
LEARN VBA
FOR EXCEL -
ONLINE TUTORIAL FOR
BEGINNERS

https://www.automateexcel.com/learn-vba-tutorial/

COURSE CONTENTS

CHAPTER 1
Subs, Sheets, Ranges

And The Basics

Loops

CHAPTER 4

Events
CHAPTER 7

CHAPTER 2

Variables

CHAPTER 5
Advanced cells, rows,
columns and sheets

CHAPTER 8
Application settings -
speed up your code,
improve ui & more

CHAPTER 10
Arrays

CHAPTER 3
Conditional logic:
if and select cases

CHAPTER 6
Message boxes
and input boxes

CHAPTER 9
Advanced

procedures, variables
and functions

Chapter 1: Subs, Sheets, Ranges and the Basics

www.automateexcel.com/learn-vba-tutorial/

CHAPTER
1 2 3 4 5 6 7 8 9 10

This lesson will introduce you to the basics of how VBA interacts with Excel.
Learn how to use VBA to work with ranges, sheets, and workbooks.

CHAPTER 1

SUBS, SHEETS,
RANGES AND
THE BASICS

AutoMacro:VBA Add-in with Hundreds of Ready-To-
Use VBA Code Example & much more!

Learn More

Chapter 1: Subs, Sheets, Ranges and the Basics

www.automateexcel.com/learn-vba-tutorial/

CHAPTER
1 2 3 4 5 6 7 8 9 10

Chapter 1: Subs, Sheets, Ranges and the Basics

Subs

Objects, Properties and Methods

When working with VBA, you need to create procedures to store your code. The most basic
type of procedure is called a “Sub”. To create a new sub procedure, open the VBE and type Sub
HelloWorld and press enter.

1. Create a sub procedure titled “HelloWorld”

You can program VBA to do anything within Excel by referencing the appropriate objects,
properties, and methods.

You have now created a sub titled “HelloWorld”.

You will notice that the VBE completes the setup of the sub for you automatically by adding the
line End Sub. All of your code should go in between the start and the end of the procedure.

Comments
You can add comments anywhere in your code by proceeding the comment with an apostrophe (‘)
‘This is a Comment Comments can be placed on their own line or at the end of a line of code:

row = 5 â€˜Start at Row 5

2. Add a comment line that says: “I’m coding!”

Comments make your code much easier to follow. We recommend developing the habit of
creating section headers to identify what each piece of code does.

Sub Macro1()

End Sub

Sub Macro1()

 ‘I’m coding!

End Sub

Chapter 1: Subs, Sheets, Ranges and the Basics

www.automateexcel.com/learn-vba-tutorial/

CHAPTER
1 2 3 4 5 6 7 8 9 10

Chapter 1: Subs, Sheets, Ranges and the Basics

Objects are items like workbooks, worksheets, cells, shapes, textboxes, or comments. Objects
have properties (ex. values, formats, settings) that you can change. Methods are actions that can
be applied to objects (ex. copy, delete, paste, clear). Let’s look at an example:

Range(“A1”).Font.Size = 11
 Sheets(1).Delete

In the example above:

Objects: Range(“A1”) , Sheets(1)

Properties: Font.Size

Methods: Delete

Note: In the examples above, no sheet name was specified. If no sheet name is specified, VBA will
assume you are referring to the worksheet currently “active” in VBA. We will learn more about this
later.

Range Object

Text & Intro to Variables

Now we will practice assigning properties to the range object. To assign the value of 1 to cell A1
you would type range(“a1”).value = 1

3. Assign the value of 2 to cell A2

When assigning numerical values to cells, simply type the number. However when assigning a
string of text to a cell, you must surround the text with quotations.

Why? Without the quotations VBA thinks you are entering a variable. We will learn about
variables in the next chapter.

4. Assign the value of “string of text” to cell A3

Sub Macro1()

 Range(“A2”).Value = 2

End Sub

Chapter 1: Subs, Sheets, Ranges and the Basics

www.automateexcel.com/learn-vba-tutorial/

CHAPTER
1 2 3 4 5 6 7 8 9 10

Chapter 1: Subs, Sheets, Ranges and the Basics

Anything in VBA that’s surrounded by quotations is considered a string of text. Remember that
when you enter a range, sheet name, or workbook you put the range in quotations (ex “A1”),
which is just a string of text. Instead of explicitly writing the string of text you can use variable(s).

Dim strRng
 strRng = “A1”

 range(strRng).value = 1

is the same as

range(“a1”).value = 1

Here we’ve declared a variable strRng and set it equal to “A1”. Then instead of typing “A1”, we
reference the variable strRng in the range object.

Now you try.

There are two more important details to keep in mind as you work with strings. First, using a set
of quotations that doesn’t contain anything will generate a “blank” value.

 range(“a3”).value = “”

Second, you can use the & operator to combine strings of text:

“string of” & “text”

Sub Macro1()

 Range(“A3”).Value = “E” & “Z”

End Sub

Sub Macro1()

Range(“A3”).Value = “string of text”

End Sub

5. Assign the value of “EZ” to cell A3 by separating “EZ” into 2 strings of text and
combining them.

6. We’ve already declared the variable “Row” and set it equal to 5. Now, using the
variable, set range “A5” = 1.

Chapter 1: Subs, Sheets, Ranges and the Basics

www.automateexcel.com/learn-vba-tutorial/

CHAPTER
1 2 3 4 5 6 7 8 9 10

Named ranges are very useful when working in Excel, but they are absolutely essential to use
when working with VBA. Why? If you add (or delete) rows & columns all of your Excel formulas
will update automatically, but your VBA code will remain unchanged. If you’ve hard-coded a
reference to a specific range in VBA, it may no longer be correct. The only protection against this
is to name your ranges.

We will learn more about variables in a future lesson.

Sub Macro1()

 Range(“drate”).Value = 0.05

End Sub

Sub Macro1()

 Range(“A2:B3”).Value = 5

End Sub

Sub Macro1()
 Dim Row
 Row = 5

 Range(“A” & Row).Value = 1

End Sub

7. Assign the value of .05 to the named range “drate”.

8. Assign the value of 5 to cells A2:B3 . Hint: Enter the range exactly how it would
appear in an Excel formula

Named Ranges

Ranges of Cells

Named Ranges are cells that have been assigned a custom name. To reference a named range,
instead of typing the cell reference (ex. “A1”), type the range name (ex “drate”).

Now instead of assigning a value to a single cell, let’s assign a value to a range of cells with one
line of code.

Chapter 1: Subs, Sheets, Ranges and the Basics

www.automateexcel.com/learn-vba-tutorial/

CHAPTER
1 2 3 4 5 6 7 8 9 10

Chapter 1: Subs, Sheets, Ranges and the Basics

Cell Formulas

Value Property Continued

VBA can assign formulas to cells by using the “formula” property.

Example:range(“c3”).formula = “=1 + 2”

Hint: Remember to surround your formula with quotations and start the formula with an equal sign.

9. Assign the formula of 5*2 to range A2:A3

10. Set cell A2 = B2 using the method you just learned.

The .formula property will assign the same exact formula to each cell in the specified range. If
you are using cell references (ex “A1”), the references will be hard-coded based on what you’ve
entered in quotations. Often times you will want to assign a formula with relative references instead
(ex. Applying a formula to an entire column, where the formula in each row needs to reference
cell(s) from that row). To accomplish this you will want to use the .formulaR1C1 property, which is
discussed in a future lesson.

Important! You can assign a single cell’s value to one or more cells at once:

Range(“a1:a3”).value = range(“b1”).value

But if you want to assign a range of cell values, you must make sure the range sizes are the same
otherwise you will receive an error.

Range(“a1:a3”).value = range(“b1:b3”).value

You can also assign a value to a cell by referring to another cell’s value. Example range(“a1”).value =
range(“b1”).value .

Sub Macro1()

 Range(“A2:A3”).Formula = “=5*2”

End Sub

Sub Macro1()

 Range(“A2”).Value = Range(“B2”).Value

End Sub

Chapter 1: Subs, Sheets, Ranges and the Basics

www.automateexcel.com/learn-vba-tutorial/

CHAPTER
1 2 3 4 5 6 7 8 9 10

There are also many methods that can be applied to ranges. Think of methods as “actions”.
Examples of methods include: .clear, .delete, and .copy. Try applying the .clear method. This will
clear all of the cell’s properties (values, formulas, formats, comments, etc.)

Sub Macro1()

 Range(“A2”).Clear

End Sub

Sub Macro1()

 Range(“A2”).ClearContents

End Sub

12. Clear only the contents of cell A2.

11. Clear cell A2.

Worksheets & Workbooks

Now use the .clearcontents method to only clear the cell’s contents, keeping the cell’s formatting
and all other properties. This is the equivalent of pressing the Delete key.

When you refer to a range without explicitly declaring a worksheet or workbook, VBA will work
with whichever worksheet or workbook is currently active in the procedure. Instead you can
(and should) explicitly tell VBA which worksheets and workbooks (if applicable) to use. See the
examples below.

No WS or WB, will use whatever is active.

range(“a1”).value = 1

No WB, will use whatever is active, but a WS is declared. This is fine if your procedures won’t
reference other workbooks.

Sheets(“Inputs”).range(“a1”).value = 1

Clear Method

Chapter 1: Subs, Sheets, Ranges and the Basics

www.automateexcel.com/learn-vba-tutorial/

CHAPTER
1 2 3 4 5 6 7 8 9 10

Cell Formulas

Activate and Select

13. Set cell A2 of sheet “Data” to “text”

14. In the workbook named “wb1.xlsm”, set cell A2 of sheet “Data” to “text”

Both WB and WS are defined.

