to neatly

extract an object’s value into new variables.

To assign values to variables, declare the variables in

curly brackets and assign the object like in code

snippet.

To destructure into existing variables must surround

the variables with parentheses.

36

Lock an object using the Object.freeze

The Object.freeze() method freezes an object. A frozen

object can no longer be changed.

This method prevents new properties from being

added and modification of existing properties.

37

Understanding of closures

A closure is a mechanism that allows the inner function

to remember the outer scope variables when it was

defined, even after the outer function has returned.

The closure has three scope chains:

• It can access its own scope means variables

defined between its curly brackets ({ }).

• It can access the outer function’s variables.

• It can access the global variables.

38

Smooth scroll to a specific element

The Element.scrollIntoView() method scrolls the

specified element into the viewing portion of the

window.

It provides the behavior option for smooth scrolling.

39

Use Object.entries to access key and value

The Object.entries() method is used to return an array

of a given object's own enumerable property [key,

value] pairs.

The order of the properties is the same as in an object.

40

Use of nullish coalescing operator with

numbers

A Nullish value is a value that is either null or undefined.

The Nullish Coalescing Operator (??) is a logical operator that

accepts two values and returns the second value if the first one is

null or undefined and otherwise returns the first value.

41

Use semicolons manually to avoid issues

generated by ASI

ASI stands for Automatic Semicolon Insertion.

In JavaScript, semicolons are optional. JavaScript

Engine automatically inserts a semicolon, where it is

required.

If the code is not formatted correctly like in the above

example, JavaScript Engine will add a semicolon to the

end of the return statement and consider that no value

is returned. So, it returns as undefined.

You should not depend on the ASI. If ASI fails and you

are missing semicolons, the code will fail.

42

Use of template literals with expressions and

function call

Template Literals use back-ticks (``) instead of single

('') or double ("") quotes.

Template literals provide an easy way to interpolate

variables and expressions into strings.

Template literals allow expressions and functions in

strings.

Using template literal means not only less code but

higher readability also.

43

Use of template literals with variable

substitutions and multiline string

Template Literals use back-ticks (``) instead of single

('') or double ("") quotes.

Template literals provide an easy way to interpolate

variables and expressions into strings. You can do it

using the ${...} syntax.

Template literals make multiline strings much simpler.

44

Get an array of keys using Object.keys

The Object.keys() returns an array of a given object's

own enumerable property names.

The ordering of the properties is the same as that

when looping over them manually.

45

Ways of a function declaration

Functions are one of the fundamental building blocks

in JavaScript.

Following are the different ways to write functions.

• Function declaration

• Function Expression

• Arrow (=>) function

• Arrow (=>) function without curly braces ({}) – (Use

only for a single statement of code)

46

Use of increment (++) and decrement (--)

The increment operator (++) adds one (+1) to its

operand and returns a value. The increment (++)

operator can be used before or after the operand.

Increment Syntax: i++ or ++i

The decrement operator (--) subtracts one (-1) to its

operand and returns a value. The decrement (--)

operator can be used before or after the operand.

Decrement Syntax: i-- or --i

47

Property renaming in object destructuring

Object destructuring provides a unique way to neatly

extract an object’s value into new variables.

Sometimes an object contains some properties, but

you want to access it and rename it.

When renaming a variable in object destructuring, the

left-hand side will be the original field in the object, and

the right-hand side will be the name you provide to

rename it to.

It is also possible to destructure the same property

multiple times into different variable names like in

code snippet.

48

Object nested destructuring

With destructuring, we can quickly extract properties

or data from objects into separate variables.

You need to give a complete path when you have to

destructure a nested property.

Destructuring an object does not modify the original

object.

49

Use id to find a single element

Never use the same id for multiple elements on the

same HTML page.

The getElementById() method returns an element

object.

The getElementById() method returns null if the

element does not exist.

When you want to access any element, please use

element-id if exists. Access element by id is faster than

class.

50

Use let instead of var for blocked statement

Scope means where these variables are available for use. The var

declarations are globally scoped or function/locally scoped.

Using var is the oldest method of variable declaration in JavaScript. A

variable declared using var is function scoped when it is declared

within a function.

A let variable is scoped to the immediate enclosing block denoted by

curly braces ({ }). You cannot access the let variable outside of its

scope. The above code snippet shows the behavior of var and let

variable.

51

Use of default parameters

Default function parameters allow named parameters

to be initialized with default values if no value or

undefined is passed.

ES6 provides an easier way to set the default values for

the function parameters. Use the assignment operator

(=) and the default value after the parameter name to

set a default value for that parameter.

52

Add dynamic property to an object

ES6 provides an easy way to create a dynamic property

in an object.

We can simply pass the property name in square

brackets ([]) which we want to make property in the

object.

53

Use curly brackets ({}) instead of new Object()

Objects can be initialized using new Object(),

Object.create(), or using the literal notation.

You can use curly brackets ({}) to declare objects in

JavaScript. Creating a new object this way is called

object literal notation.

The advantage of the literal notation is, that you are

able to quickly create objects with properties inside the

curly brackets ({}). You notate a list of key: value pairs

delimited by commas.

Better and clean way.

54

Use square brackets ([]) instead of new Array()

Arrays can be created using the new Array(), but in the

same way, they can be created using literal notation

also.

You can use square brackets ([]) to declare arrays in

JavaScript. Creating an array this way is called array

literal notation.

The advantage of the array literal notation is, that you

are able to quickly create arrays.

Better and clean way.

55

Declare common variables outside of the loop

Variables that are not going to reassign in the loop

must be declared outside of the loop, otherwise, they

will be created again and assigned the same value

every time.

56

Create an object from key-value pairs using

Object.fromEntries

The Object.fromEntries() method transforms a list of

key-value pairs into an object.

Object.fromEntries() performs the reverse of

Object.entries().

57

Tests every element of the array using

Array.every

The Array every() method checks whether all the array

elements pass the test implemented by the provided

function.

It returns true if the function returns true for all

elements.

It returns false if the function returns false for one

element. When every() finds a false result, it will stop

the loop and continue no more which improves the

performance.

The every() method does not change the original array.

58

Read property using optional chaining (?.)

The optional chaining operator (?.) is a secure way to

read nested object properties, even if an intermediate

property doesn’t exist.

The optional chaining operator (?.) stops the

evaluation if the value before ?. is nullish (undefined or

null) and returns undefined.

It prevents writing boilerplate code.

Less and clean code.

59

Easy way to swap two variables

Use destructuring assignment approach because it is

short and expressive. Swapping is performed in just

one line statement. It works with any data type like

numbers, strings, booleans, or objects.

60

Improve variable logging using console.log

In JavaScript, we use console.log() to log the variables

or messages. Sometimes it is difficult to understand

what variable corresponds to a log in the console when

too many variable logs.

To log the variable, wrap the variable into a pair of

curly brackets {variable-name}.

It will improve readability.

61

Mask numbers using slice and padStart

The slice() method returns selected elements in an

array, as a new array. Negative numbers select from

the end of the array.

The padStart() method pads the current string with

another string until the resulting string reaches the

given length. The padding is applied from the start of

the current string.

Masking is possible with less code.

62

String to a number using the plus (+) operator

The unary plus operator (+) is the fastest and preferred

way of converting something into a number.