Workbooks(“wb1.xlsm”).sheets(“inputs”).range(“a1”).value = 1

Notice that when defining a workbook you must add the appropriate file extension (.xls, xlsm, etc.).

Try for yourself:

As you may have noticed, it’s quite a lot of typing to define worksheets and workbooks. Imagine
typing that over and over againâ€¦ Instead you should utilize worksheet and workbook variables to
simplify your code. We will cover this in the chapter on variables.

If you’ve ever recorded a macro, you’ve probably seen .Activate and .Select used to activate or
select an object (ex. A range). These commands effectively shift the focus to the desired object(s):

range(“a1”).select

Selection.value = 1

The above code is identical to this:

range(“a1”).value = 1

Sub Macro1()

 Sheets(“Data”).Range(“A2”).Value=”text”

End Sub

Sub Macro1()

 Workbooks(“wb1.xlsm”).Sheets(“Data”).Range(“A2”).Value = “text”

End Sub

Chapter 1: Subs, Sheets, Ranges and the Basics

www.automateexcel.com/learn-vba-tutorial/

CHAPTER
1 2 3 4 5 6 7 8 9 10

The second instance is much shorter, easier to follow, and less error prone. In fact, you should
almost never use .activate or .select. You can almost always accomplish the same task by writing
smarter code. If you are editing code from a recorded macro, you should consider “cleansing” your
code of .activate and .selects.

The only time you should use these commands is when shifting the focus for the user.For
example, you might want to add a navigation button to jump to a different worksheet:

Sub nav_Index()

 Sheets(“index”).activate

End Sub

What’s the difference between activate and select? Only one object of the same type can be
active at a time (ex. activesheet, activeworkbook, activecell, etc.) whereas multiple objects of the
same type can be selected at once (a range of cells, multiple shapes, multiple worksheets, etc.).

Sub Macro1()

 Sheets(“Inputs”).Activate

End Sub

15. Activate the “Inputs” sheet.

Section Summary
There are numerous objects, properties, and methods that you can access with VBA. It’s
impossible to cover them all in a tutorial. Luckily, All of them operate using the same principles
and syntax.

Learn More
AutoMacro:
VBA Add-in with Hundreds of Ready-To-Use Code Examples,
Code Generators, and much more!

Chapter 2: Variables

1 2 3 4 5 6 7 8 9 10
CHAPTER

www.automateexcel.com/learn-vba-tutorial/

CHAPTER 2

VARIABLES
Variables are like memory boxes that you use to store objects (e.g. workbooks or

worksheets) or values (e.g. integers, text, true/false). When you set up a variable, it
can easily be changed in VBA by performing some calculation with it.

There are many different types of variables, but there are two main categories:

1. Object variables that can store objects like worksheets, workbooks, etc.
2. Non-Object variables that store numerical values, text, or similar values.

AutoMacro:VBA Add-in with Hundreds of Ready-To-
Use VBA Code Example & much more!

Learn More

Chapter 2: Variables

1
CHAPTER

2 3 4 5 6 7 8 9 10
www.automateexcel.com/learn-vba-tutorial/

Declaring a variable tells VBA what kind of information the variable will store. You can declare
different number types, strings (to store text), objects (worksheets, workbooks), dates, and much
more.

To declare a string variable:

Dim StringVariable as string

Sub Macro1()

 Dim myStr as String

End Sub

1. Declare variable “myStr” as a string variable type.

To declare other variable types use the same syntax except replace “string” with “long” (for integer
numbers), “variant”, “date” or whatever other variable type you want to use.

Here’s the thing about declaring variablesâ€¦ You don’t actually need to do it,unless you enter
Option Explicit at the top of your module or you change your VBA options to require it:

That being said, any serious programmer will tell you that you should always use Option Explicit
and declare your variables. Declaring variables helps prevent coding errors (ex. If you misspelled
a variable or if you use the same variable across multiple procedures), but doing so increases the
VBA learning curve. The choice is up to you.

Declaring variables

Chapter 2: Variables

1 2 3 4 5 6 7 8 9 10
CHAPTER

www.automateexcel.com/learn-vba-tutorial/

Common Variable Types
Even though you don’t necessarily need to declare your variable type before using them, you need
to understand the variable types. See the chart below and we will practice variables in the next
section.

Grouping Variable
Type Application

Numerical Integer

Accepts only integer values, mainly used for counters; value needs to be
between -32768 and 32767. Note: You should always use Long instead of
Integer. Integer numbers used to be needed to reduce memory usage. But it
is no longer necessary.

Numerical Long Accepts only integer values, used for larger referencing like populations;
value needs to be between -2,147,483,648 and 2,147,483,648

Numerical Double

Accepts decimal values with significant degree of precision; values need to
be between -1.79769313486231e308and -4.94065645841247e-324 for
negative numbers and 1.79769313486231e308and 4.94065645841247e-
324 for positive numbers.

Text String
Accepts strings of text, usually identified with double quotation marks; if a
value is input without quotation marks, it will be automatically recognised as
text.

Date/Time Date Accepts dates, needs to be between # signs, e.g. #31/12/1999#

Boolean Boolean Accepts True or False values.

Any Variant Accepts any type of variable.

Objects Workbook Accepts worksheet names.

Objects Workbook Accepts worksheet names.

Objects Object Accepts all objects

Chapter 2: Variables

1
CHAPTER

2 3 4 5 6 7 8 9 10
www.automateexcel.com/learn-vba-tutorial/

Declare variables like this

Dim i as long
i = 1
Dim j as Double
j=1.1

Remember use “Long” for integer numbers and “Double” for decimal numbers. You try:

Once you assign a value to a variable it’s easy to change that value. With number variables you
can even perform operations to recalculate the variable.

Use variable j to assign a value to a cell:

Sub Macro1()
 Dim j as long

 j = 2

End Sub

Sub Macro1()
 Dim j as long

 j = 2
 j = j + 1

End Sub

Sub Macro1()
 Dim j as long

 j = 2
 j = j + 1

Range(“A1”).Value = j

End Sub

2. Set variable j equal to 2

3. Add 1 to the variable j.

4. Set cell A1 equal to the variable j.

Numerical Variables

Chapter 2: Variables

1 2 3 4 5 6 7 8 9 10
CHAPTER

www.automateexcel.com/learn-vba-tutorial/

Sub Macro1()
 Dim I as double

End Sub

Sub Macro1()
 Dim strTest as string

 strTest = “this is a string”

End Sub

5. Declare a variable (i) that will allow you to store a large number (ex. 443,439)

6. Declare a variable (i) that will allow you to store a decimal number (ex. 54.33)

Other non-Object Variables
You can also store non-numerical values in variables. Let’s practice with the string variable type:

Still working with string variables, assign a cell value to a variable

The cell value will now be stored as text, regardless of whether the cell value is a number or text.

7. Assign the string of text “this is a string” to the variable “strTest”

Sub Macro1()
 Dim I as long

End Sub

Unless you’re a programmer, you probably haven’t heard of Boolean variables. A Boolean variable
can only have two possible values: TRUE or FALSE. TRUE / FALSE is not treated as text, but
instead as a logical value (similar to how Excel treats TRUE / FALSE). When using Boolean
variables, don’t surround TRUE / FALSE with quotations

Sub Macro1()
 Dim strTest as string

 strTest = range(“A1”).Value

End Sub

8. Set the variable “strTest” equal to the value of cell A1

Now let’s practice declaring different numerical variables:

Chapter 2: Variables

1
CHAPTER

2 3 4 5 6 7 8 9 10
www.automateexcel.com/learn-vba-tutorial/

What if you want to switch the TRUE / FALSE indicator? Use the Not command: Flag = Not Flag

Sub Macro1()
 Dim Flag as Boolean

 Flag = False

End Sub

Sub Macro1()
 Dim Flag as Boolean

 Flag = Not Flag

End Sub

9. Set the variable “Flag” equal to FALSE.

10. Switch the variable “Flag”.

Object variables can store objects (workbooks, worksheets, ranges, etc.). You declare object
variables in the same way you would declare any other variable. However, the process to assign an
object to a variable is slightly different; you must add “Set”to the assignment.

Dim myWB as Workbook

Set myWB = Workbooks(“Example.xlsm”)

The same can be done to define a worksheet as a variable:

Dim myWS as Worksheet

Set myWS = Workbooks(“Example.xlsm”).Sheets(“Inputs”)

But why would you want to use a variable to store a worksheet or workbook if you can just
reference the worksheet or workbook? Imagine doing multiple calculations on the same workbook
and needing to reference it everytime:

Workbooks(“Example.xlsm”).Sheets(“MySheet”).Range(“A1”).Value = 4
Workbooks(“Example.xlsm”).Sheets(“MySheet”).Range(“A2”).Value =51
Workbooks(“Example.xlsm”).Sheets(“MySheet”).Range(“A3”).Value =26

This can easily be simplified to the following:

Object Variables

Chapter 2: Variables

1 2 3 4 5 6 7 8 9 10
CHAPTER

www.automateexcel.com/learn-vba-tutorial/

Sub Macro1()
 Dim myWB as Workbook

 Set myWB = Workbooks(“Example.xlsm”)

End Sub

Dim myWS as Worksheet

Set myWB = Workbooks(“Example.xlsm”)

myWS.Range(“A1”).Value = 4
myWS.Range(“A2”).Value = 51
myWS.Range(“A3”).Value = 26

Much easier when you reference the same sheet over and over again!
Now you try :

Msgbox activesheet.name ‘Name of active sheet
 Msgbox activeworkbook.name ‘Name of active workbook
 Msgbox activecell.name ‘Name of active cell
 Msgbox thisworkbook.name ‘Name of workbook where this code is stored

You can use these just like any other variables. Often though, you’ll want to assign the activesheet
and/or activeworkbook to other variables to use later when the active sheet or workbook changes.

11. Assign the workbook “Example.xlsm” to the variable “myWB”.

Sub Macro1()
 Dim myWS as Worksheet

 Set myWS = Worksheets(“data”)

End Sub

12. Assign the worksheet “data” to the variable “myWS”. Don’t define a workbook.

ThisWorkbook, Activeworkbook, ActiveSheet,
and Activecell
We’ve mentioned several times that if you don’t explicitly indicate a specific worksheet, the active
sheet is used (the same goes for workbooks). VBA keeps track of the active sheet and allows you
to reference it via the “activesheet”, which is essentially a variable that VBA updates as needed.
VBA does the same with the active workbook, the active cell, and actually allows you the ability to
reference the workbook where the code is stored (not necessarily the activeworkbook).

Chapter 2: Variables

1
CHAPTER

2 3 4 5 6 7 8 9 10
www.automateexcel.com/learn-vba-tutorial/

Ex:
Dim myWB as Workbook

 Set myWB = ActiveWorkbook

Sub Macro1()
 Dim curWB as Workbook

 Set curWB = ThisWorkbook

End Sub

13. Assign this workbook (where the code is stored) to variable curWB

Sub Macro1()
 Dim myWS as Worksheet

 Set myWS = ActiveSheet

End Sub

Sub Macro1()

 ActiveCell.Value = 5

End Sub

You might be wondering how the active workbook or worksheet changes. What is considered “active”?

When you first run a procedure, the active sheet (workbook) is the sheet (workbook) that is currently
visible . The active workbook will only change if

1. You open a new workbook. Then the new workbook becomes active.
You manually change the active workbook with workbooks(“wb2.xlsm”).activate Or workbooks(“wb2.
xlsm”).select

The active sheet will only change if

1. A new worksheet becomes active
2. You manually change the active worksheet with sheets(“newWS”).activate Or sheets(“newWS”).select

14. Assign the active worksheet to the variable myWS.

15. Set the active cell value to 5.

Chapter 2: Variables

1 2 3 4 5 6 7 8 9 10
CHAPTER

www.automateexcel.com/learn-vba-tutorial/

We cover this in more detail in a future lesson, but you should almost NEVER change the active
worksheet or workbook. You should only do so to change what sheet (or workbook) the user will
see once your code has finished running.

Reference Worksheets by Cell Values or Strings
Remember earlier we said that anything in quotations in VBA is just a string and that you can create
range references from strings of text? Of course you can do the same thing with worksheets and
workbooks.

16. Declare a string variable called “strWS” and give it the value “2017_12”.

17. Set strWS equal to named range “date”. Then set cell “A1” on sheet strWS
equal to 1.

Now if one of your sheets is called “2017_12” it you can easily reference that sheet by doing the
following:

Sheets(strWS).Range(“A1”).Value = 2

This is useful if you want to reference a worksheet name based on some inputs:

strWS = Year(Now & “_” & Month(Now)
 Sheets(strWS).Range(“A1”).Value = 2

Sub Macro1()
 Dim strWS as String

 strWS = “2017_12”

End Sub

Sub Macro1()
 Dim strWS as String

 strWS = Range(“date”).Value
 Sheets(strWS).Range(“A1”).Value = 1

End Sub

Learn More
AutoMacro:
VBA Add-in with Hundreds of Ready-To-Use Code Examples,
Code Generators, and much more!

Chapter 3: Conditional Logic: If and Select Cases

CHAPTER

www.automateexcel.com/learn-vba-tutorial/

1 2 3 4 5 6 7 8 9 10

CHAPTER 3

CONDITIONAL
LOGIC: IF AND
SELECT CASES

Logical tests allow you test if conditions are met, doing one thing if the condition is
met, or another if it is not.

AutoMacro:VBA Add-in with Hundreds of Ready-To-
Use VBA Code Example & much more!

Learn More

Chapter 3: Conditional Logic: If and Select Cases

CHAPTER

www.automateexcel.com/learn-vba-tutorial/

1 2 3 4 5 6 7 8 9 10

Before continuing, you must understand some basic operators:

These operators compare values, returning the Boolean values: TRUE or FALSE.

test = 5 > 3
Returns TRUE

test = 5 >= 3
Returns TRUE

test = 5 <> 5
Returns FALSE

Operators

Operator Description
= Equal to
<> Not Equal to
< Less than
> Greater than
<= Less than or equal to
>= Greater than or equal to

1. Test if 5 is less than or equal to 3 and assign the result to the variable “Test”

Sub Macro1()
 Dim Test as Boolean

 Test = 5<=3

End Sub

Compare Text /& Variables
The “=” and “<>” operators can also be used to compare text

test = “String” = “Text”
Returns FALSE

test = “String” = “string”
Returns FALSE â€“ By Default, VBA actually treats upper and lower case letters as different text. To
ignore case when comparing values you must add “Option Compare Text” at the top of your module.

Chapter 3: Conditional Logic: If and Select Cases

CHAPTER

www.automateexcel.com/learn-vba-tutorial/

1 2 3 4 5 6 7 8 9 10

 Option Compare Text

End Sub

2. Make the declaration allowing you to compare text, while ignoring case.

Option Compare Text
Sub Macro1()

 test = “String” = “string”

End Sub

Option Compare Text
Sub Macro1()

 test = string1 <> string2

End Sub

3. Now compare “String” and “string” and assign the result to the variable “test”.

4. Test if variable “string1” does not equal variable “string2”

Remember variables? You can compare variables as well:

Using the “IF” statement, you can use those same logical operators to test whether a statement
is TRUE or FALSE and perform one action if TRUE and another action if FALSE. If you’re familiar
with the Excel IF Function then you know how this works.

If n < 0 then
 Data_val = “Warning! Negative Value”
 Else
 Data_val = “ok”
 End if

If Statements

Chapter 3: Conditional Logic: If and Select Cases

CHAPTER

www.automateexcel.com/learn-vba-tutorial/

1 2 3 4 5 6 7 8 9 10

5. Test if n > 100 with an IF Statement. Set note = “check” if TRUE else note =
“immaterial”

Sub Macro1()

 If n > 100 then
 note = “check”
 else
 note = “immaterial”
 End If

End Sub

You can test multiple conditions with a single “IF” statement by using the “And” and “Or”
operators.

To test whether a number n is between (but not equal) to 3 and 10, you will use the “And”
indicator.

If (n > 3) and (n < 10) then
 Range(“A1”).Value = “in range”
 End if

Notice that you don’t need to add the line “Else” if you don’t need to run anything if the condition
is FALSE. In fact you could write the code in one line and you can omit “End IF”:

If (n > 3) and (n < 10) then Range(“A1”).Value = “in range”

For short IF statements, this may be the “cleanest” way to write an IF statement. Now back to
more exercises.

Use the operators “>=” and “<=” to test if a number is “greater than or equal to” or “less than or
equal to”.

Sub Macro1()

 If (n <= 3) or (n >= 10) then

End Sub

6. Test if a number n is less than or equal to 3 or greater than or equal to 10 by
using the “Or” operator.

Chapter 3: Conditional Logic: If and Select Cases

CHAPTER

www.automateexcel.com/learn-vba-tutorial/

1 2 3 4 5 6 7 8 9 10

Use “Elseif” to test a second condition if the first is false:

If animal = “Cat” then
 MsgBox “Meow”
 ElseIf animal = “Dog” then
 MsgBox “Woof”
 Else
 MsgBox “*Crickets*”
 End if

Sub Macro1()
 If animal = “cat” Then
 MsgBox “Meow”
 ElseIf animal = “Dog” Then
 MsgBox “Woof”

 Elseif animal = “Cow” Then
 MsgBox “Moo”

End Sub

7. Add another Elseif to the previous example to test if animal = “Cow”. If TRUE then
create a message box that says “Moo”.

Elseif

You can embed one if statement inside another. For example, let’s say we want to test whether
the number n is greater than 3. If TRUE, we want to test whether the number m is greater than 3.

If n > 3 then
 If m > 3 then
 Range(“A1”).Value = “n greater than 3 and m greater than 3”
 Else
 Range(“A1”).Value = “n greater than 3 but m less than or equal to 3”
 End if
 Else
 Range(“A1”).Value = “n less than or equal to 3 and we don’t know about m”
 End if

Nested If Statement

Chapter 3: Conditional Logic: If and Select Cases

CHAPTER

www.automateexcel.com/learn-vba-tutorial/

1 2 3 4 5 6 7 8 9 10

Select Case is an efficient way to do multiple logic tests in VBA. First you indicate a variable,
object or a property of an object that you wish to test. Next you define “cases” that test if the
variable, etc. matches and if so, do something.

To test a specific value (that is whether the variable is equal to a value), we can simple type the
value after the word Case. If we want to use an operator to test a value, we have to type the word
“Is” before we enter the operator.

Select Case i
 Case Is <= 2: MsgBox “i is less than or equal to 2”
 Case 3: MsgBox “i is equal to 3”
 Case 4: MsgBox “i is equal to 4”
 End Select

Here’s an example using a cell.value instead:

Select Case cell.value
 Case Is <= 2: MsgBox “i is less than or equal to 2”
 Case 3: MsgBox “i is equal to 3”
 Case 4: MsgBox “i is equal to 4”
 End Select

Now you try:

Select Case

8. Use a Select Case statement to test if variable “animal” is equal to “cat” or “dog”
and output “meow” or “woof” to the variable “sound” if there is a match

Sub Macro1()

 Select Case animal
 Case cat
 sound = “meow”
 Case dog
 sound = “woof”
 End Select

End Sub

Learn More
AutoMacro:
VBA Add-in with Hundreds of Ready-To-Use Code Examples,
Code Generators, and much more!

Chapter 4: Loops

CHAPTER

www.automateexcel.com/learn-vba-tutorial/

1 2 3 4 5 6 7 8 9 10

CHAPTER 4

LOOPS
Loops allow you to “loop” through a set of code multiple times. You can

define a set number of instances for the loop to run, run until a condition
is met, or loop through all the objects of a certain type. Loops are massive

time-savers.

AutoMacro:VBA Add-in with Hundreds of Ready-To-
Use VBA Code Example & much more!

Learn More

Chapter 4: Loops

CHAPTER

www.automateexcel.com/learn-vba-tutorial/

1 2 3 4 5 6 7 8 9 10

For loops repeat a block of code a set number of times either by running through a set of
numbers, or through a defined series of objects. We will review some examples:

This first example defines a set number of times to repeat a task:

Dim i as long

 ‘Repeat tasks 10 times
 For i = 1 to 10
 ‘perform tasks here
 Next i

This next example, starts at i=1 and cycles through 10 times, each time increasing i by 1 (ex. i = 1,
i =2, etc.). “i” is a variable and can be used like any other variable:

Dim i as long

 ‘Repeat tasks 10 times
 For i = 1 to 10
 Range(“a” & i).value = 5 * i
 Next i

After the loop, the variable stays at its most recent value (i = 10) and can be used as usual.

For loops

1. Create a For loop to repeat a task 5 times using the variable i. Your answer
should be two lines.

You can change the direction and magnitude of the “steps”:

Dim i as long

 For i = 10 to 0 step -2
 ‘Do Something
 Next i

Sub Macro1()

For i = 1 to 5
Next i

End Sub

Chapter 4: Loops

CHAPTER

www.automateexcel.com/learn-vba-tutorial/

1 2 3 4 5 6 7 8 9 10

This loop starts at i = 10 and goes to 0, decreasing by 2 each time. With the “step” feature you can
define the intervals for the loop, which can be positive or negative.

2. Use a For loop to start at 100 and end at 0, decreasing by 10 each step.

Sub Macro1()

 For i = 100 to 0 Step -10
 Next i

End Sub

For Each loops allow you to cycle through all the objects in a group such as cells in a range or all
worksheets in a workbook.

To loop through each worksheet in the workbook:

Dim ws as worksheet

 ‘Repeat tasks on each worksheet
 For each ws in worksheets
 Ws.unprotect
 Ws.range(“a1”).value = ws.name
 Next ws Range(“A1”).Value = “n less than or equal to 3 and we don’t know about m”
 End if

Loop through each cell in a range:

Dim cell as range

 For each cell in range(“a1:a1000”)
 Cell.value = cell.offset(0,1).value
 Next Cell

In the above examples “ws” and “cell” are both object variables. Within the loop, you can simply
write “ws.” Or “cell.” followed by the property or method that you wish to apply on each worksheet
or cell.

For Each Loops

Chapter 4: Loops

CHAPTER

www.automateexcel.com/learn-vba-tutorial/

1 2 3 4 5 6 7 8 9 10

3. Loop through each worksheet in a workbook and set range “A1” of each
worksheet equal to the worksheet name.

Sub Macro1()
 Dim ws as Worksheet

 For Each ws in WorkSheets
 ws.range(“A1”).Value = ws.Name
 next ws

End Sub

4. Loop through each cell in range “a1:a100” and set each cell’s value equal to
the cell directly to its right (Hint: use offset(0,1) to look at the cell directly to
the right. We will learn more about this feature in the chapter on advanced
cell referencing)

Sub Macro1()
 Dim ws as Worksheet

 For Each cell in Range(“A1:A100”)
 cell.Value = cell.Offset(0,1).Value
 next cell

End Sub

Do While and Do Until loops allow you to repeat some code while a condition is met or until a
condition is met. You need to be careful with these type of loops. If the condition never changes,
the loop will run continuously and you will need to restart Excel. These loops look like this:

Do
 ‘Perform tasks here
 Loop until range(“a1”).value > 5

Here we are looping until a certain condition is met. By placing the “until...” at the end we tell VBA
to run the code first before checking to see if the condition is met or not. Alternatively, you can
place the “until...” at the beginning and then VBA will check the condition before running the code:

Do until range(“a1”).value > 5
 ‘Perform tasks here
 Loop

Do While and Do Until Loops

Chapter 4: Loops

CHAPTER

www.automateexcel.com/learn-vba-tutorial/

1 2 3 4 5 6 7 8 9 10

Instead of looping “until” a condition is met, you can loop while a condition is met, stopping once
it’s no longer met:

Do while range(“a1”).value <= 5
 ‘˜Perform tasks here
 Loop

Again, “while” can go at the beginning or the end:

Do
 ‘˜Perform tasks here
 Loop while range(“a1”).value <= 5

5. Use a Do loop to repeat a task only while variable testvalue > 100.

Sub Macro1()

 Do While testvalue > 100
 Loop

End Sub

As you can see, loops are absolutely essential to automating tedious repetitive processes!

Learn More
AutoMacro:
VBA Add-in with Hundreds of Ready-To-Use Code Examples,
Code Generators, and much more!

Chapter 5: Advanced Cells, Rows, Columns and Sheets

CHAPTER

www.automateexcel.com/learn-vba-tutorial/

1 2 3 4 5 6 7 8 9 10

CHAPTER 5

ADVANCED
CELLS, ROWS,

COLUMNS
AND SHEETS

In the first chapter we discussed the basics of using VBA to interact with cells,
sheets, and workbooks. In this chapter we learn more advanced techniques and

also discuss how to interact with rows, columns, and more.

AutoMacro:VBA Add-in with Hundreds of Ready-To-
Use VBA Code Example & much more!

Learn More

Chapter 5: Advanced Cells, Rows, Columns and Sheets

CHAPTER

www.automateexcel.com/learn-vba-tutorial/

1 2 3 4 5 6 7 8 9 10

Let’s work through some examples regarding rows and columns in VBA.

To get the row number of a cell

row_num = range(“a3”).row

This isn’t particularly useful if you hard-code the range “A3” (you already know the row number).
Instead, practice with a named range:

Rows & Columns

1. Get the row number of named range “drate” and assign it to a variable “row_
num”.

2. Get the column number of named range “drate” and assign it to variable “col_
num”

Now use .column to get the column number.

Sub Macro1()
 Dim row_num as Long

 row_num = Range(“drate”).Row

End Sub

Sub Macro1()

 col_num = Range(“drate”).Column

End Sub

You already know about the Range, Worksheet, and Workbook objects. You might also find the
Rows and Columns objects useful.

Rows(“2:3”).delete

Your turn:

Rows and Columns Objects

Chapter 5: Advanced Cells, Rows, Columns and Sheets

CHAPTER

www.automateexcel.com/learn-vba-tutorial/

1 2 3 4 5 6 7 8 9 10

5. Insert a row below range “C4” using “EntireRow”.

4. Insert a row after row 3

3. Delete Columns “H:I”.

Sub Macro1()

 Columns(“H:I”).Delete

End Sub

You can also insert rows and columns:

Columns(“H”).insert

Sub Macro1()

 Rows(4).Insert

End Sub

Alternatively, you can refer to entire columns and rows by adding “.EntireColumn” or “.EntireRow”
after referring to a Range.

range(“b3”).EntireColumn.insert

Rows and Columns have a property called “hidden” that is set to TRUE or FALSE. To hide a row:

rows(“a”).hidden = true
Or

Reference Rows and Columns With Range Object

Hiding and Unhiding Rows & Columns

Sub Macro1()

 Range(“C5”).EntireRow.Insert

End Sub

Chapter 5: Advanced Cells, Rows, Columns and Sheets

CHAPTER

www.automateexcel.com/learn-vba-tutorial/

1 2 3 4 5 6 7 8 9 10

6. Unhide columns B and C.

7. Count the number of cells in range “import_data” and assign the result to
variable “n”.

8. Copy range “B3” to range “C3”

range(“a1”).entirerow.hidden = true

Sub Macro1()

 Range(“B:C”).EntireColumn.Hidden = False

End Sub

The .Count method is used to count the number of cells in a range.

n = range(“data”).count

To copy range “A1” and paste into range “B1”:

Range(“A1”).Copy Range(“B1”)

Count

Copy, Paste, and Paste Special

Sub Macro1()
 Dim n as Long

 n = Range(“import_data”).Count

Sub Macro1()

 Range(“B3”).Copy Range(“C3”)

End Sub

Chapter 5: Advanced Cells, Rows, Columns and Sheets

CHAPTER

www.automateexcel.com/learn-vba-tutorial/

1 2 3 4 5 6 7 8 9 10

Paste Special allows you to paste only certain properties of the cell, instead of all cell properties
(ex. only cell values). With Paste Special you must use two lines of code:

Range(“A1”).Copy
 Range(“A2”).PasteSpecial Paste:=xlPasteFormats

9. Copy range “A1” and paste formats to range “B1”

You can also use xlPasteValues , xlPasteFormulas, or any of the options available to you in the
Paste Special Menu:

Sub Macro1()

 Range(“A1”).Copy
 Range(“B1”).PasteSpecial Paste:= xlPasteFormats

End Sub

Chapter 5: Advanced Cells, Rows, Columns and Sheets

CHAPTER

www.automateexcel.com/learn-vba-tutorial/

1 2 3 4 5 6 7 8 9 10

R1C1 Cell-Referencing & Cells Object

Sub Macro1()

 Range(“R4C4”)

End Sub

Earlier we introduced you to how to reference cells in Excel using the Range object. With the
Range object we taught you to reference cells by referring to their column letter and row number.
This is called A1-style cell-referencing. Instead you can use R1C1-style referencing, where you can
refer to the column number instead of its letter. This is very useful as we will see below. Example:

range(“R3C2”) refers to cell “B3”. To use R1C1-style referencing type “R” followed by the row
number and “C” followed by the column number.

10. Use the range object and R1C1 style referencing to refer to cell “D4”.

Sub Macro1()

 Cells(2,5).Value = 4

End Sub

11. Use the cells object to assign the value of 4 to cell “E2”.

The Cells Object provides you another option for referring to cells using column and row numbers.
When using the cells object, first enter the row number then enter the column number. Example:

cells(3,2) refers to cell “B3”

One frequent problem when working with VBA is defining the appropriate ranges for your work.
For example, you have several columns of data, and you wish to add an additional column of
calculations. What column should you place your calculations in? How far down should your
calculations go (which row)? Luckily, VBA provides us with several useful commands to help us out.

Excel keeps a record of the last used cell in each worksheet called the Used Range. The Used Range
helps keep the file size and calculation time as small as possible by telling Excel to ignore all cells
outside of the Used Range. You can reference the Used Range in VBA to find the last used cell.

Find the Last Row or Column

Chapter 5: Advanced Cells, Rows, Columns and Sheets

CHAPTER

www.automateexcel.com/learn-vba-tutorial/

1 2 3 4 5 6 7 8 9 10

lrow = Activesheet.UsedRange.row

This code finds the last used row in the Activesheet and assigns it to variable “lrow”

12. Find the last used column in the active worksheet and assign it to variable “lcol”

Sub Macro1()

 lcol = Activesheet.UsedRange.Column

End Sub

Unfortunately, you need to be careful relying on the Used Range. It won’t always provide the
answer that you expect. A couple things to keep in mind:

• The Used Range only recalculates when the workbook is saved. If you delete rows, columns,
or data you will need to save the workbook before those changes are reflected by the Used
Range.

• The Used Range can count formatting. Even if a cell value is blank, if the cell is formatted it
will count in the Used Range. Make sure to use .clear instead of .clearcontents if you want to
remove cells from the Used Range. You could also delete entire rows or columns.

UsedRange finds the last used cell in the entire worksheet. Instead, you may want to find the last
used cell in a row or a column. You will need to use the “.End” method:

range(“a3”).End(xlDown).Row

This is the equivalent of pressing CTRL + Down Arrow while in cell “A3”. If you aren’t familiar with
the CTRL + Arrow shortcut, you should really learn it. It’s a massive Excel time-saver. CTRL +
Arrow jumps to the last non-blank cell in a series, or the first non-blank cell after a series of blank
cells.

The above example will find the last used cell in column A, but only if there aren’t any blank cells
in column A (Before the last used cell). To be safe, you must start your .End at the bottom of the
worksheet and work your way up. You can define a range to start with:

range(“a1000000”).End(xlUp).row

Or you can use this more complicated code:

With ActiveSheet
 LastRow = .Cells(.Rows.Count, “A”).End(xlUp).Row
 End With

Notice here that Rows.Count counts the number of rows in the worksheet.

Chapter 5: Advanced Cells, Rows, Columns and Sheets

CHAPTER

www.automateexcel.com/learn-vba-tutorial/

1 2 3 4 5 6 7 8 9 10

14. Select cell “B2” by offsetting from cell “D5”

Sub Macro1()

 Range(“D5”).Offset(-3,-2).Select

End Sub

Resize allows you to resize a range of cells to a specific number of rows and columns. It works very
similarily to Offset. It’s important to keep in mind that resizing specifies the total number of rows
and columns in the new range not the number of rows and columns to add (or subtract) to the
existing range. Resize(0,0) will result in an error. To resize to a single cell use Resize(1,1). Also, keep
in mind that your starting cell, will always be the upper-leftmost cell in the range.

You can do the same with columns, however the syntax is a little different. Instead of “xlLeft”, you
use “xlToLeft” and “xlToRight”.

13. Find the last used column in row 1 (hint start with cell “AZ1”).

Sub Macro1()

 Range(“AZ1”).End(XlToLeft).column

End Sub

Offset allows you to offset a cell range by a number of rows or columns

range(“a1”).offset(2,1).select

This will select cell B3 (2 down, and 1 to the right of cell “A1”).

You might find Offset useful when cycling through ranges of cells

For each cell in range(“a1:b3”)
 Cell.value = n
 Cell.offset(0,1).value = n + 1
 Cell.offset(0,2).value = n + 2
 Next cell

Offset and Resize

Chapter 5: Advanced Cells, Rows, Columns and Sheets

CHAPTER

www.automateexcel.com/learn-vba-tutorial/

1 2 3 4 5 6 7 8 9 10

15. Select range “A2:B5” using Resize with “A2” as a starting point.

Sub Macro1()

 Range(“A2”).resize(4,2).Select

End Sub

You can even use Resize and Offset in the same line of code:

range(“a1”).offset(1,1).resize(2,2).select

FormulaR1C1
In the first chapter, you were introduced to the formula property where you could assign a formula
to a cell:
range(“a1:a10”).formula = “=b1”

Another formula option is the FormulaR1C1 property. The following code will generate an identical
result to the code above:
range(“a1:a10”).formulaR1C1 = “=R1C2”

Cell “B1” is row 1 of column 2 (R1C2).

Try for yourself:

16. Set the formulaR1C1 property of range “B1:B10” to equal cell “C8”.

Sub Macro1()

 range(“B1:B10”).formulaR1C1 = “=R8C3”

End Sub

When you use either of these techniques, your formula is “hard-coded”, meaning the formula will
be applied exactly the same to the entire range of cells. In the first example above, all cells “A1” to
“A10” will have the formula “=b1”.

Instead, often you will want to use “relative references” with the formulaR1C1 property R[1]C[1].
With relative references your formula references are proportional to each specific cell. They are
not “hard-coded”. So when applying a formula down a column cell A1 = B1, cell A2 = B2, cell A3 =
B3, etc.:

range(“a1:a10”).formular1c1 = “=RC[1]”

Chapter 5: Advanced Cells, Rows, Columns and Sheets

CHAPTER

www.automateexcel.com/learn-vba-tutorial/

1 2 3 4 5 6 7 8 9 10

17. Set the formulas in range “B1:B5” to equal the cell directly to the left
(Hint: Use negative 1)

Activecell
Activecell references the currently active cell within VBA.

In this example, the “[1]” after “C” indicates the first column to the right of the cell containing the
formula. The brackets indicate “relative” references. When using relative references, you indicate
how many rows/columns to offset from the current cell. By not having anything after “R”, you
are telling VBA to look at the same row. If you use numbers without brackets, you are using the
regular R1C1 cell references that we learned about before. Those references are hard-coded, and
will not move.

Sub Macro1()

 range(“B1:B5”).formulaR1C1 = “=RC[-1]”

End Sub

You will probably use R[1]C[1]-style referencing the most when working with cell formulas in VBA.
This technique can be hard to remember and it is very easy to make mistakes. We recommend
recording a macro, entering the formula directly into Excel, and then copying/pasting that
recorded formula into your main procedure.

18. Select the cell one column to the right of the Activecell.

Sub Macro1()

 Activecell.Offset(0,1).Select

End Sub

So far we’ve mostly used the Sheets object to identify which sheet to work with. Now we will
learn about the worksheet methods and properties.

Sheets

Chapter 5: Advanced Cells, Rows, Columns and Sheets

CHAPTER

www.automateexcel.com/learn-vba-tutorial/

1 2 3 4 5 6 7 8 9 10

To hide a sheet:

sheets(“data”).visible = false

Now try unhiding a sheet using the same method

Hiding and Unhiding Sheets

19. Unhide sheet “data”.

Sub Macro1()

 Sheets(“data”).Visible = True

End Sub

The Visible property actually has a third option: xlSheetVeryHidden. In addition to hiding the
worksheet tab, the tab can’t be unhidden from within Excel. It will disappear from the sheets list,
and can only be unhidden using VBA.

20. Make sheet “Data” very hidden

Sub Macro1()

 Sheets(“data”).Visible = xlSheetVeryHidden

End Sub

It’s easy to change a worksheet name:

 sheets(“data”).name = “data_old”

Sheet Name

21. Rename sheet “inputs” to “Start Here”.

Sub Macro1()

 Sheets(“inputs”).Name = “Start Here”

End Sub

Chapter 5: Advanced Cells, Rows, Columns and Sheets

CHAPTER

www.automateexcel.com/learn-vba-tutorial/

1 2 3 4 5 6 7 8 9 10

Hiding and Unhiding Sheets

Sheet Name

Protect and Unprotect Sheets
Worksheets can be password protected to prevent a user from accidently corrupting the
workbook. If you password protect a worksheet, you will need your code to unprotect the
worksheet before it can make changes to any protected properties, and re-protect the sheet once
the code finishes running.

To protect a worksheet:
sheets(“calcs”).protect “password”

Instead of “password”, enter the actual password, or you can actually ignore the password
argument if you want to protect the sheet, but don’t want to require a password to un-protect it.

To unprotect a worksheet, use the same syntax.

Sub Macro1()

 Sheets(“calcs”).Unprotect “abc123”

End Sub

22. Unprotect the worksheet named “calcs” with the password “abc123”.

The Protect method actually has many other arguments indicating what a user can and cannot do
to the worksheet. The best way to get the options that you want is to Record a Macro with the
appropriate settings and then copy&paste the recorded code into your procedure.

Learn More
AutoMacro:
VBA Add-in with Hundreds of Ready-To-Use Code Examples,
Code Generators, and much more!

Chapter 6: Message boxes and Input Boxes

CHAPTER

www.automateexcel.com/learn-vba-tutorial/

1 2 3 4 5 6 7 8 9 10

CHAPTER 6

MESSAGE
BOXES AND

INPUT BOXES
Message boxes and Input boxes are used to communicate information to the user

or receive information from the user.

AutoMacro:VBA Add-in with Hundreds of Ready-To-
Use VBA Code Example & much more!

Learn More

Chapter 6: Message boxes and Input Boxes

CHAPTER

www.automateexcel.com/learn-vba-tutorial/

1 2 3 4 5 6 7 8 9 10

Msgbox
Message boxes allow you to communicate information to the user, while pausing the code until
feedback is provided by the user. This is the most basic message box form:

msgbox “Code Paused. Click â€˜OK’ to Proceed.”

1. Create a basic message box with the prompt “STOP!”

Sub Macro1()

 Msgbox “Stop!”

End Sub

These type of message boxes are called vbOKOnly. They only have one option for user interaction
(clicking the “OK” button), but there are many other message box types with different interaction
options. The general syntax for MsgBox is
MsgBox(prompt[, buttons] [, title] [, helpfile, context])

Where anything in brackets ([]) is optional. If the optional arguments are left blank, then they are
set to the default values. For example, if you leave “buttons” blank, it will default to the simple
vbOKonly (as in our example above).

Now let’s try including the button type, and title. Example:
vInput = MsgBox(“Continue?”, vbYesNo, “What is next?”)

When this statement is executed, you will see the following message box appear:

Chapter 6: Message boxes and Input Boxes

CHAPTER

www.automateexcel.com/learn-vba-tutorial/

1 2 3 4 5 6 7 8 9 10

This is a vbYesNo message box. When “yes” or “no” is clicked, the message box will output vbYes
or vbNo to a variable (vInput in our example). vbYes can also be used as the integer value 6 and
vbNo as 7.

Now we will use an If statement to do something depending on what the answer is:

vInput = MsgBox(“Continue?”, vbYesNo, “What is next?”)

 If vInput = vbYes Then
 msgbox “You selected Yes”
 Else
 msgbox “You selected No”
 End If

If the user selects “Yes” then vInput is set to vbYes and the message box “You selected Yes” is
displayed.

Your turn:

Sub Macro1()

 vinput = MsgBox (“Is it an animal?”, vbYesNo, “20 Questions”)

End Sub

2. Create a Yes/No message box with message box title “20 Questions” and prompt
“Is it an animal?”. Assign the answer to variable “vInput”.

Chapter 6: Message boxes and Input Boxes

CHAPTER

www.automateexcel.com/learn-vba-tutorial/

1 2 3 4 5 6 7 8 9 10

Sub Macro1()

 vinput = MsgBox “Is it an animal?”, vbYesNoCancel, “20 Questions”

End Sub

3. Now create the same message box, but with buttons=vbYesNoCancel instead to
add a cancel option.

The great thing about message boxes, is that you can ask the user in the middle of the code, what
actions they want to take. It’s a little like a Choose-Your-Own-Adventure novel.

Other Message Boxes
vbOKOnly, vbYesNo, and vbYesNoCancel are the most commonly used message box types. There
are many other types. We’ve listed a few below:

• vbAbortRetryIgnore: three buttons - abort, retry and ignore
• vbCritical: big red cross to the left of your message with only the OK button
• vbExclamation: exclamation sign to the left of your message with only the OK button
• vbInformation: info sign to the left of your message with only the OK button
• vbRetryCancel: two buttons - Retry and Cancel

The InputBox is similar to the MsgBox, except the InputBox allows the user to input information.
Let’s look at the most basic form of the InputBox:

Dim myValue as Variant

 myValue = InputBox(“What is your name?”)
 msgbox myValue

The variable myValue receives the user input from the InputBox.

InputBox

Chapter 6: Message boxes and Input Boxes

CHAPTER

www.automateexcel.com/learn-vba-tutorial/

1 2 3 4 5 6 7 8 9 10

Sub Macro1()

 myValue = Inputbox (“How old are you?”)

End Sub

4. Create an InputBox with the prompt “How old are you?” and assign the input to
the variable “myValue”.

Now let’s add a title and a default value to the InputBox. The default value will pre-populate in the
input area.

myValue = InputBox(“What is your name?”,”Hello”,”John Doe”)

5. Create an InputBox with the prompt “How old are you?” and assign the input
to the variable “myValue”. Also add a title “Age”, and defaultvalue 21 to the
InputBox.

Sub Macro1()

 myValue = InputBox(“How old are you?”, “Age”, “21”)

End Sub

Below we’ve included the general syntax for InputBox:

 InputBox(prompt[, title] [, default] [, xpos] [, ypos] [, helpfile, context])

MsgBox and InputBox work well to take very basic input from the user. However, to create fully
customized forms you need to use UserForms. UserForms allow you to add buttons, checkboxes,
togglebuttons, text, inputforms, images, scrollbars, and more. You can trigger procedures to run
when certain “events” happen, like selecting an option. UserForms are built from scratch within
the VBE.

UserForm

Chapter 6: Message boxes and Input Boxes

CHAPTER

www.automateexcel.com/learn-vba-tutorial/

1 2 3 4 5 6 7 8 9 10

Unfortunately, because UserForms are so flexible, they often require quite a bit of coding to set
up.

Many of you will never need to design UserForms, so we won’t include them here in detail.
Instead, when you do work with them, we recommend searching online for guidance.

Learn More
AutoMacro:
VBA Add-in with Hundreds of Ready-To-Use Code Examples,
Code Generators, and much more!

Chapter 7: Events

CHAPTER

www.automateexcel.com/learn-vba-tutorial/

1 2 3 4 5 6 7 8 9 10

CHAPTER 7

EVENTS
An event is an action that can trigger other code to run. Examples of events
include changes to a specific worksheet, activating a worksheet, opening a

workbook, saving, and closing.

AutoMacro:VBA Add-in with Hundreds of Ready-To-
Use VBA Code Example & much more!

Learn More

Chapter 7: Events

CHAPTER

www.automateexcel.com/learn-vba-tutorial/

1 2 3 4 5 6 7 8 9 10

Event Intro
An event is an action that can trigger other code to run. Examples include: any cell in a worksheet
is changed, a worksheet is activated, before saving a workbook, or before closing a workbook.

As of writing this, there are over 100 different events that can trigger event procedures. Events
can be categorized into five categories:

• Workbook - Events that happen to a workbook
• Worksheet - Events that happen to a worksheet
• Application - Events that happen to the Excel application itself.
• Charts - Events that happen to charts. We won’t cover these.
• Userforms - Events that happen within Userforms.

We ended the previous chapter with an introduction to Userforms, so we thought we’d pick up
where we left off with one Userform event example. To run code when a Userform button is
clicked place the following code in the Userform module within VBA:

Private Sub CommandButton1_Click ()
 ‘˜Do Something
 End Sub

Where “CommandButton1” is the name of the button.

If you don’t remember the exact syntax for an event or you want to see a list of events available
to you, navigate to the top of the code window and 1. select the appropriate object (userform,
userform items, worksheet, or workbook) and 2. activate the second drop down to see your
options:

Userform Events

Chapter 7: Events

CHAPTER

www.automateexcel.com/learn-vba-tutorial/

1 2 3 4 5 6 7 8 9 10

1. Create an “click” event macro for a button named “CloseButton

Private Sub CloseButton_Click()

End Sub

You can see a list of relevant events by first selecting the appropriate Userform object from the
drop down on the left (at the top of your code window) and then activating the drop down on the
right:

You can see there are quite a few events, that allow you to create fancy user interfaces.

Worksheet-level events include: changes to a worksheet, activating a worksheet, deactivating a
worksheet, and more. To create a worksheet-level event, you will need to place your code in the
appropriate worksheet module:

Worksheet-level Events

Chapter 7: Events

CHAPTER

www.automateexcel.com/learn-vba-tutorial/

1 2 3 4 5 6 7 8 9 10

Workbook-level events, must be placed in the ‘ThisWorkbook’ module:

Workbook-level Events

One of the most popular worksheet-level events is the worksheet_change event. The worksheet
change event will run whenever there is a change to the worksheet.

 Private Sub Worksheet_Change(Byval Target as Range)
 Msgbox Target.row
 End Sub

Notice that we need to declare the variable “Target” as a range, allowing it to be passed into the
event procedure so that you can refer back to the changed range within the procedure. Be careful!
Your range could be more than one cell, so you will need to build your code accordingly.

You may be wondering what “Byval” means. “Byval” means the variable is locked in as a value and
cannot be changed within the procedure.

2. Create a worksheet change event procedure.

The Protect method actually has many other arguments indicating what a user can and cannot do
to the worksheet. The best way to get the options that you want is to Record a Macro with the
appropriate settings and then copy&paste the recorded code into your procedure.

Private Sub Worksheet_Change(Byval Target as Range)

End Sub

Chapter 7: Events

CHAPTER

www.automateexcel.com/learn-vba-tutorial/

1 2 3 4 5 6 7 8 9 10

Workbook-level events are triggered for things like saving, opening, closing the workbook where
the code is contained.

Private Sub Workbook_BeforeClose(Cancel as Boolean)
 Msgbox “Closingâ€¦”
 End Sub

Application-level events can be placed wherever.

Application-level events are triggered when ANY workbook is opened, closed, saved, created, etc.
Often, application-level events will pass along the workbook as a workbook variable, allowing you
to easily refer to it. See this in the example below:

‘˜Add a New Sheet on WorkbookOpen
 Private Sub App_WorkbookOpen(ByVal Wb As Workbook)
 Wb.sheets.add
 End Sub

This code will add a worksheet to any workbook that is opened.

Application-level Events

We can’t cover all the events available to you. Instead, if you think you might want to add an event
to your workbook, do a quick online search.

Events Summary

Learn More
AutoMacro:
VBA Add-in with Hundreds of Ready-To-Use Code Examples,
Code Generators, and much more!

Chapter 7: Events

CHAPTER

www.automateexcel.com/learn-vba-tutorial/

1 2 3 4 5 6 7 8 9 10

CHAPTER 8

APPLICATION
SETTINGS -

SPEED UP YOUR
CODE, IMPROVE

UI & MORE

AutoMacro:VBA Add-in with Hundreds of Ready-To-
Use VBA Code Example & much more!

Learn More

Chapter 8: Application Settings-Speed Up Your Code, Improve UI & More

CHAPTER

www.automateexcel.com/learn-vba-tutorial/

1 2 3 4 5 6 7 8 9 10

Disabling screen updating also makes your code look much more professional. This is a must use
setting.

Speed Up Your Code and Improve User Experience

You may already know that you can disable Automatic Calculation within Excel:

application.screenupdating = false

Then at the end of your procedure, re-enable it

Automatic Calculations

1. Re-enable screen updating

Sub Macro1()
 Application.ScreenUpdating = False

 Application.ScreenUpdating = True

End Sub

In this chapter we will introduce you to settings that will speed up your code and improve the user
experience. You should use these VBA commands over and over again in all of your procedures.

Notice how your screen flickers when a procedure runs? Excel is trying to update the display
based on the code running. This slows down your code substantially. You can disable it by adding
this to the top of your procedure:

application.screenupdating = false

Then at the end of your procedure, re-enable it:

Screen Updating

Chapter 8: Application Settings-Speed Up Your Code, Improve UI & More

CHAPTER

www.automateexcel.com/learn-vba-tutorial/

1 2 3 4 5 6 7 8 9 10

This stops Excel from calculating your workbook until you re-enable calculations or until you tell
Excel to calculate. Disabling auto calculations can make a huge difference in processing speed.

Add this to the beginning of your procedure:

Application.Calculation = xlManual

And make sure to re-enable auto calculations at the end of your procedure:

2. Re-enable automatic calculations (Hint: Use the previous code except change
Manual to Automatic)

Of course you need to be careful that you aren’t relying on calculated values from within your
code with calculations turned off. If you do, you’ll want to manually calculate the workbook with
this simple command:

Calculate

You can also calculate specific sheets or ranges by applying the .calculate method.

Sub Macro1()
Application.Calculation = xlManual

 Application.Calculation = xlAutomatic

End Sub

2. Re-enable automatic calculations (Hint: Use the previous code except change
Manual to Automatic)

Of course you need to be careful that you aren’t relying on calculated values from within your
code with calculations turned off. If you do, you’ll want to manually calculate the workbook with
this simple command:

Calculate

You can also calculate specific sheets or ranges by applying the .calculate method.

Sub Macro1()
Application.Calculation = xlManual

 Application.Calculation = xlAutomatic

End Sub

Chapter 8: Application Settings-Speed Up Your Code, Improve UI & More

CHAPTER

www.automateexcel.com/learn-vba-tutorial/

1 2 3 4 5 6 7 8 9 10

This will only slightly improve processing speed.

More useful though is the ability to set custom StatusBar messages:
 application.statusbar = “Custom Message”

3. Calculate only the worksheet “calcs”.

Sub Macro1()
Application.Calculation = xlManual

 Sheets(“calcs”).Calculate

End Sub

Status Bar
The StatusBar is in the lower left-hand corner of Excel

You can disable the status bar so that it doesn’t update while running code:
 application.displaystatusbar = false

4. Re-enable screen updating

5. Set the Status Bar to say “Step 1”

Sub Macro1()

 Application.DisplayStatusbar = True

End Sub

Sub Macro1()

 Application.Statusbar = “Step 1”

End Sub

Chapter 8: Application Settings-Speed Up Your Code, Improve UI & More

CHAPTER

www.automateexcel.com/learn-vba-tutorial/

1 2 3 4 5 6 7 8 9 10

Sub Macro1()
Application.EnableEvents = False

 Application.EnableEvents = True

End Sub

7. Re-enable the cancel key

Sub Macro1()
Application.EnableCancelKey = xlDisabled

 Application.EnableCancelKey = xlInterrupt

End Sub

Events
Earlier we introduced you to Events that you can use to trigger code (Event Procedures) to run.
These events can be great for the end-user, but while developing the workbook, you probably
want to disable them. Also, within your procedures you may need to disable events to avoid an
endless loop. For example, if you have a worksheet_change event that makes changes to that
same worksheet, your code will result in an endless loop. You will need to disable events to avoid
this.

To disable events:

 application.enableevents = false

6. Re-enable events.

You can pause code by pressing the ESC key or CTRL + Pause Break. You, as a developer wants
this ability, however, this is a prime opportunity for your users to screw something up. Don’t risk
it. Instead disable the cancel key at the beginning of your code:

Application.EnableCancelKey = xlDisabled

By setting it to xlInterrupt you can turn the cancel key back on again.

Cancel Key

Learn More
AutoMacro:
VBA Add-in with Hundreds of Ready-To-Use Code Examples,
Code Generators, and much more!

Chapter 9: Advanced Procedures, Variables and Functions

CHAPTER

www.automateexcel.com/learn-vba-tutorial/

1 2 3 4 5 6 7 8 9 10

CHAPTER 9

ADVANCED
PROCEDURES,

VARIABLES AND
FUNCTIONS

When you first start coding, you will probably create a single sub procedure that
completes your desired task from start to finish. As you become more sophisticated,

your code will be split across multiple procedures in different modules.

This section covers the different options available to you as your code becomes more
complex.

AutoMacro:VBA Add-in with Hundreds of Ready-To-
Use VBA Code Example & much more!

Learn More

Chapter 9: Advanced Procedures, Variables and Functions

CHAPTER

www.automateexcel.com/learn-vba-tutorial/

1 2 3 4 5 6 7 8 9 10

Calling Procedures
You can call a sub procedure from within another sub procedure:

Sub Macro1 ()
 Call Macro2
 End Sub

Sub Macro1()

 Call PasteData

End Sub

1. Call a procedure named “PasteData”.

Public m as long

End Sub

2. Declare a public long variable named “m”.

Earlier we talked about declaring variables within a procedure. A variable declared within a
procedure can’t be used outside of that procedure. If you need to use the same variable in
multiple procedures, you have two options. First, you can declare a Public variable by placing code
like this at the top of a module:

 Public variable_name as string

Where “variable_name” is the name of the variable you wish to declare. Of course you can declare
any type of variable: string, long, etc.

By declaring a Public Variable, you can use the variable in as many functions, or procedures as
you’d like. The variable value will be stored in memory, so if you assign a value to that variable in
one procedure, that value can be accessed in other procedures.

Public Variables

Chapter 9: Advanced Procedures, Variables and Functions

CHAPTER

www.automateexcel.com/learn-vba-tutorial/

1 2 3 4 5 6 7 8 9 10

Global Variables
Global and Public variables behave virtually identically. Global is a declaration used in earlier
versions of Visual Basic and has been kept for backwards compatibility. The Global declaration
won’t work in certain cases, whereas the Public declaration will always work. With that in mind,
we recommend using Public variables.

 Global variable_name as string

As an alternative to using Public variables, you can pass variables from one procedure to another.
In order to do so, first you need to prepare your procedure to accept variables:

sub Procedure2(n as long, str as string)

When declaring variables in this way, you do not need to add “dim” to the front of the declaration.

Now Procedure2 can accept an integer and a string as inputs when that procedure is called:

 Sub Procedure1 ()
 Call Procedure2 (23, “MJ”)
 End Sub

Passing Variables

3. Create a sub procedure named “convert” with input variables “name” (string) and
“count” (long)

Sub convert (name as String, count as Long)

End Sub

Remember the “ByVal” declaration from earlier (sections on Userforms and Events)? The ByVal
declaration locks in the variable value once it’s passed to the procedure. You will not be able to
change the variable value from within that procedure. Example:

sub Procedure2(ByVal n as long, ByVal str as string)

Use ByVal to prevent errors in situations where the variable value can not be changed

Chapter 9: Advanced Procedures, Variables and Functions

CHAPTER

www.automateexcel.com/learn-vba-tutorial/

1 2 3 4 5 6 7 8 9 10

Let’s look at an example where we want to calculate the maximum between two values.

Function MaxValue (a as long, b as long) as long
 If a >= b Then
 MaxValue = a
 Else
 MaxValue = b
 End If
 End Function

Here we’ve defined the function MaxValue. When we call this function, we need to specify two
numbers, a and b. The function will then check if a is greater or equal to b; if it is, the function will
return the value of a. If not, it will return the value of b.

Notice that to assign the result to the Function, you enter “Function Name = â€¦..”

Calling a function is a bit different from calling a sub. Because your function will return a value,
you will need to assign the function’s value to something (often a variable). Let’s look at how we
will call our MaxValue function from a sub.

Sub Macro1 ()
 TheMaximum = MaxValue(10,12)
 End Sub

Functions
So far we’ve only dealt with Sub Procedures. Function Procedures are very similar to Subs with
two main differences:

1. Functions return a value.
2. Functions can be used in Excel just like Excel’s built in functions (ex. vlookup)

You create Functions just like creating Subs, except you should declare the function as a variable
type (assuming you have option explicit enabled):

Function MaxValue (a as long, b as long) as long

Function GetCalc(a as Long) as Long

 End Function

End Sub

4. Create a “long” function named “GetCalc” with input variable “a” (as long).

Chapter 9: Advanced Procedures, Variables and Functions

CHAPTER

www.automateexcel.com/learn-vba-tutorial/

1 2 3 4 5 6 7 8 9 10

In this example, we will call the MaxValue function and check which of the values 10 or 12 is the
maximum. Then the value of 12 will be returned and stored in the variable TheMaximum.

The great thing about functions are that they don’t only work in the VBE. You can also call them
directly from your worksheet! After you’ve created the function above in a new module in the
VBE, go to you Excel worksheet and start by typing “=MaxValue”. Do you see your newly created
function?

Function MinValue (a as long, b as long) as long

 If a > b Then
 MinValue = b
 Else
 MinValue = a
 End If

 End Function

End Sub

5. Create a function to determine the minimum between the values a and b. Note:
you will need to use an if statement similar to the one used in the MaxValue
example. Call your function MinValue

Earlier we introduced you to Public variables. These are variables that may be used anywhere. By
default, all functions and procedures are also considered “public”. Public Functions can even be
used in an Excel workbook similar to Excel’s default functions.

Private variables, functions, and subs can only be used within the module where they reside. They
can’t be called by the user from the OPEN MACROS dialog box. To declare a private (module-
level) variable, make a declaration at the top of your module, similar to declaring a public (global)
variable:

 Private n as long

Private vs Public

Private str as String

End Sub

6. Declare a Private string variable named “str”

Chapter 9: Advanced Procedures, Variables and Functions

CHAPTER

www.automateexcel.com/learn-vba-tutorial/

1 2 3 4 5 6 7 8 9 10

To make a sub or function Private just add “Private” to the beginning of your procedure
declaration:

 Private Function TestFx (str) as string

Private Sub TestSub()

End Sub

7. Declare a Private sub procedure named “TestSub”

You can also make an entire module private by adding this to the top of your module:

Option Private Module

Try it for yourself:

Option Private Module

End Sub

8. Declare the module as private.

Learn More
AutoMacro:
VBA Add-in with Hundreds of Ready-To-Use Code Examples,
Code Generators, and much more!

Chapter 10: Arrays

CHAPTER

www.automateexcel.com/learn-vba-tutorial/

1 2 3 4 5 6 7 8 9 10

CHAPTER 10

ARRAYS
In broad programming terms, an Array is a series of objects of the same type. Usually

arrays are used to store sets of data. Think of arrays in a similar way to a series
of cells in an Excel worksheet. You can return values in an array by referencing its

position in the array, similar to how you can reference a cell based on its column and
row numbers.

Arrays are at the core of every programming language, but when working with Excel,
arrays aren’t necessary because you can store information within ranges of cells.

The primary advantage to using arrays is processing speed. Reading and writing to
ranges of cells in Excel is relatively very time-consuming. Reading and writing to

arrays is much faster.

AutoMacro:VBA Add-in with Hundreds of Ready-To-
Use VBA Code Example & much more!

Learn More

Chapter 10: Arrays

CHAPTER

www.automateexcel.com/learn-vba-tutorial/

1 2 3 4 5 6 7 8 9 10

Should you use arrays?
If you are concerned with speed and your code reads or writes large amounts of data to Excel, you
should consider using Arrays.

You declare Arrays similar to regular variables, except you must also declare the size of the array:

Dim data_arr (1 to 5) as Long

Above we wrote “1 to 5”, this tells VBA that our reference number for the items in the series are 1
through 5. Alternatively, you could write:

Dim data_arr (4) as Long

Why 4? Arrays by default start at 0. So when declaring array length in this manner you must
subtract 1 (5-1=4). So, in this case, the first item in the series will be 0 and the last item will be 4.

Intro to Static Single-Dimension Arrays

Sub Macro1()

 Dim arr (9) as long

End Sub

10. Declare a long array called “arr” of length 10 using the second method.

If you do use the second method, you can change VBA’s settings to start arrays at 1 instead of 0.
Make this declaration at the top of your module:

 Option Base 1

This option only applies to the module where the declaration resides

Option Base 1

End Sub

2. Make the declaration to start arrays at 1 instead of 0.

Chapter 10: Arrays

CHAPTER

www.automateexcel.com/learn-vba-tutorial/

1 2 3 4 5 6 7 8 9 10

We recommend always defining the upper and lower boundaries of the array, using the first
method that we discussed. By explicitly defining the ranges, you won’t make the mistake of
forgetting where the array starts.

Now that we have an array created:

 Dim arr(5 to 10) as string

We can assign values to the array:

 Arr(5) = “Steve”
 Arr(6) = “Jill”
 Arr(7) = “”Bill”
 Arr(8) = “Betty”
 Arr (9) = “Scott”

Sub Macro1()

 Dim arr(5 To 10) As String

End Sub

3. Declare a string array called “arr” with a lower bound of 5 and an upper
bound of 10.

Sub Macro1()
 Dim arr(5 To 10) As String

 Arr (10) = “Tom”

End Sub

4. Assign the value “Tom” to Arr (10

Imagine doing that for 100s of entries! Instead let’s use a loop and read values from a range in
Excel:

 For n = 5 to 10
 Arr (n) = cells(n-4,1).value
 Next n

This will read values from range(“a1:a6”) and put them into the array

Chapter 10: Arrays

CHAPTER

www.automateexcel.com/learn-vba-tutorial/

1 2 3 4 5 6 7 8 9 10

5. Populate the array with the values found in range(“c3:c8”) with a For Loop (i = 3
to 8).

Sub Macro1()
 Dim arr(1 To 6) As Variant

 For i = 3 to 8
 Arr (i-2) = cells(i,3).value
 Next i

End Sub

What if we want to pull values from the array? You can write the values to an Excel range, assign
the values to a variable, or display a message box.One option isYou can assign values to a variable:

 CEO_name = Arr(6)

Or display the value using a message box.

msgbox Arr(7)

6. Display the value in position 7 in a message box.

The previous examples only dealt with a single-dimension array, similar to a single row or column
in Excel. Let’s create an array with a second dimension:

 Dim arr(1 to 5, 1 to 2) as variant

This will create a 5 row and 2 column array.

Multi-dimensional Arrays

Sub Macro1()

 Dim Arr(1 to 3, 1 to 4) as variant

End Sub

7. Create a 3 row and 4 column array of type variant (variant allows for any type
of information to be stored in the array).

Chapter 10: Arrays

CHAPTER

www.automateexcel.com/learn-vba-tutorial/

1 2 3 4 5 6 7 8 9 10

Now we can populate our 3 row and 4 column array from a range in Excel:

 for x = 1 to 4
 For y = 1 to 3
 Arr(y,x) = Cells(y,x).value
 Next y
 Next x

Notice we need 2 different loops to populate the 2 different dimensions. We used x to move
horizontally and y to move vertically.

Learn More
AutoMacro:
VBA Add-in with Hundreds of Ready-To-Use Code Examples,
Code Generators, and much more!

	Button 11:
	Page 3:
	Page 5:
	Page 7:
	Page 9:
	Page 11:

	Button 12:
	Page 3:
	Page 5:
	Page 7:
	Page 9:
	Page 11:

	Button 75:
	Page 4:
	Page 6:
	Page 8:
	Page 10:

	Button 76:
	Page 4:
	Page 6:
	Page 8:
	Page 10:

	Button 88:
	Page 12:
	Page 14:
	Page 16:
	Page 18:
	Page 20:

	Button 89:
	Page 12:
	Page 14:
	Page 16:
	Page 18:
	Page 20:

	Button 86:
	Page 13:
	Page 15:
	Page 17:
	Page 19:

	Button 87:
	Page 13:
	Page 15:
	Page 17:
	Page 19:

	Button 90:
	Page 21:
	Page 23:
	Page 25:

	Button 91:
	Page 21:
	Page 23:
	Page 25:

	Button 92:
	Page 22:
	Page 24:
	Page 26:

	Button 93:
	Page 22:
	Page 24:
	Page 26:

	Button 94:
	Page 27:
	Page 29:
	Page 31:

	Button 95:
	Page 27:
	Page 29:
	Page 31:

	Button 96:
	Page 28:
	Page 30:

	Button 97:
	Page 28:
	Page 30:

	Button 100:
	Page 32:
	Page 34:
	Page 36:
	Page 38:
	Page 40:
	Page 42:

	Button 101:
	Page 32:
	Page 34:
	Page 36:
	Page 38:
	Page 40:
	Page 42:

	Button 98:
	Page 33:
	Page 35:
	Page 37:
	Page 39:
	Page 41:
	Page 43:

	Button 99:
	Page 33:
	Page 35:
	Page 37:
	Page 39:
	Page 41:
	Page 43:

	Button 104:
	Page 44:
	Page 46:
	Page 48:

	Button 105:
	Page 44:
	Page 46:
	Page 48:

	Button 102:
	Page 45:
	Page 47:
	Page 49:

	Button 103:
	Page 45:
	Page 47:
	Page 49:

	Button 108:
	Page 50:
	Page 52:
	Page 54:

	Button 109:
	Page 50:
	Page 52:
	Page 54:

	Button 106:
	Page 51:
	Page 53:
	Page 55:

	Button 107:
	Page 51:
	Page 53:
	Page 55:

	Button 112:
	Page 56:
	Page 58:

	Button 113:
	Page 56:
	Page 58:

	Button 110:
	Page 57:
	Page 59:

	Button 111:
	Page 57:
	Page 59:

	Button 116:
	Page 60:
	Page 62:
	Page 64:

	Button 117:
	Page 60:
	Page 62:
	Page 64:

	Button 114:
	Page 61:
	Page 63:
	Page 65:

	Button 115:
	Page 61:
	Page 63:
	Page 65:

	Button 120:
	Page 66:
	Page 68:
	Page 70:

	Button 121:
	Page 66:
	Page 68:
	Page 70:

	Button 118:
	Page 67:
	Page 69:

	Button 119:
	Page 67:
	Page 69:

