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1. FUNCTIONS

Introduction: 

     All scientists use Mathematics essentially to study relationships. Physicists, 

Chemists, Engineers, Biologists and Social scientists, all seek to discern connection 

among the various elements of their chosen fields and so to arrive at a clear understanding 

of why these elements behave the way they do. A function is a special case of a relation. 

     The famous mathematician Lejeune Dirichlet (1805-1859) defined a function 

as follows. A variable is a symbol which represents any one of a set of numbers; if two 

variables  

x and y  are so related that whenever a value is assigned to x  there is automatically 

assigned, by some rule or correspondence, a value to ,y  then we say y  is a (single 

valued) function of x that permissible values that x may assume constitute the domain of 

definition of the function and the values taken on by y  constitute the range of values of 

the function.   

     In this chapter we focus our attention on a special types of functions that play 

an important role in Mathematics and its many applications. Here we study its basic 

properties and then discuss several special types of functions.  

1.1 Types of Functions-Definitions: 
1.1.1 Definition (Function): 

     Let A  and B  be non-empty sets and f be a relation from A  to .B  If for 

each element ,a A∈  there exists a unique b B∈  such that ( , ) ,a b f∈  then f is 

called a function (or mapping) from (or  A  into )B A  to .B  It is denoted by 

: .f A B→  The set A  is called the domain of f  and B  is called the co-domain 

of .f  
 For example if :f A B→  is a function defined as ( ) 1f x x= +  and 

{ }1, 2,3 ,A =  then { }( ) 2,3, 4 .f A =

1.1.2 Note: 

 A relation f  from A  to B  ( . )i e f A B⊆ × is a function from A  to B   if for 

each element ,a A∈  there exists exactly one b B∈  such that ( , )a b f∈  and this b  

will be denoted by  ( ).f a In other words for each element ,a A∈  there exists a 

unique  ( )f a B∈  such that ( , ( )) .a f a f∈   

1.1.3 Definition (Image, Pre-Image): 

     If :f A B→  is a function and if ( ) ,f a b=   then  b  is called the image of  a

under f  or the f
−  image of  .a  The element a  is called the pre-image or inverse 

image  of  b  under f and it is denoted by 1( )f b
−

1.1.4 Examples: 

1. Example:    The relation { }2( , 1) /f x x x R= + ∈   is a function from R  to ,R
+  

since every x R∈  has association with unique element 2 1x +  in .R
+ The function 



 

2 

 

:f R R
+→  is given by 2( ) 1.f x x= +  

2. Example:    The relation 
1

( , ) /f x x R
x

 
= ∈ 
 

  is not a function from R  to ,R  

since there is no b R∈  such that (0, )b f∈  But 
1

( )f x
x

=  is a function from 

{ }0R R− →  since every { }0x R∈ −  has association with unique element in R  

 
1.1.5 Definition (range): 

        If :f A B→  is a function, then ( ),f A   the set of all f
−  images of elements 

in A    is called the range of  .f  Clearly { }( ) ( ) / .f A f a a A B= ∈ ⊆   

Also { }( ) / ( ) .f A b B b f a for some a A= ∈ = ∈   

1.1.6 Examples: 

1. Example:    Let :f N N→  be defined by ( ) 2 .f n n=    

              The range of ( )f f N= =  { }2 /n n N∈
 

                  Which is the set of all even natural numbers.  
 

 2. Example:    Let :f R R→  be defined by 2( ) .f x x=    

              The range of ( )f f R= =  { } [2 2/ 0, ) 0x x R x for all x R ∈ = ∞ ≥ ∈ ∵

 

1.1.7 Definition (Injection or one-one  function): 

        A function :f A B→  is called an injection or a one-one function if distinct 

elements of A  have distinct f
−  images in .B    

. :i e f A B→  is called an injection                                              
           1 2,a a A⇔ ∈  and 

1 2a a≠ implies that 1 2( ) ( )f a f a≠    

           1 2,a a A⇔ ∈  and 
1 2( ) ( )f a f a= implies that 

1 2a a=
 

1.1.8 Examples: 

1. Example:    Let { }, , ,A a b c d=  and  { }1, 2,3, 4,5 .B =
 

              If f = { }( ,3), ( ,5), ( ,1), ( , 4)a b c d  then f  is a function from A  into B  and 

for different elements in ,A  there are different f
−  images in .B  Hence f  is an 

injection.   

2. Example:    Let { }, ,A a b c=  and  { }1, 2,3, 4 .B =
 

              If g = { }( , 2), ( , 2), ( ,3)a b c  then g  is a function from A  into ,B  but 

( ) ( ).g a g b=  Hence g
 
is not an injection.   

3. Example:    Let :f R R→  be defined by ( ) 2 1.f x x= +    

              Then  f  is an injection since for any  
1 2,a a R∈  and 

1 2( ) ( )f a f a=
 

A B 

f  

1 

2 

3 

4 

a 

b 

 
d 

e 

c 
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1 22 1 2 1a a⇒ + = + ⇒  
1 2 .a a=  

4. Example:    Let :f R R→  be defined by 2( ) .f x x=  

 Then  f  is not an injection because  ( 1) 1 (1).f f− = =

5. Example:    Let { }, , ,A a b c d=  and  { }1, 2,3 .B =

     We can’t define an injection from A  into B  because at least two different 

elements in A  have the same f
−  images in .B   

1.1.9 Definition (Surjection or onto function): 

      A function :f A B→  is called a surjection or an onto function if the range 

of f  is equal to the co-domain of f   

. :i e f A B→  is called a surjection ⇔  range f  ( ) ( )f A B co domain= = −

 { }( ) /B f a a A⇔ = ∈

⇔  for every b B∈  there exists atleast one 

 a A∈    such that ( ) .f a b=

1.1.10 Examples: 

1. Example:    Let { }, , ,A a b c d=  and  { }1, 2,3 .B =

If f = { }( ,1), ( , 2), ( ,1), ( ,3)a b c d  then f  is a function from A  into B

and range f  { }( ) 1, 2,3 ( )f A B co domain= = = −  Hence f  is a surjection. Note

that f  is not an injection  

2. Example:    Let { }, , ,A a b c d=  and  { }1, 2,3 .B =

If g = { }( ,1), ( ,1), ( , 2), ( , 2)a b c d  then g  is a function from A  into B

and  range g  { }( ) 1, 2 ( )g A B co domain= = ≠ −  Hence g  is not a surjection. Note

that g  is not an injection  

3. Example:    Let { }3, 2, 1,1, 2,3A = − − −  and  { }1, 4,9 .B =  Let :f A B→  be

 defined by 2( )f x x x A= ∀ ∈

range f  { }( ) ( 3), ( 2), ( 1), (1), (2), (3)f A f f f f f f= = − − −  

     { }1, 4,9 ( )B co domain= = −  

Hence f  is a surjection. Note that f  is not an injection 

4. Example:    Let :f R R→  be defined by ( ) 2 1.f x x= +

 Then f  is a surjection since for any  ( )y R co domain∈ −  there exists 
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1

( )
2

y
x R domain

−
= ∈  such that 

1
( ) 2 1 2( ) 1

2

y
f x x y

−
= + = + =

 

             
 .i e  every element in the co-domain has a pre-image in the domain. Note  

                that f  is an injection too. 

1.1.11 Definition (Bijection): 

       If a function :f A B→  is both an injection and a surjection then f  is said to 

be a bijection or one-to-one from A  onto .B   

. :i e f A B→  is a bijection ⇔  :f A B→  is both an injection and a surjection
 

                                      1 2,a a A⇔ ∈  and 
1 2( ) ( )f a f a= implies that 

1 2a a=    

                                      
⇔  for every b B∈  there exists atleast one a A∈   

                                                            such that ( ) .f a b=
  

1.1.12 Examples: 

1. Example:    Let :f R R→  be defined by ( ) 2 1,f x x= +   then from examples 

                3(1.1.8) and 4(1.1.10), f  is a bijection. 

2. Example:    Let :f N N→  be defined by ( ) 2 1.f x x= +    

                        Then  f  is an injection since for any  
1 2,a a N∈  and 

1 2( ) ( )f a f a=
 

                        1 22 1 2 1a a⇒ + = + ⇒  
1 2 .a a=   

                   range f  { } { }( ) (1), (2), (3),... 3, 4,5,...f N f f f= = = ( )N co domain≠ −  

                Hence f  is not a surjection. Observe that the natural numbers 1,2 in the 

                   co-domain N of f has no pre- image in the domain .N  

1.1.13   Definition (Equality of functions): 

        Let f   and g  be functions. We say that  f   and g  are equal and write 

f g=  if   domain of  f =  domain of  g   and ( ) ( )f x g x=  for all x ∈  domain of  

.f    

1.1.14 Example: 

               Let 2( ) 2f x x x= −  and ( ) 6g x x= − +   

                        ( ) ( )f x g x= ⇔  2 2 6x x x− = − + 2 6 0x x⇔ − − =
 

                                                         
( 3)( 2) 0x x⇔ − + = 3, 2x x⇔ = = −

 

              ( )f x   and ( )g x  are equal  on the  domain { }2,3−  

1.1.15   Definition (Constant function): 

           A function  :f A B→   is said to be a constant function, if  the  range of f   

contains exactly one element, . ( )i e f x c=  for all ,x A∈  for some fixed .c B∈   
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1.1.16 Example: 

               Let { }, , ,A a b c d=  and { }1, 2,3, 4,5B =
 

If f = { }( ,1), ( ,1), ( ,1), ( ,1)a b c d  then f  is a constant function from A  into .B   

1.1.17   Definition (Identity function): 

           Let A  be non-empty set. Then the function  :f A A→   defined by 

( )f x x=  for all x A∈  is called the identity function on A  and is denoted by .AI  

1.1.18 Example: 

               If { }, , ,A a b c=  then { }( , ), ( , ), ( , )
A

I a a b b c c=
 

1.2 Inverse Functions and Theorems: 

                  If f  is a relation from A  to ,B  then the relation { }( , ) / ( , )b a a b f∈  is  

denoted by 1.f
−

  

1.2.1 Definition (Inverse Function): 

                   If :f A B→  is a bijection, then the relation { }1 ( , ) / ( , )f b a a b f
− = ∈  is a  

          Function from  B  to A  and is called the inverse of .f  

1.2.2 Examples: 

        1. Example:    If { }1, 2,3A =  and  { }, ,B a b c=  then { }(1, ), (2, ), (3, )f a c b= is a 

               bijection from A  to B  and { }1 ( ,1), ( ,3), ( , 2)f a b c
− = is a bijection from B  to A  

       2. Example: If { }1, 2,3A =  and { }, , ,B a b c d=  then { }(1, ), (2, ), (3, )f a c b= is an 

injection but not a surjection, and { }1 ( ,1), ( ,3), ( , 2)f a b c− = is a relation from B to A  

 but not a function because d B∈  has no 1
f

−  images in .A  

       3. Example:    If { }1, 2,3A =  and { },B a b=  then { }(1, ), (2, ), (3, )f a b a= is a 

               surjection but not an injection, and { }1 ( ,1), ( , 2), ( ,3)f a b a− = is a relation from B

to A  but not a function because a B∈  has two 1
f

−  images in .A  

1.2.3 Definition (Composite Function): 

            If : ,f A B→ : ,g B C→ then the  

 relation ( )( ){ }, ( ) /a g f a a A∈  is called 

 composite of g  with f and is denoted as .g f�   

g f�

A 
B 

C 

f

g  

f  
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  1.2.4 Theorem:   

 Let :f A B→  and :g B C→ be functions. Then g f�  is a function from A  to 

C  and ( ) ( )( ) ( )g f a g f a=�   for all .a A∈  

   Proof:  Given :f A B→  and :g B C→ are functions. 

 To prove g f�  is a function from A  to C  and ( ) ( )( ) ( )g f a g f a=�  .a A∀ ∈
 

 Let a A∈  

Since  f  is a function from A  to B  then  ( )f a B∈   for all .a A∈  

Since  g  is a function from B  to C  then  ( )( ) .g f a C∈    

Hence g f�  is a relation from A  to .C  Further, given a A∈  there is one and 

only 

element c  in ,C  namely ( )( )g f a  such that ( , ) .a c g f∈ �   

Hence g f�  is a function from A  to C and ( ) ( )( ) ( )g f a g f a=� .a A∀ ∈  

  1.2.5 Theorem:   

          Let :f A B→  and :g B C→ be injections. Then :g f A C→�  is an 

injection.  

   Proof:  Given :f A B→  and :g B C→ are injections. 

 To prove :g f A C→�  is an injection. 

 Let 1 2,a a A∈  such that ( ) ( )1 2( ) ( )g f a g f a=� �  ( ) ( )1 2( ) ( )g f a g f a⇒ =
 

                                            
1 2( ) ( )f a f a⇒ =

 
[ since g  is an injection] 

                                      1 2a a⇒ =
            

[ since f  is an injection] 

∴  :g f A C→�  is an injection.  

  1.2.6 Theorem:   

           Let :f A B→  and :g B C→ be functions such that  :g f A C→�  is an 

 injection. Then :f A B→  is an injection. 

Proof:  Given :f A B→  and :g B C→ are functions such that  :g f A C→�  is 

an injection 

                To prove :f A B→  is an injection. 

                Let 1 2,a a A∈  such that
1 2( ) ( )f a f a=  then ( ) ( )1 2( ) ( )g f a g f a=

 
                                            ( ) ( )1 2( ) ( )g f a g f a⇒ =� �

          
 

                                      1 2a a⇒ =
       

[ since g f�  is an injection] 

∴  :f A B→  is an injection.  

  1.2.7 Note:   

           Let :f A B→  and :g B C→ are functions such that  :g f A C→�  is an 

 injection. Then :g B C→  need not be an injection. 

  For example, Let { }1, 2 ,A = { }, , ,B a b c= { }, ,C d e= { }(1, ), (2, )f a b=  and 
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{ }( , ), ( , ), ( , )g a d b e c e=  then { }(1, ), (2, )g f d e=�  

Hence g f�  is an injection but g  is not an injection. However if g f�  is an 

injection then necessarily f  is an injection. 

 1.2.8 Theorem:   

         Let :f A B→  and :g B C→ be surjections. Then :g f A C→�  is a 

surjection.  

   Proof:  Given :f A B→  and :g B C→ are surjections. 

 To prove :g f A C→�  is a surjection. 

 Let ,c C∈  since :g B C→  is a surjection then there exists b B∈  such that

( ) .g b c=  
 For b B∈ and :f A B→  is a surjection then there exists a A∈  such that

( ) .f a b=  

( ) ( )( ) ( ) ( )c g b g f a g f a∴ = = = �  

∴  For each c C∈  there exists a A∈  such that ( ) ( ) .g f a c=�   

Hence :g f A C→�  is a surjection. 

  1.2.9 Theorem:   

           Let :f A B→  and :g B C→ be functions such that  :g f A C→�  is a 

surjection. Then :g B C→  is a surjection. 

Proof:  Given :f A B→  and :g B C→ are functions such that  :g f A C→�  is 

a surjection  

 To prove :f A B→  is a surjection. 

 Let ,c C∈  since :g f A C→�  is a surjection then there exists a A∈  such that 

                ( ) ( )g f a c=� ( )( ) .g f a c⇒ =  

              
Let ( ).b f a=  Then ( )f a b B= ∈  and ( ) .g b c=

 
       ∴  For each c C∈  there exists b B∈  such that ( ) .g b c=                                      

     ∴  :g B C→  is a surjection.  

1.2.10 Note:   

           Let :f A B→  and :g B C→ be functions such that  :g f A C→�  is a 

 surjection. Then :f A B→  need not be a surjection. In note 1.2.7 g f� is a 

surjection but f  is not a surjection. However if g f�  is a surjection then 

necessarily g  is a surjection. 

1.2.11 Theorem:   

          Let :f A B→  and :g B C→ be bijections. Then :g f A C→�  is a 

bijection.  

   Proof:  This is a consequence of Theorems 1.2.5 and 1.2.8.    



 

8 

 

1.2.12 Theorem:   

          Let :f A B→  and :g B C→ be bijections. Then ( )
1 1 1.g f f g

− − −
=� �   

   Proof:  Given :f A B→  and :g B C→ are bijections. 

       To prove ( )
1 1 1.g f f g

− − −
=� �   

                   Since :f A B→  and :g B C→ are bijections, then by Theorem 1.2.11 

                  :g f A C→�  is a bijection. Hence ( )
1
:g f C A

−
→�  is a bijection.  

                   Further, 1 :f B A
− →  and 1 :g C B

− → are also bijections. 

                  Hence 1 1 :f g C A
− − →�  is a bijection. 

           Therefore the functions ( )
1

g f
−

�  and 1 1
f g

− −
�  have same domain and co- domain. 

 Let ,c C∈  since :g B C→  is a bijjection then there exists a unique b B∈  such 

                that ( )g b c= 1( ) .g c b−⇒ =  

 Let ,b B∈  since :f A B→  is a bijjection then there exists a unique a A∈  such 

                that ( )f a b= 1( ) .f b a
−⇒ =  

            Thus ( )c g b= = ( )( )g f a = ( ) ( )g f a� ( )
1
( )g f c a

−
⇒ =�  

             Now ( ) ( )1 1 1 1 1( ) ( ) ( )f g c f g c f b a− − − − −= = =�  

Hence ( )
1 1 1.g f f g

− − −
=� �   

1.2.13 Theorem:   

          The identity function :AI A A→  is a bijection and  1 .
A A

I I
− =   

   Proof:  Given :AI A A→  is a function. 

       To prove :AI A A→  is a bijection and  1 .
A A

I I
− =   

                   We have { }( , ) /
A

I a a a A= ∈   

                  Given a A∈  we have ( ) .AI a a=  Hence AI  is a surjection. 

                  Let 1 2,a a A∈  such that
1 2( ) ( )A AI a I a=  then 

1 2 .a a=  Hence AI  is an injection.
 

∴  :AI A A→  is a bijection and 1 .
A A

I I− =  

1.2.14 Theorem:   

g f�

 

B 

C 

A 

f

g

f
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          Let : ,f A B→ AI  and BI be identity functions on A  and B  respectively. 

   Then .A Bf I f I f= =� �   

   Proof:  Given :f A B→  is a function. Also given that AI  and BI be identity functions      

            on A  and B  respectively. :AI A A→  and :BI B B→  are identity functions. 

To prove .A Bf I f I f= =� �   

          Since :f A B→  and :AI A A→ are functions, then :Af I A B→�  is a  function. 

          Therefore the functions Af I�  and f  have same domain and co-domain. 

Let ,a A∈  then that ( ) ( ) [ ]( ) ( ) ( ) ( )
A A A

f I a f I a f a I a a a A= = = ∀ ∈� ∵  

                (I)Af I f∴ =�  

            Since :f A B→  and :BI B B→ are functions, then :BI f A B→�  is a function.  

            Therefore the functions 
BI f�  and f  have same domain and co-domain. 

Let ,a A∈  then that ( ) ( ) [ ]( ) ( ) ( ) : ( )
B B

I f a I f a f a f A B f a B= = → ⇒ ∈� ∵  

                (II)BI f f∴ =�  

From (I)  and (II)   we have .A Bf I f I f= =� �
 

1.2.15 Theorem:   

Let :f A B→  be a bijection. Then 1

B
f f I− =�  and 1 .

A
f f I− =�  

Proof:  Given :f A B→  is a bijection.  

       To prove  1

B
f f I

−
=�  and 1

.
A

f f I
−

=�   

                   Since :f A B→  is a bijection then 1 :f B A
− →  is also a bijection.  

                   Hence 
1 :f f B B

− →�  and 1 :f f A A
− →� are bijections.  

                   We have :BI B B→ and :AI A A→  are bijections. 

                   Therefore the functions 1
f f

−
�  and 

BI  have same domain and co-domain. 

       Let ,b B∈  since :f A B→  is a bijjection then there exists a unique a A∈    

 

      such that ( )f a b= 1( ) .f b a−⇒ =  

                  Thus ( ) ( )1 1( ) ( ) ( ) ( ).
B

f f b f f b f a b I b− −= = = =�  

                                 1

B
f f I−∴ =�  

                  The functions 1
f f

−
�  and AI  have same domain and co-domain. 

B 

A 

A 

f

 

1
f

−1
f f

−
�
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   We have ( ) ( )1 1 1( ) ( ) ( ) ( ).Af f a f f a f b a I a
− − −= = = =�  

                1

Af f I−∴ =�  

1.2.16 Theorem:   

Let : , :f A B g B C→ →  and : .h C D→ Then ( ) ( ) .h g f h g f=� � � �  
Proof:  Given : , :f A B g B C→ →  and :h C D→ are functions.  

  To prove  ( ) ( ) .h g f h g f=� � � �   

            Since : , :f A B g B C→ →  are functions then :g f A C→�  is a function.  

           Since : , :g f A C h C D→ →�  is a function then ( ) :h g f A D→� �  is a function. 

            Further : , :g B C h C D→ →  :h g B D⇒ →�   is a function. 

            Also : , :f A B h g B D→ →�  ( ) :h g f A D⇒ →� �  is a function. 

            Hence the functions ( )h g f� �  and ( )h g f� �  have same domain and co- domain. 

   Let ,a A∈   

   Now  ( ) ( ) ( )( ) ( ) ( )h g f a h g f a h g f a= =          � � �  

                                                  ( )( ) ( )( ) ( ).h g f a h g f a= =   � � �  

                                 ( ) ( )h g f h g f∴ =� � � �  

1.3  Real valued Functions(Domain, Range and Inverse): 

                  If X  is any set and :f X R→  then f is called a real valued function. 

            For example, Let , , , ,
a b

X a b c d R
c d

  
= ∈  

  
  define :f X R→  by 

( ) detf A A= ,A X∀ ∈  then f is a real valued function. 

                     In this section a function f  is defined through a formula, without 

mentioning the domain and the range explicitly. In such cases, the domain of f  is taken 

to be the set of all real x  for which the formula is meaningful. The range of f  is the set             

{ }( ) .f x x is in the domain of f  

  Definition ( th
n root of a non-negative real number): 

                   Let x  be a non-negative real number and n  be a positive integer. Then there 

exists a unique non-negative real number y  such that .n
y x=  This number y  is called  

th
n root of x  and is denoted by 1/ n

x  or  .n x  

          When 2,n =  2 x is called the square root of .x  
2 x is simply written as .x  
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1.3.1   Algebra of real valued functions: 

                If f  and g are real valued functions with domains A  and B respectively, then 

both f  and g are defined on A B∩  when .A B φ∩ ≠   defined through a formula 

(i) If :f A R→  and :g B R→ are functions such that .A B φ∩ ≠  We define  

 :f g A B R+ ∩ → as ( )( ) ( ) ( ) .f g x f x g x x A B+ = + ∀ ∈ ∩   

(ii)  If :f A R→  and :g B R→ are functions such that .A B φ∩ ≠  We define  

 :f g A B R− ∩ → as ( )( ) ( ) ( ) .f g x f x g x x A B− = − ∀ ∈ ∩   

(iii) If :f A R→  and :g B R→ are functions such that .A B φ∩ ≠  We define  

 :fg A B R∩ → as ( )( ) ( ). ( ) .fg x f x g x x A B= ∀ ∈ ∩   

(iv) If :f A R→  and :g B R→ are functions such that 

{ }/ ( ) 0 .E x A B g x φ= ∈ ∩ ≠ ≠  We define :
f

E R
g

→  as 

( )
( ) .

( )

f f x
x x E

g g x

 
= ∀ ∈ 

 
 

(v) If :f A R→  and .c R∈ We define :cf A R→ as ( )( ) ( ) .cf x cf x x A= ∀ ∈  

(vi) If :f A R→  and .n N∈ We define :n
f A R→ as ( )( ) ( ) .

nn
f x f x x A= ∀ ∈  

(vii) If :f A R→  and { }/ ( ) 0 .E x A f x φ= ∈ ≥ ≠  We define :f E R→  as 

( ) ( ) ( ) .f x f x x E= ∀ ∈  

 

1.3.2 Some more types of functions: 

1. Even and odd functions: 

Let A  be a nonempty subset of R such that x A− ∈ for all x A∈  and 

:f A R→  

(i) If ( ) ( )f x f x− =  for any x A∈ then f  is called an even function.  

(ii) If ( ) ( )f x f x− = −  for any x A∈ then f  is called an odd function. 

Examples: 

(i) 2( ) , ( ) cos , ( )f x x g x x h x x= = =  for any x R∈ are all even functions. 

(ii) ( ) , ( ) sin , ( ) tanf x x g x x h x x= = =  for any x R∈ are all odd functions. 

(iii) 2 3( ) , ( ) cos sinf x x x g x x x= + = +  for any x R∈ are neither even nor 

odd functions. 

 

2. Polynomial  function: 

          If n  be a nonnegative integer, 0 1 2, , ,... na a a a are real numbers(at least 

one 0)ia ≠ then the function f defined on R by 
2

0 1 2( ) ... n

n
f x a a x a x a x= + + + +  for all x R∈  is called a polynomial function. 

Examples: 

                      
2( ) ( )i f x ax bx c= + +  for any , ,a b c R∈ is a polynomial function. 
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2( ) ( )ii g x ax bx c= + +  is a polynomial function. 

                              
( ) ( ) (0 )iii h x k k R= ≠ ∈  is a polynomial function 

3. Rational  function: 

                          If f  and g are polynomial functions and ( ) 0g x ≠  for all x R∈  then the  

                  function 
f

g
defined by 

( )
( )

( )

f f x
x

g g x

 
= 

 
  is called a rational function. 

Examples: 

                      

2

2

3 2
( ) ( )

1

x x
i f x

x

− +
=

+
 is a rational function. 

                      { }
1

( ) ( ) , 0ii g x x R
x

= ∈ −  is a rational function. 

4. Algebraic  function: 

                          A function obtained by applying a finite number of algebraic operations 

on polynomial functions is called an algebraic function 

                   

Examples: 

                      [ ] { }( )
2 216

( ) ( ) , 4,4 1
1

x x
i f x x

x

+ −
= ∈ − − −

+
 is an algebraic function. 

                      
2( ) ( ) 3 5 6, (2,3)ii g x x x x x R= + − + ∈ −  is an algebraic function. 

5. Exponential  function: 

                          The function xa  when 1 0a≠ > and x  is rational is called an exponential  

                     function. The domain of xa  is R  and range is .R+   

Examples: 

                      ( ) ( ) 3 ,x
i f x x R= ∈  is an an exponential function 

                      ( ) ( ) 2 ,xii g x x R−= ∈  is an exponential function 

               Graph of  Exponential function:  

 

 

 

Y 

X O 

, ( 1)
x

y a a= =

 

X O 

Y 

, ( 1)x
y a a= >

 

O X 

Y 

, (0 1)xy a a= < <
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6. Logarithmic function: 

                          If 0, 1a a> ≠  given 0y >  there is a unique x R∈ such that  .xa y=  This 

                function defined on R
+  by ( ) ,f y x=  where ,xa y=  is called the logarithmic  

                 function to the base a and is denoted by  log .a   Thus loga y x=  iff  .xa y=      

            The logarithmic function to the  base e  is called the natural logarithmic function  

                and is denoted by loge  or ln .  Thus loge y x=  iff  .xe y=  The range is .R  

               Graph of  Logarithmic function: 

 

 

 

 

 

 

 

 

 

7. Greatest Integer function: 

                          For any real number ,x we denote by [ ],x  the greatest integer less than or  

              equal to .x  For example [ ] [ ] [ ] [ ]2.45 2, 0.47 0, 0.36 1, 3.56 4.= = − = − − = −  

                       The function :f R R→ defined by [ ]( )f x x=  for all x R∈  is called the 

                greatest integer function. The domain of [ ]x  is R  and range is .Z  

              Graph of  Greatest Integer function: 

 

 

 

 

X 

Y 

4 

0 

2 3 4 

1 

2 

3 

   1 -1 -2 -3 
-1 

-2 

-3 

X 

Y 

O 

log , ( 1)ay x a= >

 

X 

O 

Y 

log , (0 1)
a

y x a= < <
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8. Modulus  function: 

                       The function :f R R→ defined by ( )f x x=  for all x R∈  is called the 

              modulus function. For any non-negative real number ,x  ( )f x  is equal to .x    

              But for negative real number ,x  ( )f x  is equal to .x−   For example  

                  2 2, 4 4.= − =
        

0
. ( ) .

0

x if x
i e f x

x if x

≥
= 

− <
 

                The domain of x  is R  and range is [0, )∞
 

Graph of  Modulus function: 

 

 

 
9. Signum  function: 

                       The function :f R R→ defined by 

1 0

( ) 0 0

1 0

if x
x

f x if x
x

if x

>


= = =
− <

 for all x R∈  

is called the signum function. It is denoted by sgn( ).x                 

  The domain of sgn( )x  is R  and range is { }1,0,1 .−
 

           Graph of  Signum function: 

 

 

 

 

 

 

 

1.3.4 Solved Problems:  

1. Problem: If 0, , , ,
6 4 3 2

A
π π π π 

=  
 

and :f A B→ is onto such that ( ) cosf x x=  

then  

                    find  B   

           Solution: Given :f A B→ is onto such that ( ) cosf x x=  
          

1 

Y 

Y
I 

-1 

X
’I X 

Y=-1 

Y=1 

O 

y x=

O 

X 

Y 
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        Also given 0, , , ,

6 4 3 2
A

π π π π 
=  
    

                      We have (0) cos 0 1,f = =
3

( ) cos ,
6 6 2

f
π π

= =
1

( ) cos ,
4 4 2

f
π π

= =  

                     
1

( ) cos ,
3 3 2

f
π π

= = ( ) cos 0.
2 2

f
π π

= =  

                 
1 1 3

0, , , ,1
2 22

B
  

∴ =  
  

 

 2. Problem:  If { }2, 1,0,1, 2A = − − and :f A B→ is onto such that 2( ) 1f x x x= + +  

             then find  B   

      Solution: Given :f A B→ is onto such that 2( ) 1f x x x= + +  
          

                     
        Also given { }2, 1,0,1, 2A = − −   

                      We have 2( 2) ( 2) ( 2) 1 4 2 1 3,f − = − + − + = − + =
 

                               

2( 1) ( 1) ( 1) 1 1 1 1 1,f − = − + − + = − + = 2(0) (0) (0) 1 0 0 1 1,f = + + = + + =  

                     2(1) (1) (1) 1 1 1 1 3,f = + + = + + = 2(2) (2) (2) 1 4 2 1 7.f = + + = + + =  

                 { }1,3,7B∴ =  

3. Problem: If { }(1, 2), (2, 3), (3,1)f = − then find  ( )2i f
2( )ii f ( ) 2iii f + ( )iv f                   

Solution: Given { }(1, 2), (2, 3), (3,1)f = −
 

                      
Now  { }( )2 (1, 4), (2, 6), (3, 2)i f = −  { }2( ) (1, 4), (2,9), (3,1)ii f =

  

                                  
{ }( ) 2 (1, 4), (2, 1), (3,3)iii f + = −

    

                         
( )iv since (2) 3f = − f  does not exists 

4. Problem: If { }(4,5), (5,6), (6, 4)f = − and { }(4, 4), (6,5), (8,5)g = −  then find   

              ( )i f g+ ( )ii f g− ( )2 4iii f g+ ( ) 4iv f + ( )v fg ( ) /vi f g ( )vii f  

          ( )viii f
2( )ix f 3( )x f  

 Solution: Given { }(4,5), (5,6), (6, 4)f = − and { }(4, 4), (6,5), (8,5)g = −
 

                      
Now  { }( ) (4,1)i f g+ =  { }( ) (4,9)ii f g− =

 
{ }( )2 4 (4, 6)iii f g+ = −
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{ }( ) 4 (4,9), (5,10), (6,0)iv f + = { }( ) (4, 20)v fg = − { }( ) / (4, 5 / 4)vi f g = −

 

                    
{ }( ) (4,5), (5,6), (6, 4)vii f =

  
( )viii since (6) 4,f = − f  does not exists  

                           
{ }2( ) (4,25),(5,36), (6,16)ix f =    { }3( ) (4,125),(5, 216), (6, 64)x f = −             

5. Problem: If ( ) 2 1f x x= − and 2( )g x x=  then find  ( )(3 2 )i f g x− ( )( )ii fg x  

              ( )( 2)iii f g x+ + ( )( / )iv f g x  

    Solution: Given ( ) 2 1f x x= − and 2( )g x x=
 

                        Now  ( )(3 2 ) 3 ( ) 2 ( )i f g x f x g x− = −  
2 23(2 1) 2( ) 6 3 2 ,x x x x= − − = − −  

                             
2 3 2( )( )( ) ( ) ( ) (2 1)( ) 2ii fg x f x g x x x x x= = − = −

  

                                        

2 2( )( 2)( ) ( ) ( ) 2 2 1 2 2 1iii f g x f x g x x x x x+ + = + + = − + + = + +

     

                            
( )iv

2( / ) ( ) ( ) 2 1f g x f x g x x x= = −  
 

6. Problem: If 
2

2

1
( )

1

x
f x

x

−
=

+
 then show that  (tan ) cos 2 .f θ θ=  

   Solution: Given 
2

2

1
( )

1

x
f x

x

−
=

+   

                        Now  
2 2

2 2

1 (tan ) 1 tan
L.H.S (tan ) cos 2 R.H.S

1 (tan ) 1 tan
f

θ θ
θ θ

θ θ

− −
= = = = =

+ +  

7. Problem: If 
1

( ) log
1

x
f x

x

−
=

+
 then show that  

2

2
( ) 2 ( ).
1

x
f f x

x
=

+
 

Solution: Given 
1

( ) log
1

x
f x

x

−
=

+   

                        Now    

2

2 2

22

2 2

2 1 2
1

2 1 1L.H.S ( ) log log
2 1 21

1
1 1

x x x

x x xf
x x xx

x x

+ −
−

+ += = =
+ ++

+
+ +

    

                                                     

22 2

2 2

1 2 (1 ) 1
log log log

1 2 (1 ) 1

x x x x

x x x x

+ − − −
= = =

+ + + +        

                                                    

1
2 log 2 ( ) R.H.S

1

x
f x

x

−
= = =

+                          
 

8. Problem: If ( ) 4 1f x x= − and 2( ) 2g x x= +  then find   
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              ( )( )i g f x� ( )( ( ))ii g f f x� �

1
( )( )

4

a
iii g f

+ 
 
 

� ( )( )iv f f x�  

    Solution: Given ( ) 4 1f x x= − and 2( ) 2g x x= +
 

                        Now  ( )( )( ) ( ) (4 1)i g f x g f x g x= = − =�  
2(4 1) 2x − +

 

                                                              

2 216 8 1 2 16 8 3x x x x= − + + = − +  

                             ( )( ) ( )( )( )( ( )) ( ) 4 1ii g f f x g f f x g f x= = −� �

  

                                                 
( )( )4 4 1 1g x= − − ( )( )16 4 1g x= − − ( )16 5g x= −

 

                                                 
( )

2
16 5 2x= − + ( )2256 160 25 2x x= − + +

2256 160 27x x= − +

 

                                        

1 1
( )( )

4 4

a a
iii g f g f

+  +    
=    

    
�

 

1
4 1

4

a
g
 +  

= −  
    

                                                                             
( ) ( ) 2( 1) 1 2g a g a a= + − = = +

 

                            
( )iv ( )f f x�  ( ) ( )( ) 4 1f f x f x= = − ( )4 4 1 1x= − −

 

                                                                   
16 4 1 16 5x x= − − = −

 

9. Problem: If ( ) 2,f x =  
2( )g x x= and ( ) 2h x x=  then find  ( ( ))f g h x� �  

Solution: Given ( ) 2,f x =
2( )g x x= and ( ) 2h x x=                      

                ( ( ))f g h x� � (( )) (( ( ( )))f g h x f g h x= = =� (( (2 ))f g x =
2 2((2 ) ) (4 )f x f x= 2=

 

  10. Problem: If ( )f x ax b= +  then find  1( )f x−  

 Solution: Given ( )f x ax b= +
 

                           
Put ( )f x y= ax b y⇒ + =  ax y b⇒ = −

 

                                              

y b
x

a

−
⇒ =  1 1( ) ( ) ( )

y b
f y f x y x f y

a

− −−
 ⇒ = = ⇒ = ∵  

                                1( )
x b

f x
a

− −
∴ =

 

11. Problem: If ( ) 5xf x =  then find  1( )f x−
 

Solution: Given ( ) 5xf x =
 

                           
Put ( )f x y= 5x y⇒ =  5logx y⇒ =
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 1 1

5( ) log ( ) ( )f y y f x y x f y
− − ⇒ = = ⇒ = ∵  

                                1

5( ) logf x x−∴ =
 

  12. Problem: If ( ) 4 1f x x= − and 2( ) 2g x x= +  then find 1( ) ( )f g x−
�  

       Solution: Given ( ) 4 1f x x= − and 2( ) 2g x x= +
 

                        Now  ( ) 2( ) ( ) ( 2)f g x f g x f x= = + =�  
24( 2) 1x + −

 

                                                              

2 24 8 1 4 7x x= + − = +  

                                       Put ( )( )f g x y=�
24 7x y⇒ + =  24 7x y⇒ = − 2 7

4

y
x

−
⇒ =

 

                            

7

4

y
x

−
⇒ =      

                       1 17
( ) ( ) ( )( ) ( ) ( )

4

y
f g y f g x y x f g y

− −−
 ⇒ = = ⇒ = � ∵ � �  

                                1 7
( ) ( )

4

x
f g x− −

∴ =�

 

  13. Problem: If 
1

( )
1

x
f x

x

+
=

−
and 2( ) 2g x x= +  then find ( )( )f g x�  

       Solution: Given 
1

( )
1

x
f x

x

+
=

−
and 2( ) 2g x x= +

 

                        Now  ( ) 2( ) ( ) ( 2)f g x f g x f x= = + =�  

2 2

2 2

2 1 3

2 1 1

x x

x x

+ + +
=

+ − +  

14. Problem: If 
1

( )f x
x

= and ( )g x x=  then find ( )( )g f x� and ( )( )g f x  

       Solution: Given 
1

( )f x
x

= and ( )g x x=
 

                        Now  ( )
1

( ) ( ) ( )g f x g f x g
x

= = =�  
1 1

x x
=

 

                      Also 
1

( )( ) ( ) ( ) ( ) 1g f x g x f x x
x

= = =   

  15. Problem: If { }1, 2,3, 4A = and :f A B→ is defined by 
2 1

( )
1

x x
f x

x

− +
=

+
 then Find      

range of  f                      
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           Solution: Given :f A B→ is onto such that 
2 1

( )
1

x x
f x

x

− +
=

+
 
          

                  
Also given { }1, 2,3, 4A =   

                      We have 
21 1 1 1 1 1 1

(1) ,
1 1 2 2

f
− + − +

= = =
+

22 2 1 4 2 1 3
(2) 1,

2 1 3 3
f

− + − +
= = = =

+  

                               

23 3 1 9 3 1 7
(3) ,

3 1 4 4
f

− + − +
= = =

+

24 4 1 16 4 1 13
(4)

4 1 5 5
f

− + − +
= = =

+
 

                 ∴  Range of  f  
1 13 7

( ) ,1, ,
2 5 4

f A
 

= =  
                                          

 

                                   Exercise 1 

1. If ( ) xf x e= and ( ) log ,eg x x=  then show that g f f g=� � and find 1f − and 1.g−

 

2. If ( ) 2 1f x x= − and 
1

( ) ,
2

x
g x x R

+
= ∀ ∈  then find ( ) ( ).g f x�

  

3. If : ,f R R→ :g R R→ are defined by ( ) 3 1f x x= − and 2( ) 1g x x= +  then find   

      ( )( )i g f x�

   
( )( ) (2)ii g f�

  

( ) 2( ) ( 1)iii f f x +�  

4. If : ,f R R→ :g R R→ are defined by ( ) 3 2f x x= − and 2( ) 1g x x= +  then find   

      1( )( )(2)i g f −
�

   
( )( ) ( 1)ii g f x −�

  

( )( ) (2 3)iii g f a −�  

 5. If : ,f R R→ :g R R→ are defined by ( ) 2 3f x x= − and 3( ) 5g x x= +  then find   

      ( )( )(1)i g f�
   ( )1( ) (2)ii g f −

�

  

( )( ) ( )iii f g x�  

6. If { }(1, ), (2, ), (3, ), (4, )f a c b d=  and { }1 (1, ), (2, ), (3, ), (4, )g c a d b
− =  then find   

      1 1( )i g f− −
�

   
( )

1
( )ii g f

−
�

  

( )
1

( )iii f g
−

�
1 1( )iv f g− −
�  

7. If ( ) 3xf x =  then find  1( )f x−

 

8. If ( ) 3 5f x x= +  then find  1( )f x−

 

9. If 0, , , ,
6 4 3 2

A
π π π π 

=  
 

and :f A B→ is onto such that ( ) sinf x x=  then find  B     

10. If { }: 0f R R− → is defined by 
1

( )f x x
x

= +  then prove that  ( )
2 2

( ) ( ) (1)f x f x f= +  
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Key Concepts 

        Let A  and B  be non-empty sets and f be a relation from A  to .B  If for 

each element ,a A∈  there exists a unique b B∈  such that ( , ) ,a b f∈  then f is 

called a function (or mapping) from (or  A  into )B A  to .B  It is denoted by 

: .f A B→  The set A  is called the domain of f  and B  is called the co-domain 

of .f  If :f A B→  is a function and if ( ) ,f a b=   then  b  is called the image of  

a under f  The element a  is called the pre-image or inverse image  of  b  under 

f and it is denoted by 1( ).f b−  If :f A B→  is a function, then ( ),f A   the set of 

all f −  images of elements in A    is called the range of  .f  Clearly 

{ }( ) ( ) / .f A f a a A B= ∈ ⊆   

           1. :f A B→  is called an injection 1 2,a a A⇔ ∈  and 
1 2 1 2( ) ( )f a f a a a= ⇒ =

  

2. :f A B→  is called a surjection ⇔  range f ( ) ( )f A B co domain= = −
 

3. :f A B→  is a bijection ⇔ :f A B→  is both an injection and a surjection
 

4.  Let f   and g  be functions. We say that  f   and g  are equal and write f g=  

if domain of f =  domain of  g  and ( ) ( )f x g x=  for all x ∈  domain of  .f    

          5.   :f A A→   defined by ( )f x x=  for all x A∈  is called the identity function  

                      on A  and is denoted by .AI  

             6. If : ,f A B→ : ,g B C→ then the  relation ( )( ){ }, ( ) /a g f a a A∈  is called 

        composite of g  with f and is denoted as .g f�  

7.Let :f A B→  and :g B C→ be injections. Then :g f A C→�  is an injection
 

 8. Let :f A B→  and :g B C→ be surjections. Then :g f A C→�  is a 

surjection
 

9. Let :f A B→  and :g B C→ be bijections. Then :g f A C→�  is a bijection
 

10. Let :f A B→  and :g B C→ be bijections. Then ( )
1 1 1

.g f f g
− − −=� �  

 
11.  The identity function :AI A A→  is a bijection and  1

.A AI I
− =  

 12.  Let : ,f A B→ AI  and 
BI be identity functions on A  and B  respectively. 

          Then .A Bf I f I f= =� �   

13. Let :f A B→  be a bijection. Then 1

Bf f I− =�  and 1 .Af f I− =�  
14. Let : , :f A B g B C→ →  and : .h C D→ Then ( ) ( ) .h g f h g f=� � � �  

            15. If f  and g are real valued functions with domains A  and B respectively,    

               then both f  and g are defined on A B∩  when .A B φ∩ ≠   defined through a  

               formula. If :f A R→  and :g B R→ are functions such that .A B φ∩ ≠    

 ( ) :i f g A B R+ ∩ → as ( )( ) ( ) ( ) .f g x f x g x x A B+ = + ∀ ∈ ∩   

( ) :ii f g A B R− ∩ → as ( )( ) ( ) ( ) .f g x f x g x x A B− = − ∀ ∈ ∩   
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 ( ) :iii fg A B R∩ → as ( )( ) ( ). ( ) .fg x f x g x x A B= ∀ ∈ ∩   

( ) :
f

iv E R
g

→  as 
( )

( ) .
( )

f f x
x x E

g g x

 
= ∀ ∈ 

 
 Where

{ }/ ( ) 0 .E x A B g x φ= ∈ ∩ ≠ ≠  

( ) :v cf A R→ as ( )( ) ( ) .cf x cf x x A= ∀ ∈  

( ) :nvii f A R→ as ( )( ) ( ) .
nn

f x f x x A= ∀ ∈  

( ) :viii f E R→  as ( ) ( ) ( ) .f x f x x E= ∀ ∈  Where

{ }/ ( ) 0 .E x A f x φ= ∈ ≥ ≠  

16. Let A  be a nonempty subset of R such that x A− ∈ for all x A∈  and :f A R→  is 

called an even function if ( ) ( )f x f x x A− = ∀ ∈  and odd function if ( ) ( ) .f x f x x A− = ∀ ∈   

17. The function :f R R→ defined by ( )f x x=  for all x R∈  is called the modulus 

function.
0

. ( ) .
0

x if x
i e f x

x if x

≥
= 

− <
    The domain of x  is R  and range is[0, )∞    

18. The function :f R R→ defined by 

1 0

( ) 0 0

1 0

if x
x

f x if x
x

if x

>


= = =
− <

 for all x R∈  is called the 

signum function. It is denoted by sgn( ).x  The domain of sgn( )x  is R  and range is 

{ }1,0,1 .−                

                                      Answers 

                           Exercise 1 

1 1

2(1) log ,
x

f x g e
− −= =

   
(2) ( )( ) ( )g f x I x=�

  

2 2(3) ( )9 6 2( )26( )9 5i x x ii iii x− + +
 

2 225
(4) ( ) ( )9 30 26( )36 132 122

9
i ii x x iii a a− + − +

  

3165
(5) ( )4 ( ) ( )2 7

8
i ii iii x +  

{ } { }

{ } { }

(6) ( ) ( , ), ( , ), ( , ), ( , ) ( ) (1, 2), (2,1), (3, 4), (4,1)

( ) ( , ), ( , ), ( , ), ( , ) ( ) (1, 2), (2,1), (3, 4), (4,1)

i a c b d c a d b ii

iii a c b d c a d b iv  

3(7) log x
5

(8)
3

x − 1 1 3
(9) 0, , , ,1

2 22

  
 
  

 
  

 

 

 

 

 

 

e 
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          2. MATHEMATICAL INDUCTION                                             
                One key basis for mathematical thinking is deductive reasoning. An informal 

example of deductive reasoning, borrowed from the study of logic, is an argument 

expressed in three statements: 

 

(a) Ramesh is a man. 

 

(b) All men are mortal, therefore, 

 

(c) Ramesh is mortal. 

 

                If statements (a) and (b) are true, then the truth of (c) is established. To make 

this simple mathematical example, we could write: 

 

(i) Six is divisible by two. 

 

(ii) Any number divisible by two is an even number, therefore, 

 

(iii) Six is an even number. 

       Thus, deduction in a nutshell is given a statement to be proven, often called a 

conjecture or a theorem in Mathematics, valid deductive steps are derived and a proof 

may or may not be established, i.e., deduction is the application of a general case to a 

particular case.  
2.1   Principles of finite Mathematical Induction & Theorems: 

 

In contrast to deduction, inductive reasoning depends on working with each case and 

developing a conjecture by observing incidences till we have observed each and every 

case. It is frequently used in Mathematics and is a key aspect of scientific reasoning, 

where collecting and analysing data is the norm. Thus, in simple language, we can say the 

word induction means the generalisation from particular cases or facts. 

 

2.1.1 Definition: A subset S of R is said to be an inductive set if 

)1 , ) 1 .i S ii k S k S∈ ∈ ⇒ + ∈  

Example: i) R is an inductive set. 

      ii) { }/ 0A x R x= ∈ > is an inductive set. 

     iii) { }/ 3B x R x= ∈ > is not an inductive set. 

Note: i) The intersection of all inductive sets in R is called the set of natural numbers or 

the set of positive integers. It is denoted by  or .N Z
+

 

 ii) { }/ is an inductiveset inN A A R=∩ . 

 iii) The set of natural numbers is an inductive set in R 
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2.1.2 Induction Theorem: 

          If S is a subset of N such that )1 , ) 1i S ii k S k S∈ ∈ ⇒ + ∈  then S N=  

2.1.3 The Principle of finite Mathematical Induction: 

        Suppose there is a given statement P(n) involving the natural number n such that 

 
(i) The statement is true for n = 1, i.e., P(1) is true, and 

 
(ii) If the statement is true for n = k (where k is some positive integer), then the statement 

is also true for n = k + 1, i.e., truth of P(k) implies the truth of P (k + 1). 
 
        Then, P(n)  is  true  for  all  natural  numbers  n. 

2.1.4 Steps involved in Mathematical Induction:
  

 Let ( )S n  be a statement for each .n N∈  

 If ) (1) is true,i S   

    ) ( ) is true ( 1) is trueii S k S k⇒ +  then ( )S n  is true for all .n N∈   

2.1.5 The Principle of a complete Mathematical Induction: 

Let ( )S n  be a statement for each .n N∈  

 If ) (1) is true,i S   

    ) (1), (2), (3)... ( ) is true ( 1) is trueii S S S S k S k⇒ +  then ( )S n  is true for all .n N∈   

2.2 Applications of Mathematical Induction: 

  Mathematical Induction is very useful in proving many theorems and statements. For 

example, it is useful in Binomial theorem, Leibnitz’s theorem etc.
 

2.2.1 Solved Problems:  

1. Problem: 1 2 3 ... ( 1) / 2 .Show that n n n for all n N+ + + + = + ∈  

 Solution: Let ( )S n  be a statement that 1 2 3 ... ( 1) / 2.n n n+ + + + = +   

        If 1n = then L.H.S 1=  

        
1(1 1)

R.H.S 1
2

+
= =   

         L.H.S R.H.S∴ =  

       (1)S∴ is true. 

       Assume that ( )S k  is true.  

    1 2 3 ... ( 1) / 2.k k k∴ + + + + = +  



 

24 

 

      Adding both sides ( 1)k +  we get 
( 1)

1 2 3 ... 1 1
2

k k
k k k

+
+ + + + + + = + +  

        ( 1) 1
2

k
k

 
= + + 

 

2
( 1)

2

k
k

+ 
= +  

 

( 1)( 2)

2

k k+ +
=  

     ( 1)S k∴ + is true. 

     ∴By principle of Mathematical Induction ( )S n  is true for all .n N∈  

     1 2 3 ... ( 1) / 2 .n n n for all n N∴ + + + + = + ∈  

2. Problem: 2 2 2 21 2 3 ... ( 1)(2 1) / 6 .Show that n n n n for all n N+ + + + = + + ∈  

 Solution: Let ( )S n  be a statement that 2 2 2 21 2 3 ... ( 1)(2 1) / 6.n n n n+ + + + = + +   

        If 1n = then 2L.H.S 1 1= =  

        
1(1 1)(2.1 1) 1.2.3

R.H.S 1
6 6

+ +
= = =   

         L.H.S R.H.S∴ =   

       (1)S∴ is true. 

       Assume that ( )S k  is true.  

    2 2 2 21 2 3 ... ( 1)(2 1) / 6.k k k k∴ + + + + = + +  

      Adding both sides 2( 1)k +  we get 

         2 2 2 2 2 21 2 3 ... ( 1) ( 1)(2 1) / 6 ( 1)k k k k k k+ + + + + + = + + + +  

        

2(2 1) 2 6 6
( 1) 1 ( 1)

6 6

k k k k k
k k k

 + + + + 
= + + + = +   

   

22 7 6
( 1)

6

k k
k

 + +
= +  

     

        

( 1)( 2)(2 3)

6

k k k+ + +
=

 

     ( 1)S k∴ + is true. 

     ∴By principle of Mathematical Induction ( )S n  is true for all .n N∈  

     
2 2 2 21 2 3 ... ( 1)(2 1) / 6 .n n n n for all n N∴ + + + + = + + ∈  

3. Problem: 3 3 3 3 2 21 2 3 ... ( 1) / 4 .Show that n n n for all n N+ + + + = + ∈  

Solution: Let ( )S n  be a statement that 3 3 3 3 2 21 2 3 ... ( 1) / 4.n n n+ + + + = +   

        If 1n = then 3L.H.S 1 1= =  
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2 21 (1 1) 1.4
R.H.S 1

4 4

+
= = =   

         L.H.S R.H.S∴ =   

       (1)S∴ is true. 

       Assume that ( )S k  is true.  

    3 3 3 3 2 21 2 3 ... ( 1) / 4.k k k∴ + + + + = +  

      Adding both sides 3( 1)k +  we get 

         3 3 3 3 3 2 2 31 2 3 ... ( 1) ( 1) / 4 ( 1)k k k k k+ + + + + + = + + +  

        

2
2( 1) 1

4

k
k k

 
= + + + 

 

2
2 4 4

( 1)
4

k k
k

 + +
= +  

     

        

2 2( 1) ( 2)

4

k k+ +
=

 

     ( 1)S k∴ + is true. 

     ∴By principle of Mathematical Induction ( )S n  is true for all .n N∈  

     
3 3 3 3 2 21 2 3 ... ( 1) / 4 .n n n for all n N∴ + + + + = + ∈  

4. Problem: 3 3 3 3 2 24 8 12 ... 64 16 ( 1) .Show that n n n for all n N+ + + + = + ∈  

 Solution: Let ( )S n  be a statement that 3 3 3 3 2 24 8 12 ... 64 16 ( 1)n n n+ + + + = +   

        If 1n = then 3L.H.S 64.1 64.1 64= = =  

        
2 2R.H.S 16.1 .(1 1) 16.1.4 64= + = =   

         L.H.S R.H.S∴ =   

       (1)S∴ is true. 

       Assume that ( )S k  is true.  

    3 3 3 3 2 24 8 12 ... 64 16 ( 1)k k k∴ + + + + = +  

      Adding both sides 364( 1)k +  we get 

         3 3 3 3 3 2 2 34 8 12 ... 64 64( 1) 16 ( 1) 64( 1)k k k k k+ + + + + + = + + +  

        ( ) ( )2 2 2 216( 1) 4( 1) 16( 1) 4 4k k k k k k= + + + = + + + 2 216( 1) ( 2)k k= + +

   

 
     ( 1)S k∴ + is true. 
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     ∴By principle of Mathematical Induction ( )S n  is true for all .n N∈  

     
3 3 3 3 2 24 8 12 ... 64 16 ( 1) .n n n for all n N∴ + + + + = + ∈  

5. Problem: 1.3 2.4 3.5 ... ( 2) ( 1)(2 7) / 6 .Show that n n n n n for all n N+ + + + + = + + ∈  

 Solution:  Let ( )S n  be a statement that 1.3 2.4 3.5 ... ( 2) ( 1)(2 7) / 6n n n n n+ + + + + = + +   

        If 1n = then L.H.S 1.3 3= =  

        
1(1 1)(2.1 7) 1.2.9

R.H.S 3
6 6

+ +
= = =   

         L.H.S R.H.S∴ =  

       (1)S∴ is true. 

       Assume that ( )S k  is true.  

    1.3 2.4 3.5 ... ( 2) ( 1)(2 7) / 6k k k k k∴ + + + + + = + +  

      Adding both sides ( 1)( 3)k k+ +  we get  

         
( 1)(2 7)

1.3 2.4 3.5 ... ( 2) ( 1)( 3) ( 1)( 3)
6

k k k
k k k k k k

+ +
+ + + + + + + + = + + +  

        

2(2 7) 2 7 6 18
( 1) 3 ( 1)

6 6

k k k k k
k k k

 + + + + 
= + + + = +   

      

        

22 13 18
( 1)

6

k k
k

 + +
= +  

 

( 2)(2 9)
( 1)

6

k k
k

+ +
= +

 

( 1)( 2)(2 9)

6

k k k+ + +
=

 

     ( 1)S k∴ + is true. 

     ∴By principle of Mathematical Induction ( )S n  is true for all .n N∈  

     1.3 2.4 3.5 ... ( 2) ( 1)(2 7) / 6 .n n n n n for all n N∴ + + + + + = + + ∈  

6. Problem: 1.6 2.9 3.12 ... (3 3) ( 1)( 2) .Show that n n n n n for all n N+ + + + + = + + ∈  

Solution: Let ( )S n  be a statement that 1.6 2.9 3.12 ... (3 3) ( 1)( 2)n n n n n+ + + + + = + +   

        If 1n = then L.H.S 1.6 6= =  

        R.H.S 1(1 1)(1 2) 1.2.3 6= + + = =   

         L.H.S R.H.S∴ =  

       (1)S∴ is true. 

       Assume that ( )S k  is true.  
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    1.6 2.9 3.12 ... (3 3) ( 1)( 2)k k k k k∴ + + + + + = + +  

      Adding both sides ( 1)(3 6)k k+ +  we get  

         1.6 2.9 3.12 ... (3 3) ( 1)(3 6) ( 1)( 2) ( 1)(3 6)k k k k k k k k k+ + + + + + + + = + + + + +  

        ( )( 1)( 2) 3k k k= + + +

  

     ( 1)S k∴ + is true. 

     ∴By principle of Mathematical Induction ( )S n  is true for all .n N∈  

     1.6 2.9 3.12 ... (3 3) ( 1)( 2) .n n n n n for all n N∴ + + + + + = + + ∈  

7. Problem: 
1 1 1 1

... .
1.2 2.3 3.4 ( 1) 1

n
Show that for all n N

n n n
+ + + + = ∈

+ +
 

Solution: Let ( )S n  be a statement that 
1 1 1 1

...
1.2 2.3 3.4 ( 1) 1

n

n n n
+ + + + =

+ +   

        If 1n = then 
1 1

L.H.S
1.2 2

= =  

        
1 1

R.H.S
1 1 2

= =
+

  

         L.H.S R.H.S∴ =  

       (1)S∴ is true. 

       Assume that ( )S k  is true.  

    
1 1 1 1

...
1.2 2.3 3.4 ( 1) 1

k

k k k
∴ + + + + =

+ +  

      Adding both sides 
1

( 1)( 2)k k+ +
 we get  

         
1 1 1 1 1 1

...
1.2 2.3 3.4 ( 1) ( 1)( 2) 1 ( 1)( 2)

k

k k k k k k k
+ + + + + = +

+ + + + + +  

        
1 1 1 ( 2) 1

1 2 1 2

k k
k

k k k k

+ +   
= + =   

+ + + +   

2
1 2 1

1 2

k k

k k

 + +
=  

+ +    

        

2
1 ( 1)

1 2

k

k k

 +
=  

+ + 

1

2

k

k

+
=

+  

     ( 1)S k∴ + is true. 

     ∴By principle of Mathematical Induction ( )S n  is true for all .n N∈  
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1 1 1 1

... .
1.2 2.3 3.4 ( 1) 1

n
for all n N

n n n
∴ + + + + = ∈

+ +
 

8. Problem: 
1 1 1 1

... .
1.3 3.5 5.7 (2 1)(2 1) 2 1

n
Show that for all n N

n n n
+ + + + = ∈

− + +
 

Solution: Let ( )S n  be a statement that 
1 1 1 1

...
1.3 3.5 5.7 (2 1)(2 1) 2 1

n

n n n
+ + + + =

− + +   

        If 1n = then 
1 1

L.H.S
1.3 3

= =  

        
1 1

R.H.S
2.1 1 3

= =
+

  

         L.H.S R.H.S∴ =  

       (1)S∴ is true. 

       Assume that ( )S k  is true.  

    
1 1 1 1

...
1.3 3.5 5.7 (2 1)(2 1) 2 1

k

k k k
∴ + + + + =

− + +  

      Adding both sides 
1

(2 1)(2 3)k k+ +
 we get  

         
1 1 1 1 1 1

...
1.3 3.5 5.7 (2 1)(2 1) (2 1)(2 3) 2 1 (2 1)(2 3)

k

k k k k k k k
+ + + + + = +

− + + + + + +  

        
1 1 1 (2 3) 1

2 1 2 3 2 1 2 3

k k
k

k k k k

+ +   
= + =   

+ + + +   

2
1 2 3 1

2 1 2 3

k k

k k

 + +
=  

+ +    

        

1 ( 1)(2 1)

2 1 2 3

k k

k k

+ +
=

+ +

1

2 3

k

k

+
=

+  

     ( 1)S k∴ + is true. 

     ∴By principle of Mathematical Induction ( )S n  is true for all .n N∈  

     
1 1 1 1

... .
1.3 3.5 5.7 (2 1)(2 1) 2 1

n
for all n N

n n n
∴ + + + + = ∈

− + +
 

9. Problem: 

( )( ) ( 2 ) ... 2 ( 1) .
2

n
Show that a a d a d upto nterms a n d for all n N+ + + + + + = + − ∈  

 Solution: thn  term ( 1)a n d= + −   

          Let ( )S n  be a statement that   
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         ( ) ( )( ) ( 2 ) ... ( 1) 2 ( 1)
2

n
a a d a d a n d a n d+ + + + + + + − = + −  

        If 1n = then L.H.S a=  

        ( ) ( )
1 1

R.H.S 2 (1 1) 2
2 2

a d a a= + − = =   

         L.H.S R.H.S∴ =  

       (1)S∴ is true. 

       Assume that ( )S k  is true.  

    ( ) ( )( ) ( 2 ) ... ( 1) 2 ( 1)
2

k
a a d a d a k d a k d∴ + + + + + + + − = + −  

      Adding both sides a kd+  we get  

         ( ) ( ) ( ) ( )( ) ( 2 ) ... ( 1) 2 ( 1)
2

k
a a d a d a k d a kd a k d a kd+ + + + + + + − + + = + − + +  

        
( 1) 1

( 1) 1
2 2

k k d k
ak a kd a k kd

− − 
= + + + = + + + 

   

1
( 1)

2

k
a k kd

+ 
= + +  

   

        
1

(2 )
2

k
a kd

+
= +

 

     ( 1)S k∴ + is true. 

     ∴By principle of Mathematical Induction ( )S n  is true for all .n N∈  

     ( ) ( )( ) ( 2 ) ... ( 1) 2 ( 1) .
2

n
a a d a d a n d a n d for all n N∴ + + + + + + + − = + − ∈  

10. Problem: 2 ( 1)
... .

1

na r
Show that a ar ar upto n terms for all n N

r

−
+ + + + = ∈

−
 

Solution: thn  term 1nar −=   

          Let ( )S n  be a statement that  2 1 ( 1)
...

1

n
n a r

a ar ar ar
r

− −
+ + + + =

−
  

        If 1n = then L.H.S a=  

        

1( 1) ( 1)
R.H.S

1 1

a r a r
a

r r

− −
= = =

− −
  

         L.H.S R.H.S∴ =  

       (1)S∴ is true. 
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       Assume that ( )S k  is true.  

    2 1 ( 1)
...

1

k
k a r

a ar ar ar
r

− −
∴ + + + + =

−  

      Adding both sides kar  we get  

         2 1 ( 1)
...

1

k
k k ka r

a ar ar ar ar ar
r

− −
+ + + + + = +

−

( 1)

1 1

k k k
kar a ar a ar r

ar
r r

− − + −
= + =

− −  

        
 

1

1

k k kar a ar ar

r

+− + −
=

−

1( 1)

1

ka r

r

+ −
=

−  

     ( 1)S k∴ + is true. 

     ∴By principle of Mathematical Induction ( )S n  is true for all .n N∈  

     
2 1 ( 1)

... .
1

n
n a r

a ar ar ar for all n N
r

− −
∴ + + + + = ∈

−
 

11. Problem: 
1.2.3 2.3.4 3.4.5 ... ( 1)( 2)( 3) / 4 .Show that upto n terms n n n n for all n N+ + + + = + + + ∈  

 Solution: th
n  term ( 1)( 2)n n n= + +  

       Let ( )S n  be a statement that  

        1.2.3 2.3.4 3.4.5 ... ( 1)( 2) ( 1)( 2)( 3) / 4n n n n n n n+ + + + + + = + + +   

        If 1n = then L.H.S 1.2.3 6= =  

        
1(1 1)(1 2)(1 3) 1.2.3.4

R.H.S 6
4 4

+ + +
= = =   

         L.H.S R.H.S∴ =  

       (1)S∴ is true. 

       Assume that ( )S k  is true.  

    1.2.3 2.3.4 3.4.5 ... ( 1)( 2) ( 1)( 2)( 3) / 4k k k k k k k∴ + + + + + + = + + +  

      Adding both sides ( 1)( 2)( 3)k k k+ + +  we get  

         

1.2.3 2.3.4 3.4.5 ... ( 1)( 2) ( 1)( 2)( 3)

( 1)( 2)( 3)
( 1)( 2)( 3)

4

k k k k k k

k k k k
k k k

+ + + + + + + + + +

+ + +
= + + + +  

                            ( 1)( 2)( 3) 1
4

k
k k k

 
= + + + + 
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4
( 1)( 2)( 3)

4

k
k k k

+ 
= + + +  

 

( 1)( 2)( 3)( 4)

4

k k k k+ + + +
=  

     ( 1)S k∴ + is true. 

     ∴By principle of Mathematical Induction ( )S n  is true for all .n N∈  

     
( 1)( 2)( 3)

1.2.3 2.3.4 3.4.5 ... ( 1)( 2) .
4

n n n n
n n n for all n N

+ + +
∴ + + + + + + = ∈  

12. Problem: 
1 (1 2) (1 2 3) ... ( 1)( 2) / 6 .Show that upto nbrackets n n n for all n N+ + + + + + + = + + ∈  

Solution: thn  bracket is 1 2 3 ... n+ + + +  

       Let ( )S n  be a statement that  

        1 (1 2) (1 2 3) ... (1 2 3 ... ) ( 1)( 2) / 6 .n n n n for all n N+ + + + + + + + + + + = + + ∈   

        If 1n = then L.H.S 1=  

        
1(1 1)(1 2) 1.2.3

R.H.S 1
6 6

+ +
= = =   

         L.H.S R.H.S∴ =  

       (1)S∴ is true. 

       Assume that ( )S k  is true.  

    1 (1 2) (1 2 3) ... (1 2 3 ... ) ( 1)( 2) / 6k k k k∴ + + + + + + + + + + + = + +  

      Adding both sides ( )1 2 3 ... ( 1)k k+ + + + + +  we get  

         

( )

( )

1 (1 2) (1 2 3) ... (1 2 3 ... ) 1 2 3 ... ( 1)

( 1)( 2) ( 1)( 2) ( 1)( 2)
1 2 3 ... ( 1)

6 6 2

k k k

k k k k k k k k
k k

+ + + + + + + + + + + + + + + + + +

+ + + + + +
= + + + + + + + = +

 

          
( 1)( 2) ( 1)( 2) 3

1
2 3 2 3

k k k k k k+ + + + +   
= + =   

     

( 1)( 2)( 3)

6

k k k+ + +
=

                           

     ( 1)S k∴ + is true. 

     ∴By principle of Mathematical Induction ( )S n  is true for all .n N∈  

     
( 1)( 2)

1 (1 2) (1 2 3) ... (1 2 3 ... ) .
6

n n n
n for all n N

+ +
∴ + + + + + + + + + + + = ∈
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                       Exercise 2 

By principle of Mathematical Induction prove the following: 

1. 2 7 12 ... (5 3) (5 1) / 2 .n n n for all n N+ + + + − = − ∈  

2. 1.2 2.3 3.4 ... ( 1) ( 1)( 2) / 3 .n n n n n for all n N+ + + + + = + + ∈  

3. 
2(4 6 1)

1.3 3.5 5.7 ... ( 1) .
3

n n n
n n for all n N

+ −
+ + + + + = ∈  

4. 
2( 6 11)

2.3 3.4 4.5 ... ( 1)( 2) .
3

n n n
n n for all n N

+ +
+ + + + + + = ∈  

5. 2 12 3.2 4.2 ... ( 1)2 2 .n nn n for all n N−+ + + + + = ∈  

6. 
1 1 1 1

... .
1.4 4.7 7.10 (3 2)(3 1) 3 1

n
for all n N

n n n
+ + + + = ∈

− + +
 

7. 
1 1 1 1

... .
2.5 5.8 8.11 (3 1)(3 2) 2(3 2)

n
for all n N

n n n
+ + + + = ∈

− + +
 

8. 
2

2 2 2 2 2 2 ( 1) ( 2)
1 (1 2 ) (1 2 3 ) ... .

12

n n n
upto n brackets for all n N

+ +
+ + + + + + + = ∈  

9. 
3 3 3 3 3 3 21 1 2 1 2 3 (2 9 13)

... .
1 1 3 1 3 5 24

n n n
upto n brackets for all n N

+ + + + +
+ + + + = ∈

+ + +
 

10. 1 sin 2
cos cos 2 cos 4 ...cos 2 .

2 sin

n
n

n
for all n N

θ
θ θ θ θ

θ

− = ∈  

                              Key Concepts 

   
1. A subset S of R is said to be an inductive set if )1 , ) 1 .i S ii k S k S∈ ∈ ⇒ + ∈  

   2.If S is a subset of N such that )1 , ) 1i S ii k S k S∈ ∈ ⇒ + ∈  then S N=  

   3. Suppose there is a given statement P(n) involving the natural number n such that 

 
    (i) The statement is true for n = 1, i.e., P(1) is true, and 

 
     (ii) If the statement is true for n = k (where k is some positive integer), then the 

statement is also true for n = k + 1, i.e., truth of P(k) implies the truth of P (k + 1). 
Then, P(n)  is  true  for  all  natural  numbers  n. 

   4.Let ( )S n  be a statement for each .n N∈   

           If  ) (1) is true,i S ) ( ) is true ( 1) is trueii S k S k⇒ +  then ( )S n  is true for all .n N∈   

   5. Let ( )S n  be a statement for each .n N∈ If ) (1) is true,i S   

    ) (1), (2), (3)... ( ) is true ( 1) is trueii S S S S k S k⇒ +  then ( )S n  is true for all .n N∈  
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                                                 3. MATRICES               
3.1 Types of Matrices:  

      In this section we define a matrix, its order and various types of matrices. 

3.1.1 Definition (Matrix):  

                  An ordered rectangular array of elements is called a matrix.  

                 The elements of  matrices are real or complex numbers (functions). Matrices 

are generally enclosed by brackets. We denote matrices by capital letters , , ...A B C   

              The following are some examples of matrices. 

                         
1 3 4

,
2 1 0

A
 

=  
− 

1 4
,

3 0
B

− 
=  
 

1 2 3

3 4 0

2 5 9

C

 
 

=  
 − 

 

                      

  In the above examples, the horizontal lines of elements are said to constitute  

    the rows of the matrix and the vertical lines of elements are said to constitute the 

    columns of the matrix. Thus A  has 3 rows and 2 columns, B  has 2 rows and 2  

     columns,C  has 3 rows and 3 columns. 

3.1.2 Definition (Order of matrix):  

                  A matrix having m rows and n  columns is said to be of order ,m n×  read as   

          of m  cross n or m by .n  

            In the above examples, A  is of order 2 3,× B  is of order 2 2,× C  is of order 3 3.×  

            In general a matrix having m rows and n  columns is represented as follows. 

                

11 12 13 1 1

21 22 23 2 2

31 32 33 3 3

1 2 3

1 2 3

... ...

... ...

... ...

... ... ... ... ...

... ...

... ... ... ... ...

... ...

j n

j n

j n

i i i ij in

m m m mj mn

a a a a a

a a a a a

a a a a a

A

a a a a a

a a a a a

 
 
 
 
 
 =
 
 
 
 
 
 

 

             In compact form it is denoted by ( )ij m n
A a

×
= where 1 i m≤ ≤  and 1 .j n≤ ≤  
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3.1.3 Definition (Rectangular matrix):  

                  In a matrix if the number of rows is not equal to the number of columns then 

that  matrix is called a rectangular matrix.  For example the matrix 
1 3 4

2 1 0

 
 

− 
is a 

rectangular matrix. 

Since the number of rows is 2 and the number of columns is 3. 

3.1.4 Definition (Square matrix):  

                  A matrix in which the number of rows is equal to the number of columns, 

      is called a square matrix.   

               ( )ij m n
A a

×
= is a square matrix if .m n=  In this case A  is a square matrix of order 

.n  1 .j n≤ ≤  

For example the matrix 
1 3

2 1

 
 

− 
is a square matrix of order 2  

 and  

1 2 3

3 4 0

2 5 9

 
 
 
 − 

 is a square matrix of order 3.  

3.1.5 Definition (Row matrix):  

                 A  matrix having only one row is called a row matrix.   

     For example the matrix ( )1 2 3 is a row matrix. 

     

3.1.6 Definition (Column matrix):  

                 A matrix having only one column is called a column matrix.   

     For example the matrix 

1

2

3

 
 
 
 
 

is a column matrix. 

 3.1.7 Definition (Null matrix or Zero matrix):  

                         A  matrix consisting of all zero elements is called a null 

              matrix or zero matrix.   
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     For example the matrix 
0 0 0

0 0 0

 
 
 

is a zero matrix. It is denoted by O. 

3.1.8 Definition (Principal diagonal elements of a matrix):  

                         In a square matrix the elements in first row first column, second row 

second column, third row third column...n
th

 row n
th

 column are called  principal diagonal 

elements of  a matrix. If ( )ij n n
A a

×
= where 1 ,i j n≤ ≤  then the principal diagonal 

elements are 11 22 33, , ... .nna a a a  

          For example 1,4,9 are the principal diagonal elements of the matrix 

1 2 3

3 4 0

2 5 9

 
 
 
 − 

 

3.1.9 Definition (Trace of a matrix):  

             In a square matrix the sum of the principal diagonal elements of a matrix is called 

the trace of a matrix. Trace of a square matrix A  is denoted by ( ).Tr A  If ( )ij n n
A a

×
=

where 1 ,i j n≤ ≤  then the trace of a square matrix A  is denoted by        

                                    11 22 33

1

( ) ... .
n

ii nn

i

Tr A a a a a a
=

= = + + + +∑   

 For example the trace of the matrix 

1 2 3

3 4 0

2 5 9

A

 
 

=  
 − 

is ( ) 1 4 9 14.Tr A = + + =   

3.1.10 Definition (Triangular matrices):  

      A square matrix ( )ij n n
A a

×
= is said to be an upper triangular matrix if 

0
ij

a for all i j= >                      

      A square matrix ( )ij n n
A a

×
= is said to be a lower triangular matrix if 

0
ij

a for all i j= <   

         For example 

1 2 3
1 2

, 0 4 5
0 4

0 0 9

 
   
   
   

 

  are upper triangular matrices and 
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1 0 0
1 0

, 2 4 0
2 4

3 5 9

 
   
   
   

 

are lower triangular matrices. 
 

3.1.11 Definition (Scalar matrix):  

                         If each non-diagonal element of a square matrix is equal to zero and each 

       diagonal elements are equal to each other, then  it is called a scalar matrix. 

             For example 

3 0 0
2 0

, 0 3 0
0 2

0 0 3

 
   
   
   

 

  are scalar matrices. 

3.1.12 Definition (Unit matrix or Identity matrix):  

                         If each non-diagonal element of a square matrix is equal to zero and each 

       diagonal elements are equal to 1, then  that matrix is called a unit matrix or identity  

        matrix. 

             For example 

1 0 0
1 0

, 0 1 0
0 1

0 0 1

 
   
   
   

 

  are identity matrices. 

3.1.13 Definition (Equality of matrices):  

             Matrices A  and B  are said to be equal if A  and B  are of same order and the 

corresponding elements of A  and B  are the same.  

            Thus 
11 12 13

21 22 23

a a a
A

a a a

 
=  
 

 and 
11 12 13

21 22 23

b b b
B

b b b

 
=  
 

 are equal iff  ij ij
a b=  

  1, 2for i = and 1, 2,3.j =   

3.1.14 Definition (Sum of two matrices):  

                         Let A  and B  be matrices of same order. Then the sum of  A  and B  

denoted by A B+  is defined as the matrix of the same order in which each element is the 

 sum of the corresponding elements of A  and .B  

                       If ( )ij m n
A a

×
=  and ( )ij m n

B b
×

=  then ( )ij m n
A B c

×
+ =  where ij ij ij

c a b= +  

      1 ,1for i m j n≤ ≤ ≤ ≤   
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For example, if 
1 1 2

3 4 1
A

− 
=  

− 
 and 

4 2 2

7 3 4
B

 
=  
 

then    

                
1 1 2 4 2 2

3 4 1 7 3 4
A B

−   
+ = +   

−   

1 4 1 2 2 2 5 3 0

3 7 4 3 1 4 10 7 3

+ + − +   
= =   

+ + − +   
 

3.1.15 Properties of Addition of matrices:  

                       If ( ) ( ),
ij ijm n m n

A a B b
× ×

= = and ( )ij m n
C c

×
= be matrices of the same order. 

then the addition of matrices satisfies the following properties. 

  

(i) Commutative Property: A B B A+ = +  

    Now ( ) ( ) ( ) ( ) ( ) .
ij ij ij ij ij ijm n m n m n m n m n

A B a b a b b a B A
× × × × ×

+ = + = + = + = +   

(ii) Associative Property: ( ) ( )A B C A B C+ + = + +  

    Now 
 

          

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( )

( )

( ) .

ij ij ij ij ij ijm n m n m n m n m n

ij ij ij ij ij ijm n m n m n m n

ij ij ijm n m n

A B C a b c a b c

a b c a b c

a b c A B C

× × × × ×

× × × ×

× ×

   + + = + + = + +   

   = + + = + +   

= + + = + +

 

(iii) Additive identity: A O O A A+ = + =  

             If A is a m n× matrix and O  is the m n× null matrix. Then we call O  is 

the additive  identity matrix.  

(iv) Additive inverse: A B B A O+ = + =  

             If A is a m n× matrix then there exists a unique m n×  matrix B
 
such that  

,A B B A O+ = + = O  being the m n× null matrix. Then we call B  is the additive 

 inverse of A  denoted by A− .  

3.2 Scalar multiple of a matrix and multiplication of matrices:  

                   This section is devoted to the study of multiplication of a matrix (i) by a 

scalar and (ii) by a matrix. We also study the properties of multiplication. 

3.2.1 Definition (Scalar multiple of a matrix):  

        Let A be a matrix of order m n× and k  be a scalar (i.e real or complex 

number). Then the m n×   matrix obtained by multiplying each element of A by k  

is called a scalar multiple of A and is denoted by  .kA
 

                      If ( )ij m n
A a

×
=  then ( ) ( )ij ijm n m n

kA k a k a
× ×

= =
 



 

38 

 

              For example, if 3k =  and 
1 1 2

3 4 1
A

− 
=  

− 
then    

                            
1 1 2 3 3 6

3 3 .
3 4 1 9 12 3

kA A
− −   

= = =   
− −   

 

3.2.2 Properties of scalar multiple of a matrix:  

        Let A  and B  be matrices of same order and  α  and β  be scalars. Then 

              ( ) ( ) ( ) ( )i A A Aα β αβ β α= =
       

( ) ( )ii A A Aα β α β+ = +  

            
( ) ( )iii A B A Bα α α+ = +

              
( )iv O O Oα α= =

 

            
( )0 0v A A O= =

 

3.2.3 Multiplication of matrices:  

        We say that the matrices A  and B  are conformable for multiplication in that 

order (giving the product AB  ) if the number of columns of A
 
is equal to the 

number of rows of .B
 

3.2.4 Definition (Product of two matrices):  

                       Let ( ) ( ),ij ijm p p n
A a B b

× ×
= = be two matrices. Then the matrix ( )ij m n

C c
×

=

where 
1

p

ij ik kj

k

c a b
=

=∑  is called the product of the matrices A  and B denoted by .AB
 

             For example, if 
2 2

1 1

3 4
A

×

 
=  
 

 and 
2 3

4 2 2

7 3 4
B

×

 
=  
    

           Let the rows A  be 1 2,R R   and the columns of  B  be 1 2 3, , .C C C  When 2 2A ×  is 

multiplied with 2 3B ×  then the order of the product matrix  C AB=  is 2 3×  

        

11 12 13

21 22 23

c c c
C AB

c c c

 
= =  

 

1 1 1 2 1 3

2 1 2 2 2 3

R C R C R C

R C R C R C

 
=  
   

        
11 1 1c R C= =  the sum of the products of the first row elements of  A  with the   

                             corresponding elements of the first column of  B  = 1 4 1 7 11× + × =  

         12 1 2c R C= =  the sum of the products of the first row elements of  A  with the   

                             corresponding elements of the second column of B  = 1 2 1 3 5× + × =  

       Similarly we can get 13 21 22 236, 40, 18, 22.c c c c= = = =   
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11 5 6

40 18 22
C AB

 
∴ = =  

   

3.2.5 Properties of multiplication of matrices:  

                       If ( ) ( ),
ij ij

A a B b= = and ( )ij
C c= be matrices conformable for 

multiplication. Then 

(i) Associative Law: ( ) ( )A BC AB C=  

(ii) Distributive Law: ( ) ( )A B C AB AC Left Distibutive Law+ = +  

                           
( ) ( )A B C AC BC Right Distibutive Law+ = +  

 (iii)    Existence of multiplicative identity:  

    If I is the identity matrix of order ,n
 
then for any square matrix A of order ,n

 

                           
AI IA A= =

  

3.2.6 Note:  

     (i)     Matrix multiplication need not be commutative. If andA B are two matrices 

conformable for multiplication, AB  exists, but BA  may not exist, even if BA  exists, AB  

and BA  may not equal. 

            If the orders of  A  and B are 2 3× and 3 4×  respectively then the order of AB   is 

2 4×  but BA   does not exist. 

            If the orders of  A  and B are 2 3× and 3 2×  respectively then the order of AB   is 

2 2×  and the order of BA   is 3 3.×   Hence AB and BA   can not be equal. 

(ii)            If andO A O B≠ ≠ are two matrices conformable for multiplication, AB  

exists and AB O=   

             For example, if 
2 2

0 1

0 2
A

×

 
=  
 

 and 
2 2

3 4

0 0
B

×

 
=  
   

then AB BA O= =
 

(iii)           If and ,AB AC O A= ≠ then it is not necessary that B C=
 

             For example, if 
2 2

1 0
,

2 0
A

×

 
=  
  2 2

0 0

3 4
B

×

 
=  
 

 and 
2 2

0 0

5 6
C

×

 
=  
   

then 

                    but .AB AC O B C= = ≠

 
(iv)       For any positive integer ,n  ( ) . . .... ( )nA A A A A ntimes=

 

(v)         If is α a scalar and A  is any square matrix and is n  a positive integer, then 
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                     ( ) ( )( )( )....( )( )n
A A A A A ntimesα α α α α= n nAα=

 

3.3 Transpose of a matrix:  

                   In this section we define  the transpose of a matrix and study its properties. 

We   also define symmetric and skew-symmetric matrices.  

3.3.1 Definition (Transpose of a matrix):  

        If A is a matrix of order ,m n× then the matrix obtained by interchanging the 

rows into columns or columns into rows of A  is called the transpose of .A   

The transpose of the matrix A  is denoted by ( )T
A or A′   

                      If ( )ij m n
A a

×
=  then ( )T

ji n m
A a

×
=

 

              For example, if 
1 1 2

3 4 1
A

− 
=  

− 
then   

1 3
1 1 2

1 4
3 4 1

2 1

T

T
A

 
−   

= =   −   − − 

                           

3.3.2 Properties of transpose of a matrix:  

                    We now state the following properties of transpose of matrices without 

proof.     These may be verified by taking suitable examples. 

        Let A  and B  be matrices of suitable order. Then 

              ( ) ( )T T
i A A=

       
                          ( ) ( )T T

ii kA kA=  

            
( ) ( )T T T
iii A B A B+ = +

              
( )( )T T T
iv AB B A=

 

3.3.3 Definition (Symmetric matrix): 

        A square matrix A  is said to be symmetric matrix if  .TA A=  

For example 

4 1 5
3 4

, 1 7 3
4 2

5 3 2

− 
   

− −   
   − 

  are symmetric matrices. 

3.3.4 Note:  

                    (i)    Let ( )ij n n
A a

×
= be a symmetric matrix if 1 , .

ij ji
a a i j n= ∀ ≤ ≤   

                    (ii)   We have ,n n n nO I× × are  symmetric matrices. 

                   (iii)   If A is a square matrix then 
T

A A+  is a symmetric matrix. 

3.3.5 Definition (Skew-symmetric matrix): 
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        A square matrix A  is said to be skew-symmetric matrix if  .TA A= −  

For example 

0 1 5
0 4

, 1 0 3
4 0

5 3 0

− 
   

− −   −   
 

  are skew-symmetric matrices. 

3.3.6 Note:  

                    (i)    ( )ij n n
A a

×
= is a skew-symmetric matrix if   

                                          1 , and 0 1 .
ij ji ii

a a i j n a i n= − ∀ < < = ∀ ≤ ≤   

                    (ii)   We have n nO × is a skew-symmetric matrix. 

                   (iii)   If A is a square matrix then 
T

A A−  is a skew-symmetric matrix. 

3.3.7 Solved Problems:  

1. Problem: If 
3 9 0

1 8 2
A

 
=  

− 
 and 

4 0 2

7 1 4
B

 
=  
 

then find .A B+  

 Solution: Given 
3 9 0

1 8 2
A

 
=  

− 
 and 

4 0 2

7 1 4
B

 
=  
 

  

         
3 9 0 4 0 2

1 8 2 7 1 4
A B

   
+ = +   

−   
 

          
3 4 9 0 0 2

1 7 8 1 2 4

+ + + 
=  

+ + − + 
 

           
7 9 2

8 9 2

 
=  
 

 

    
7 9 2

.
8 9 2

A B
 

∴ + =  
 

 

2. Problem: If 
1 2 3

3 2 1
A

 
=  
 

 and 
3 2 1

1 2 3
B

 
=  
 

then find 3 2 .B A−  

 Solution:  Given 
1 2 3

3 2 1
A

 
=  
 

 and 
3 2 1

1 2 3
B

 
=  
    

         
3 2 1 1 2 3

3 2 3 2
1 2 3 3 2 1

B A
   

− = −   
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9 6 3 2 4 6

3 2
3 6 9 6 4 2

B A
   

⇒ − = −   
   

 

          
9 2 6 4 3 6

3 2
3 6 6 4 9 2

B A
− − − 

⇒ − =  
− − − 

 

           
7 2 3

3 2
3 2 7

B A
− 

⇒ − =  
− 

 

    
7 2 3

3 2 .
3 2 7

B A
− 

∴ − =  
− 

 

3. Problem: If 

0 1 2

2 3 4

4 5 6

A

 
 

=  
 
 

 and 

1 2 0

0 1 1

1 0 3

B

− 
 

= − 
 − 

then find A B−  and 4 3 .B A−  

 Solution:  Given 

0 1 2

2 3 4

4 5 6

A

 
 

=  
 
 

 and 

1 2 0

0 1 1

1 0 3

B

− 
 

= − 
 − 

  

         

0 1 2 1 2 0

( ) 2 3 4 0 1 1

4 5 6 1 0 3

i A B

−   
   

− = − −   
   −   

 

         

0 1 1 2 2 0

2 0 3 1 4 1

4 1 5 0 6 3

A B

− + − 
 ⇒ − = − − + 
 + − − 

 

         

1 3 2

2 2 5

5 5 3

A B

− 
 ⇒ − =  
 
 

 

    

1 3 2

2 2 5

5 5 3

A B

− 
 

∴ − =  
 
 

 

1 2 0 0 1 2

( )4 3 4 0 1 1 3 2 3 4

1 0 3 4 5 6

ii B A

−   
   

− = − −   
   −   
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4 8 0 0 3 6

4 3 0 4 4 6 9 12

4 0 12 12 15 18

B A

−   
   ⇒ − = − −   
   −   

4 0 8 3 0 6

4 3 0 6 4 9 4 12

4 12 0 15 12 18

B A

− − − − 
 ⇒ − = − − − − 
 − − − − 

 

   

4 11 6

4 3 6 5 16

16 15 6

B A

− − 
 

∴ − = − − − 
 − − − 

 

4. Problem: If 
2 3 1

6 1 5
A

 
=  

− 
 

1 2 1

0 1 3
B

− 
=  

− 
and 0A B X+ − =  then find X  

 Solution:  Given 
2 3 1

6 1 5
A

 
=  

− 
 and 

1 2 1

0 1 3
B

− 
=  

− 
  

         0A B X X A B+ − = ⇒ = +  

         
2 3 1 1 2 1

6 1 5 0 1 3
X

−   
⇒ = +   

− −   
 

          
2 1 3 2 1 1

6 0 1 1 5 3
X

+ + − 
⇒ =  

+ − − + 
 

           
3 5 0

6 2 8
X

 
⇒ =  

− 
 

    
3 5 0

.
6 2 8

X
 

∴ =  
− 

 

5. Problem: Find the trace of the matrix 

1 3 5

2 1 5

1 0 1

− 
 

− 
 
 

 

 

 Solution:  Let 

1 3 5

2 1 5

1 0 1

A

− 
 

= − 
 
 

  

         The elements of the principle diagonal elements of A  are  1, 1,1−   

         Hence the trace of  ( ) 1 1 1 1A Tr A= = − + =  

6. Problem: If 
2 3

1 2
A

 
=  
 

 and 
0 4

1 2
B

 
=  

− 
then find AB  and .BA  
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 Solution:  Given 
2 3

1 2
A

 
=  
 

 and 
0 4

1 2
B

 
=  

−    

         
2 3 0 4

( )
1 2 1 2

i AB
  

=   
−  

 

         
2 0 3 1 2 4 3 2

1 0 2 1 1 4 2 2
AB

× + × − × + × 
⇒ =  

× + × − × + × 
 

         
2 3 8 6

0 2 4 4
AB

− + 
⇒ =  

− + 
 

    
1 14

2 8
AB

− 
∴ =  

− 
 

0 4 2 3
( )

1 2 1 2
ii BA

  
=   

−  
 

    

0 2 4 1 0 3 4 2

1 2 2 1 1 3 2 2
BA

× + × × + × 
⇒ =  

− × + × − × + × 

2 4 0 8

2 2 3 4
BA

+ + 
⇒ =  

− + − +   

   

6 8

0 1
BA

 
∴ =  

 
 

7. Problem: If 
4 2

1 1
A

 
=  

− 
 then find 2A   

Solution:  Given 
4 2

1 1
A

 
=  

− 
  

         
2

4 2 4 2

1 1 1 1
A AA

  
= =   

− −  
 

         
2

4 4 2 1 4 2 2 1

1 4 1 1 1 2 1 1
A

× + × − × + × 
⇒ =  

− × + × − − × + × 
 

         
2

16 2 8 2

4 1 2 1
A

− + 
⇒ =  

− − − + 
 

    2
14 10

5 1
A

 
∴ =  

− − 
 

8. Problem: If 
2 4

1
A

K

 
=  

− 
  and 2A O= then find K   
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Solution:  Given 
2 4

1
A

K

 
=  

− 
  

         
2

2 4 2 4

1 1
A O AA O O

K K

  
= ⇒ = ⇒ =  

− −  
 

         
2 2 4 1 2 4 4

1 2 1 1 4

K
O

K K K

× + × − × + × 
⇒ = 

− × + × − − × + × 
2

4 4 8 4 0 0

2 4 0 0

K

K K

− +   
⇒ =   

− − − +   
 

         2

0 8 4 0 0

2 4 0 0

K

K K

+   
⇒ =   

− − − +   

2
8 4 0, 2 0, 4 0K K K⇒ + = − − = − + =  

    2, 2, 2K K K⇒ = − = − = ±  

   

2K∴ = ±

 

9. Problem: If 

1 2 2

2 1 2

2 2 1

A

 
 

=  
 
 

 then show that  2 4 5A A I O− − =  

 

Solution: Given 

1 2 2

2 1 2

2 2 1

A

 
 

=  
 
 

  

         
2

1 2 2 1 2 2

2 1 2 2 1 2

2 2 1 2 2 1

A AA

   
   

= =    
   
   

 

         
2

1 1 2 2 2 2 1 2 2 1 2 2 1 2 2 2 2 1

2 1 1 2 2 2 2 2 1 1 2 2 2 2 1 2 2 1

2 1 2 2 1 2 2 2 2 1 1 2 2 2 2 2 1 1

A

× + × + × × + × + × × + × + × 
 ⇒ = × + × + × × + × + × × + × + × 
 × + × + × × + × + × × + × + × 

 

         
2

1 4 4 2 2 4 2 4 2

2 2 4 4 1 4 4 2 2

2 4 2 4 2 2 4 4 1

A

+ + + + + + 
 ⇒ = + + + + + + 
 + + + + + + 

 

    2

9 8 8

8 9 8

8 8 9

A

 
 

∴ =  
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2

9 8 8 1 2 2 1 0 0

4 5 8 9 8 4 2 1 2 5 0 1 0

8 8 9 2 2 1 0 0 1

A A I

     
     

− − = − −     
     
     

 

    

2

9 8 8 4 8 8 5 0 0

4 5 8 9 8 8 4 8 0 5 0

8 8 9 8 8 4 0 0 5

A A I

     
     ⇒ − − = − −     
     
           

2

9 4 5 8 8 0 8 8 0

4 5 8 8 0 9 4 5 8 8 0

8 8 0 8 8 0 9 4 5

A A I

− − − − − − 
 ⇒ − − = − − − − − − 
 − − − − − − 

2

0 0 0

4 5 0 0 0

0 0 0

A A I O

 
 ⇒ − − = = 
 
 

 

   

2 4 5A A I O∴ − − =

 

10. Problem: If 
0

0

i
A

i

 
=  

− 
  then show that 2A I= −   

Solution:  Given 
0

0

i
A

i

 
=  

− 
  

         
2 2

0 0

0 0

i i
A AA A

i i

   
= ⇒ =   

− −   
 

         
2

0 0 0 0

0 0 0 0

i i i i
A

i i i i

× + × × + × − 
⇒ =  

× + − × × + − × − 

2

2

2

0

0

i
A

i

 
⇒ =  

 
 

         
2 2

1 0
1

0 1
A i

− 
 ⇒ = = −   − 
∵  

          2
1 0 1 0

0 1 0 1
A I I

    
⇒ = − = − =    

    
∵  

   

2
A I∴ = −

 
11. Problem: If 

2 4

5 3
A

− 
=  

− 
  then find TA A+   

Solution: Given 
2 4

5 3
A

− 
=  

− 
  

         
2 4 2 5

5 3 4 3

T

TA
− −   

= =   
− −   
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2 4 2 5 2 2 4 5 4 9

5 3 4 3 5 4 3 3 9 6

T
A A

− − + − − −       
+ = + = =       

− − − − + −       
 

   

4 9

9 6

TA A
− 

∴ + =  
−   

12. Problem: If 

1 2 3

2 5 6

3 7

A

x

− 
 

=  
 
 

is a symmetric matrix, find the value of  x   

Solution:  Given 

1 2 3

2 5 6

3 7

A

x

− 
 

=  
 
 

  

         

1 2 3 1 2 3

2 5 6 2 5

3 7 3 6 7

T

TA x

x

− −   
   

= =   
   
     

       Since A  is a symmetric matrix we have by definition TA A=  

         

1 2 3 1 2 3

2 5 6 2 5

3 7 3 6 7

x

x

− −   
   ⇒ =   
   
   

 

    6x∴ =  

                                Exercise 3( a) 

1. If 
2 3 1

7 8 5
A

− 
=  
 

 and 
1 0 1

2 4 1
B

 
=  

− − 
then find .A B+  

2. If 
1 3

4 2
A

− 
=  
 

 
2 1

3 5
B

 
=  

− 
and 0A B X+ − =  then find X  

3. If 

3 2 1

2 2 0

1 3 1

A

− 
 

= − 
 
 

 

3 1 0

2 1 3

4 1 2

B

− − 
 

=  
 − 

and X A B= +  then find X  

4. If 

1 2 5 1 2

0 2 2 0 2

1 1 1 1 1 1

x y x y

z

w

− − − −   
   

=   
   − + −   

 then find the values of  , , , .x y z w  

5. If 

1 2 5 1 2 3

0 1 7 0 4 7

1 0 5 1 0 0

x y

z

w

− −   
   

− =   
   −   

 then find the values of  , , , .x y z w  
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6. Find the trace of the matrix 

1
1 2

2

0 1 2

1
2 1

2

 
− 

 
− 

 
− 
 

 

7. If 
2 4

5 3
A

− 
=  

− 
  then find TAA   

8. If 
0 4

1 2
A

 
=  

− 
  then find TA A   

9. If 
2 3

,
1 2

A
 

=  
 

 
0 4

1 2
B

 
=  

− 
 then find TBA  

10. If 
1 4 7

2 5 8
A

 
=  
 

 
1 2 1

0 1 3
B

− 
=  

− 
verify that ( )

T T T
A B A B+ = +   

11. If 

1 5 3

2 4 0 ,

3 1 5

A

 
 

=  
 − − 

 

2 1 0

0 2 5

1 2 0

B

− 
 

= − 
 
 

 then find 3 4 T
A B−  

12. If 

2 5

5 0 ,

1 4

A

− 
 

=  
 − 

 
2 3 1

4 0 2
B

− 
=  
 

 then find 2 T
A B+  

3.4 Determinants of a Matrix:  

      We have learnt in lower classes that the value 1 2 2 1a b a b−  is called the 

determinant of the matrix 
1 1

2 2

a b

a b

 
 
 

  

     The determinant of 1 1×  matrix is defined as its element.  

     In this section, we define the determinant of a 3 3×  matrix, study its 

propertiesand the methods of evaluation of certain determinants.  

3.4.1 Definition (Minor of an element): 

      Consider a square matrix 

1 1 1

2 2 2

3 3 3

.

a b c

a b c

a b c

 
 
 
 
 

 The minor of an element in this 

matrix is defined as the determinant of the 2 2×   matrix, obtained after deleting 

the row and column in which the element is present.
                    

      For example the minor of  2b  is  
1 1

1 3 3 1

3 3

.
a c

a c a c
a c

= −    

3.4.2 Definition (Cofactor of an element): 
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        The cofactor of an element in the thi row and the thj  column of a 3 3×  

matrix is defined as its minor multiplied by ( 1)i j+−   

We denote the cofactor of 
i j

a  by 
i j

A
 

For example consider the matrix in 3.4.1 

Since 
2b  is in  2nd row and  2nd  column, we have the cofactor of  

2b  is  

1 12 2 4

2 1 3 3 1 1 3 3 1

3 3

( 1) ( 1) ( ) .
a c

B a c a c a c a c
a c

+= − = − − = −    

3.4.3 Definition (Determinant): 

        Let 

1 1 1

2 2 2

3 3 3

.

a b c

A a b c

a b c

 
 

=  
 
 

 The sum of the products of elements of the first row 

with their corresponding cofactors is called the determinant of .A  The 

determinant of the matrix 

1 1 1

2 2 2

3 3 3

a b c

a b c

a b c

 
 
 
 
 

 is written as 

1 1 1

2 2 2

3 3 3

.

a b c

a b c

a b c

We also denote 

the determinant of the matrix A  by det A or .A   

          
1 1 1 1 1 1det A a A b B c C= + +      

           So far we have defined the concept of the determinant for square matrix of 

order n for 1, 2,3.n = The concept can be extended to the case 4n ≥   by using the 

principle of Mathematical Induction. Let  ( ) .
ij m n

A a
×

=  Then the determinant of 

A  is defined as 
1

,
n

ij ij

j

a A
=

∑  where 
i j

A  is the cofactor of  
i j

a
 

3.4.4 Example: 

        Let us find the determinant of  

1 0 2

3 1 2

4 5 6

A

− 
 

= − 
 
 

  

        det A = The sum of the products of elements of the first row with their 

                     corresponding cofactors  

                  = 1(cofactor of 1) 0(cofactor of 0) ( 2)(cofactor of ( 2))+ + − −

 
                  1( 16) ( 2)(19) 16 38 54.= − + − = − − = −      

3.4.5 Note: 

        The definition of the determinant is formulated by using the elements of the 

first row and the corresponding cofactors only. However the process can be 
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adopted for the elements of any row or column and the corresponding cofactors. 

We thus have 
1

det
n

ij ij

j

A a A
=

=∑ for 1 .i n≤ ≤    

 Here the sum on the right hand side is independent of .i   

If  

1 1 1

2 2 2

3 3 3

a b c

A a b c

a b c

 
 

=  
 
 

 then 
1 1 1 1 1 1det A a A b B c C= + +  expansion along first row. 

Similarly 
2 2 2 2 2 2det A a A b B c C= + + expansion along second row 

                      3 3 3 3 3 3a A b B c C= + +  expansion along third row 

                      1 1 2 2 3 3a A a A a A= + +  expansion along first column 

                      1 1 2 2 3 3b B b B b B= + +  expansion along second column 

                      1 1 2 2 3 3c C c C c C= + +  expansion along third column 

For instance, consider  

                
2 2 1 1 1 11 1 2 1 3 1

1 1 2 2 3 3 1 2 3

3 3 3 3 2 2

( 1) ( 1) ( 1)
b c b c b c

a A a A a A a a a
b c b c b c

+ + ++ + = − + − + −   

                                        

1 2 3 3 2 2 1 3 3 1 3 1 2 2 1( ) ( ) ( )a b c b c a b c b c a b c b c= − − − + −

 

                                        

1 2 3 3 2 1 2 3 3 2 1 2 3 3 2( ) ( ) ( )a b c b c b a c a c c a b a b= − − − + −

 

                                        1 1 1 1 1 1 deta A b B c C A= + + =

 
3.4.6 Properties of determinants: 

  (i)        If each element of a row (or column) of a square matrix is zero, then the  

         determinant of that matrix is zero.   

Let 
1 1 1

2 2 2

0 0 0

A a b c

a b c

 
 

=  
 
 

  

             First row consists of all zero elements. Then  

              1 2 3det 0. 0. 0.A A A A= + +  0=  

               

(ii)        If two rows (or columns) of a square matrix are interchanged, then the sign of the  

         determinant changes.  
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Let 

1 1 1

2 2 2

3 3 3

a b c

A a b c

a b c

 
 

=  
 
 

 and 

2 2 2

1 1 1

3 3 3

a b c

B a b c

a b c

 
 

=  
 
 

  

B
 
is obtained by interchanging of first and second rows of .A  

            2 1 2 2 2 3

1 2 3 3 2 1 2 3 3 2 1 2 3 3 2det ( 1) ( ) ( 1) ( ) ( 1) ( )B a b c b c b a c a c c a b a b+ + += − − + − − + − −   

                   

1 2 3 3 2 1 2 3 3 2 1 2 3 3 2( ) ( ) ( )a b c b c b a c a c c a b a b= − − + − − −

 

                   

[ ]1 2 3 3 2 1 2 3 3 2 1 2 3 3 2( ) ( ) ( )a b c b c b a c a c c a b a b= − − − − + −

 

                   det A= −

 
(iii)        If each element of a row (or column) of a square matrix is multiplied by a  

      number k , then the determinant of the matrix obtained is k times the determinant 

       of the given matrix.  

Let 

1 1 1

2 2 2

3 3 3

a b c

A a b c

a b c

 
 

=  
 
 

 and 

1 1 1

2 2 2

3 3 3

ka b c

B ka b c

ka b c

 
 

=  
 
 

  

B
 
is obtained by multiplying the elements of first row of A by .k  The cofactors of 

1 2 3, ,a a a  in A are 
1 2 3, ,A A A  then the cofactors of 

1 2 3, ,ka ka ka  in B are also 

1 2 3, ,A A A respectively. Hence  

                      1 1 2 2 3 3det B ka A ka A ka A= + +   

                           

1 1 2 2 3 3( )k a A a A a A= + +

 

                            

detk A=

 
(iv)      If A  is a square matrix of order 3 and k  is a scalar, then  

3 .kA k A=
 

(v)        If two rows (or columns) of a square matrix are identical, then the value of the  

              determinant is zero.  

Let 

1 1 1

1 1 1

2 2 2

a b c

A a b c

a b c

 
 

=  
 
 

  

             First and second rows are identical. Then  

              2 2 2det .0 .0 .0A a b c= + +  0=  
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(vi)     If the matrix is a diagonal matrix then the determinant of the matrix is product  of 

             the diagonal elements. 

     Let 

0 0

0 0

0 0

a

A b

c

 
 

=  
 
 

  

              det A abc=   

    (vii)       If the matrix is a triangular (upper or lower) matrix then the determinant of  

            the matrix is product of the diagonal elements. 

     Let 

0 0

0

a

A d b

e f c

 
 

=  
 
 

 det A abc⇒ =  

     Let 

0 0

a d e

B d b f

c

 
 

=  
 
 

 det B abc⇒ =  

(viii)        If the corresponding elements of  two rows (or columns) of a square matrix are 

              in the same ratio, then the value of the determinant is zero.  

Let 

1 1 1

1 1 1

2 2 2

.

ka kb kc

A a b c

a b c

 
 

=  
 
 

 Then 

              

1 1 1 1 1 1

1 1 1 1 1 1

2 2 2 2 2 2

det (0) 0

ka kb kc a b c

A a b c k a b c k

a b c a b c

= = = =  0=  

(ix)        If each element in a row (or column) of a square matrix is the sum of two  

        numbers then its determinant can be expressed as the sum of the determinants of two   

        square matrices as shown below. 

Let 

1 1 1 1 1 1 1 1 1 1

2 2 2 2 2 2 2 2 2 2

3 3 3 3 3 3 3 3 3 3

, ,

a x b c a b c x b c

A a x b c B a b c C x b c

a x b c a b c x b c

+     
     

= + = =     
     +     

  

If in A  the cofactors of 
1 1 2 2 3 3, ,a x a x a x+ + +  are 

1 2 3, ,A A A  then the cofactors of  

1 2 3, ,a a a  in B and of 
1 2 3, ,x x x  in C are also 

1 2 3, ,A A A respectively.  
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              Now,  1 1 1 2 2 2 3 3 3det ( ) ( ) ( )A a x A a x A a x A= + + + + +   

                           

1 1 2 2 3 3 1 1 2 2 3 3( ) ( )a A a A a A x A x A x A= + + + + +

 

                            

det detB C= +  

              

1 1 1 1 1 1 1 1 1 1

2 2 2 2 2 2 2 2 2 2

3 3 3 3 3 3 3 3 3 3

a x b c a b c x b c

a x b c a b c x b c

a x b c a b c x b c

+

∴ + = +

+  

(x)       If each element in a row (or column) of a square matrix is multiplied by a number 

   k   and added to the corresponding element of another row (or column) of the matrix 

   then the determinant of the resulting matrix is equal to the determinant of the given  

   matrix. 

Let 

1 1 1 1 1 1

2 2 2 2 1 2 1 2 1

3 3 3 3 3 3

,

a b c a b c

A a b c B a ka b ka c ka

a b c a b c

   
   

= = + + +   
   
   

  

B is obtained from A  by multiplying each element of the first row of A  by k then 

 adding them to the corresponding elements of the second row of A   

              Now,  

1 1 1 1 1 1

2 2 2 1 1 1

3 3 3 3 3 3

det

a b c a b c

B a b c ka kb kc

a b c a b c

= +   

                           

1 1 1 1 1 1

2 2 2 1 1 1

3 3 3 3 3 3

a b c a b c

a b c k a b c

a b c a b c

= + det 0 detA A= + =  

    (xi)       For any square matrix , det det .TA A A=   

     Let 

1 2 31 1 1

2 2 2 1 2 3

3 3 3 1 2 3

, T

a a aa b c

A a b c A b b b

a b c c c c

  
  

= =   
   
   

  

     The values of the cofactors of 
1 1 1, ,a b c  are same in , .TA A  

      Hence 
1 1 1 1 1 1det A a A b B c C= + + det TA=   

    (xi)       For any square matrix ,A B of same order det( ) det det .AB A B=  

    (xii)       For any positive integer ,n  det( ) (det ) .n nA A=  
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3.4.7 Notation:  

          While evaluating the determinant we use the following notations. 

     (i)     
1 2 ,R R↔ to mean that the rows 

1R  and  
2R  are interchanged.  

    (ii)     
1 1,R kR→ to mean that the elements of  row 

1R  are multiplied by .k         

    (iii)     
1 1 2 ,R R kR→ + to mean that the elements of  row 

1R  are added with k  the  

                corresponding elements of  row 
2.R     

          Similar notation is used for other rows and columns.  

3.4.8 Solved Problems:  

1. Problem: Find the determinant of the matrix  
2 1

1 5

 
 

− 
  

 Solution: Let 
2 1

1 5
A

 
=  

− 
  

        We have 
2 1

det( ) 2( 5) 1.1 10 1 11.
1 5

A A= = = − − = − − = −
−   

2. Problem: Find the determinant of the matrix  

2 1 4

0 2 5

3 1 3

− 
 

− 
 − 

  

Solution: Let 

2 1 4

0 2 5

3 1 3

A

− 
 

= − 
 − 

  

  

 

        We have 

2 1 4

det( ) 0 2 5

3 1 3

A A

−

= = −

−
  

2 5 0 5 0 2
2 ( 1) 4

1 3 3 3 3 1

− −
= − − +

− −  

[ ] [ ] [ ]2 ( 2)3 1.5 1 0.3 ( 3).5 4 0.1 ( 2).( 3)= − − + − − + − − −

 

[ ] [ ] [ ]2 6 5 1 0 15 4 0 6= − − + + + −
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[ ] [ ] [ ]2 11 1 15 4 6= − + + − 22 15 24 15 46 31.= − + − = − = −

 

3. Problem: Find the determinant of the matrix  

2 2 2

2 2 2

2 2 2

1 2 3

2 3 4

3 4 5

 
 
 
 
 

  

Solution: Let 

2 2 2

2 2 2

2 2 2

1 2 3

2 3 4

3 4 5

A

 
 

=  
 
 

  

            

1 4 9

4 9 16

9 16 25

A

 
 ⇒ =  
 
 

 

        We have 

1 4 9

det( ) 4 9 16

9 16 25

A A= =   

9 16 4 16 4 9
1 4 9

16 25 9 25 9 16
= − +

 

[ ] [ ] [ ]1 9.25 16.16 4 4.25 9.16 9 4.16 9.9= − − − + −

 

[ ] [ ] [ ]1 225 256 4 100 144 9 64 81= − − − + −

 

[ ] [ ] [ ]1 31 4 44 9 17= − − − + − 31 176 153 176 184 8.= − + − = − = −  

4. Problem: Find the determinant of the matrix  

a b c

b c a

c a b

 
 
 
 
 

  

 Solution:  Let 

a b c

A b c a

c a b

 
 

=  
 
 

  

            

 

        We have det( )

a b c

A A b c a

c a b

= =   
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c a b a b c
a b c

a b c b c a
= − +

 

[ ] [ ] [ ]. . . . . .a c b a a b b b a c c b a c c= − − − + −

 
2 2 2a bc a b b ac c ba c     = − − − + −     

 
3 3 3abc a b abc abc c= − − + + − 3 3 33abc a b c= − − −

 

5. Problem: Find the determinant of the matrix  

2

2

2

1

1

1

ω ω

ω ω

ω ω

 
 
 
 
 

  

                           where 21, ,ω ω  are cube roots of unity. 

 Solution:  Let 

2

2

2

1

1

1

A

ω ω

ω ω

ω ω

 
 

=  
 
 

 

        We have 

2

2

2

1

det( ) 1

1

A A

ω ω

ω ω

ω ω

= =   

22

2

2 2

11
1

1 1

ω ω ωω
ω ω

ω ω ω ω
= − +

 

2 2 2 2 21 . 1.1 . 1. .1 .ω ω ω ω ω ω ω ω ω ω     = − − − + −     
 

3 2 2 2 41ω ω ω ω ω ω ω     = − − − + −     
 

[ ] [ ] [ ]

( )

2

3 4 3

1 1 0

1, . 1.

ω ω ω ω

ω ω ω ω ω ω

= − − + −

= = = =∵  

             
0 0 0 0= − + =

 

6. Problem: Find the value of x  if  

1 0 0

2 3 4 45

5 6 x

=

−
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 Solution:  We have 

1 0 0

2 3 4 45

5 6 x

=

−
           

3 4 2 4 3 4
1 0. 0. 45

6 5 6x x x
⇒ − + =

− −  

[ ] [ ] [ ]1 3 24 0 2 20 0. 3 24 45x x x⇒ + − − + + =

 
3 24 0 0 45x⇒ + − + =

 
3 21x⇒ = 7x⇒ =

 

7. Problem: Show that ( )( ) ( )

2

2

2

1

1

1

a a

b b a b b c c a

c c

= − − −   

 Solution:  

2

2

2

1

L.H.S 1

1

a a

b b

c c

=       

                 On applying 
2 2 1 3 3 1,R R R R R R→ − → −  we get   

                   

2

2 2

2 2

1

L.H.S 0

0

a a

b a b a

c a c a

= − −

− −  

                   

( ) ( )

( ) ( )

21

0

0

a a

b a b a b a

c a c a c a

= − − +

− − +
 

                   

( )( ) ( )

( )

2
1

0 1

0 1

a a

b a c a b a

c a

= − − +

+  

                 On applying 
3 3 2R R R→ −  we get   
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              ( )( )

21

0 1

0 0

a a

b a c a b a

c b

= − − +

−
 

                On expanding along the first column we get  

 

            

( ) ( )
1

0

b a
b a c a

c b

+
= − −

−

 

            

( )( ) ( )0b a c a c b= − − − −

 

            

( )( )( ) R.H.Sa b b c c a= − − − =

 

                 

( ) ( ) ( )

2

2

2

1

1

1

a a

b b a b b c c a

c c

∴ = − − −

 

8. Problem: Show that ( ) ( )( ) ( )

2 3

2 3

2 3

1

1

1

a a

b b a b b c c a ab bc ca

c c

= − − − + +   

 Solution:  

2 3

2 3

2 3

1

L.H.S 1

1

a a

b b

c c

=       

                 On applying 
2 2 1 3 3 1,R R R R R R→ − → −  we get   

                   

2 3

2 2 3 3

2 2 3 3

1

L.H.S 0

0

a a

b a b a

c a c a

= − −

− −  

                   

( )( ) ( ) ( )

( )( ) ( )( )

2 3

2 2

2 2

1

0

0

a a

b a b a b a b a ba

c a c a c a c a ca

= − + − + +

− + − + +
 

                   

( ) ( ) ( ) ( )

( ) ( )

2 3

2 2

2 2

1

0

0

a a

b a c a b a b a ba

c a c a ca

= − − + + +

+ + +  
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                 On applying 
3 3 2R R R→ −  we get   

              ( ) ( ) ( ) ( )

( ) ( )

2 3

2 2

2 2

1

0

0

a a

b a c a b a b a ba

c b c b ca ba

= − − + + +

− − + −  

              

( ) ( ) ( ) ( ) ( )
( )

2 3

2 2

1

0

0 1

a a

b a c a c b b a b a ba

c b a

= − − − + + +

+ +  

                On expanding along the first column we get  

 

            

( )( )( )
( ) ( )

( )

2 2

1

b a b a ba
b a c a c b

c b a

+ + +
= − − −

+ +
 

            

( ) ( ) ( ) ( )( ) ( )2 2
b a c a c b a b c a b b a ba = − − − + + + − + + 

 

            

( )( )( )( ) R.H.Sa b b c c a ab bc ca= − − − + + =

 

                 

( )( ) ( )( )

2 3

2 3

2 3

1

1

1

a a

b b a b b c c a ab bc ca

c c

∴ = − − − + +  

9. Problem: Show that 2

b c c a a b a b c

c a a b b c b c a

a b b c c a c a b

+ + +

+ + + =

+ + +

  

 Solution:  L.H.S

b c c a a b

c a a b b c

a b b c c a

+ + +

= + + +

+ + +
      

                 On applying 
1 1 2 3R R R R→ + +  we get   

                   

2( ) 2( ) 2( )

L.H.S

a b c a b c a b c

c a a b b c

a b b c c a

+ + + + + +

= + + +

+ + +  

                   

2

a b c a b c a b c

c a a b b c

a b b c c a

+ + + + + +

= + + +

+ + +  
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                 On applying 
1 1 2R R R→ −  we get   

                   2

b c a

c a a b b c

a b b c c a

= + + +

+ + +
 

                                 On applying 
3 3 1R R R→ −  we get   

                    

2

b c a

c a a b b c

a b c

= + + +

 

                                On applying 
2 2 3R R R→ −  we get   

                    

2

b c a

c a b

a b c

=

 

                        2

a b c

b c a

c a b

=

 

R.H.S=

 

                 

2

b c c a a b a b c

c a a b b c b c a

a b b c c a c a b

+ + +

∴ + + + =

+ + +
 

10. Problem: Show that 0

a b b c c a

b c c a a b

c a a b b c

− − −

− − − =

− − −

  

 Solution:  L.H.S

a b b c c a

b c c a a b

c a a b b c

− − −

= − − −

− − −
      

                 On applying 
1 1 2 3R R R R→ + +  we get   

                   

0 0 0

L.H.S b c c a a b

c a a b b c

= − − −

− − −  

                   

0= R.H.S=
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0

a b b c c a

b c c a a b

c a a b b c

− − −

∴ − − − =

− − −
 

11. Problem: Show that ( )
3

2

2 2

2

a b c a b

c b c a b a b c

c a c a b

+ +

+ + = + +

+ +

  

 Solution:  

2

L.H.S 2

2

a b c a b

c b c a b

c a c a b

+ +

= + +

+ +
      

                 On applying 
1 1 2 3C C C C→ + +  we get   

                   

2( )

L.H.S 2( ) 2

2( ) 2

a b c a b

a b c b c a b

a b c a c a b

+ +

= + + + +

+ + + +  

                   

1

2( ) 1 2

1 2

a b

a b c b c a b

a c a b

= + + + +

+ +  

              

                 On applying 
2 2 1 3 3 1,R R R R R R→ − → −  we get   

                   

1

2( ) 0 0

0 0

a b

a b c b c a

c a b

= + + + +

+ +
 

                                On expanding along the first column we get  

 

                    

0
2( )

0

b c a
a b c

c a b

+ +
= + +

+ +

                     

                        22( ) ( ) 0a b c a b c = + + + + − 

 

                     

32( )a b c= + + R.H.S=

 

                 

( )
3

2

2 2

2

a b c a b

c b c a b a b c

c a c a b

+ +

∴ + + = + +

+ +
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12. Problem: Show that 2 2 2

1 1 1

ax by cz a b c

x y z x y z

yz zx xy

=   

 Solution:  2 2 2L.H.S

1 1 1

ax by cz

x y z=       

                 On applying 
3 3

1
R R

xyz
→  we get   

                   

2 2 21
L.H.S

ax by cz

x y z
xyz

xyz xyz xyz

=

 

                   

( )
1

a b c

xyz x y z
xyz

yz xz xy

=

 

                                 

a b c

x y z

yz zx xy

=

 

R.H.S=

 

                 

2 2 2

1 1 1

ax by cz a b c

x y z x y z

yz zx xy

∴ =  

                         Exercise 3(b) 

I     Find the determinants of  the following matrices: 

0
1.

0

i

i

 
 

−              

1 1
2.

3 1

− 
 
          

0 1 1

3. 1 0 1

1 1 0

 
 
 
 
          

1 4 2

4. 2 1 4

3 7 6

 
 

− 
 − 

 

 

2 1 4

5. 4 3 1

1 2 1

− 
 

− 
 
 

  

1 0 2

6. 3 1 2

4 5 6

− 
 

− 
 
 

  

1 1 2

7. 3 0 4

4 2 5

− 
 
 
 − − 

 
8.

a h g

h b f

g f c
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II     Find the determinants of  the following matrices:
 

9. Show that ( ) ( ) ( )

1

1

1

a bc

b ca a b b c c a

c ab

= − − −

 

10.  Show that ( ) ( )( )
2 2 2

1 1 1

a b c a b b c c a

a b c

= − − −  

11.  Show that ( ) ( )( )2 2 2

3 3 3

a b c

a b c abc a b b c c a

a b c

= − − −  

12.  Show that 

2

2

2

1

1 0

1

a a bc

b b ca

c c ab

−

− =

−

 

13.  Show that 3 3 3
3

b c c a a b

c a a b b c a b c abc

a b c

+ + +

+ + + = + + −  

14.  Show that ( )
3

2 2

2 2

2 2

a b c a a

b b c a b a b c

c c c a b

− −

− − = + +

− −

 

3.5 Adjoint and Inverse of a Matrix:  

      In this Section, we discuss adjoint and inverse of a matrix.  

3.5.1 Definition ( Singular and Non-singular matrices): 

      A square matrix is said to be singular if its determinant is zero. Otherwise it is 

said to be non-singular. 

                    

For example 
1 2

2 4

 
 
 

  is a singular matrix while 
3 2

2 4

 
 
 

 is non-singular. 

3.5.2 Definition ( Adjoint of a matrix): 

        The transpose of the matrix formed by replacing the elements of a square 

matrix A  with the corresponding cofactors is called the Adjoint of A   and it is 

denoted by .Adj A
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    Let 

1 1 1

2 2 2

3 3 3

a b c

A a b c

a b c

 
 

=  
 
 

 and , ,i i iA B C   be the cofactors of , ,i i ia b c respectively. 

   Then Adj A   

1 1 1

2 2 2

3 3 3

T
A B C

A B C

A B C

 
 

=  
 
 

1 2 3

1 2 3

1 2 3

A A A

B B B

C C C

 
 

=  
 
   

3.5.3 Definition (Invertible matrix): 

        Let A  be a non-singular matrix. We say that A  is invertible if a matrix B  

exists such that AB BA I= =  where I  is the unit matrix of the same order as A

and B   

3.5.4 Note: 

          (i)   If  B  exists such that AB BA I= =  then such a unique B  is denoted by 
1A− and is called the multiplicative inverse of A  

          (ii) If A is invertible then A  is non-singular matrix, hence det 0A ≠    

 3.5.5 Theorem:         

    If 

1 1 1

2 2 2

3 3 3

a b c

A a b c

a b c

 
 

=  
 
 

is a non-singular matrix then A  is invertible and 

1 Adj
A =

det

A

A

−   

Proof: Given 

1 1 1

2 2 2

3 3 3

a b c

A a b c

a b c

 
 

=  
 
 

    

By definition Adj A   

1 1 1

2 2 2

3 3 3

T
A B C

A B C

A B C

 
 

=  
 
 

1 2 3

1 2 3

1 2 3

A A A

B B B

C C C

 
 

=  
 
   

Now  

1 2 31 1 1

2 2 2 1 2 3

3 3 3 1 2 3

( )

A A Aa b c

A Adj A a b c B B B

a b c C C C

  
  

=   
   
   

   

  

1 1 1 1 1 1 1 2 1 2 1 2 1 3 1 3 1 3

2 1 2 1 2 1 2 2 2 2 2 2 2 3 2 3 2 3

3 1 3 1 3 1 3 2 3 2 3 2 3 3 3 3 3 3

a A b B c C a A b B c C a A b B c C

a A b B c C a A b B c C a A b B c C

a A b B c C a A b B c C a A b B c C

+ + + + + + 
 

= + + + + + + 
 + + + + + +   
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det 0 0

0 det 0

0 0 det

A

A

A

 
 

=  
 
 

1 0 0

det 0 1 0

0 0 1

A

 
 

=  
 
 

(det )A I=  

Now, since det 0A ≠ , we have 
Adj

det

A
A I

A

 
= 

 
  

Similarly we can get 
Adj

det

A
A I

A

 
= 

 
  

Hence A   is invertible and 1 Adj
A =

det

A

A

−

 3.5.6 Corollary:     

    Let A and  B  are invertible matrices. Then 1,A A
− and  AB  are invertible 

matrices. 1 1( ) ( )i A A− − =     1 1( ) ( ) ( )T Tii A A− −=

        

1 1 1( ) ( )iii AB B A− − −=  

3.5.7 Solved Problems:  

1. Problem: Find the adjoint and inverse of the matrix  
2 1

1 5

 
 

− 
  

         Solution: Let 
2 1

1 5
A

 
=  

− 
  

                    We have 
2 1

det( ) 2( 5) 1.1 10 1 11 0
1 5

A A= = = − − = − − = − ≠
−   

                   Hence A  is invertible.  

                   Adjoint matrix of A  is  
5 1

Adj
1 2

A
− − 

=  
− 

 

                  1

5 1

5 1Adj 1 11 11
A =

1 2 1 2det 11

11 11

A

A

−

 
 − − 

= − =   
− −   

 
 

 

2. Problem: Find the adjoint and inverse of the matrix  
cos sin

sin cos

α α

α α

− 
 
 

  

         Solution: Let 
cos sin

sin cos
A

α α

α α

− 
=  
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                    We have ( ) ( ) ( ) ( )
cos sin

det( ) cos . cos sin . sin
sin cos

A A
α α

α α α α
α α

−
= = = − −   

                                   

2 2cos sin 1 0α α= + = ≠  

                   Hence A  is invertible.  

                   Adjoint matrix of A  is  
cos sin

Adj
sin cos

A A
α α

α α

 
= =  

− 
 

                  1
cos sin cos sinAdj 1

A =
sin cos sin cosdet 1

A

A

α α α α

α α α α

−    
= =   

− −   
 

3. Problem: Find the adjoint and inverse of the matrix  

1 3 3

1 4 3

1 3 4

 
 
 
 
 

  

         Solution: Let 

1 3 3

1 4 3

1 3 4

A

 
 

=  
 
 

  

                    We have 

1 3 3
4 3 1 3 1 4

det( ) 1 4 3 1 3 3
3 4 1 4 1 3

1 3 4

A A= = = − +   

                              
1(16 9) 3(4 3) 3(3 4) 7 3 3 1 0= − − − + − = − − = ≠  

                   Hence A  is invertible.  

                   Adjoint matrix of A  is  

7 1 1 7 3 3

Adj 3 1 0 1 1 0

3 0 1 1 0 1

T

A

− − − −   
   

= − = −   
   − −   

 

                  1

7 3 3 7 3 3
Adj 1

A = 1 1 0 1 1 0
det 1

1 0 1 1 0 1

A

A

−

− − − −   
   

= − = −   
   − −   

 

  
4. Problem: If 

1 2 2

2 1 2

2 2 1

A

− − − 
 

= − 
 − 

 then show that  Adj 3 T
A A=   
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         Solution: Given 

1 2 2

2 1 2

2 2 1

A

− − − 
 

= − 
 − 

  

                   Adjoint matrix of A  is  

3 6 6 3 6 6

Adj 6 3 6 6 3 6

6 6 3 6 6 3

T

A

− − − −   
   

= − = − −   
   − − −   

 

                  

1 2 2 1 2 2 3 6 6

3 3 2 1 2 3 2 1 2 6 3 6

2 2 1 2 2 1 6 6 3

T

TA

− − − − −     
     

= − = − − = − −     
     − − − − −     

 

          
Adj 3 T

A A∴ =
  

5. Problem: If 

3 3 4

2 3 4

0 1 1

A

− 
 

= − 
 − 

 then find  3A  and 1A−   

         Solution: Given 

3 3 4

2 3 4

0 1 1

A

− 
 

= − 
 − 

  

                       We have 

3 3 4
3 4 2 4 2 3

det( ) 2 3 4 3 3 4
1 1 0 1 0 1

0 1 1

A A

−
− −

= = − = + +
− −

−
  

                                
3( 3 4) 3(2 0) 4( 2 0) 3 6 8 1 0= − + + − + − + = + − = ≠  

                   Hence A  is invertible.  

                   Adjoint matrix of A  is  

1 2 2 1 1 0

Adj 1 3 3 2 3 4

0 4 3 2 3 3

T

A

− − −   
   

= − = − −   
   − − − −     

               1

1 1 0 1 1 0
Adj 1

A = 2 3 4 2 3 4
det 1

2 3 3 2 3 3

A

A

−

− −   
   

= − − = − −   
   − − − −     

             

2

3 3 4 3 3 4

2 3 4 2 3 4

0 1 1 0 1 1

A AA

− −   
   

= = − −   
   − −   

2

3 4 4

0 1 0

2 2 3

A

− 
 

⇒ = − 
 − − 

 



 

68 

 

         
3 2

3 4 4 3 3 4

0 1 0 2 3 4

2 2 3 0 1 1

A A A

− −   
   

= = − −   
   − − −   

3

1 1 0

2 3 4

2 3 3

A

− 
 

⇒ = − − 
 − − 

 

                        Exercise 3(c) 

I     Find the inverse of  the following matrices: 

1. 
2 1

1 5

 
 

− 
  2.  

2 3

4 6

− 
 
 

  3. 

1 2 1

3 2 3

1 1 2

 
 
 
 
      

4.

  

1 0 2

2 1 0

3 2 1

 
 
 
 
 

 

I I   5.
 

               
If 

1 2 3

0 1 4

2 2 1

A

− 
 

= − 
 − 

 then find  1( )TA −   

   
      

         

    

        

 

3.6 Solution of Simultaneous Linear Equations:  

           In this Section, we discuss some methods of solving system of simultaneous linear   

equations.  

3.6.1 Crammer’s Rule: 

          Consider the system of equations  

                     

1 1 1 1

2 2 2 2

3 3 3 3

a x b y c z d

a x b y c z d

a x b y c z d

+ + =

+ + =

+ + =
 

Where  

1 1 1

2 2 2

3 3 3

a b c

A a b c

a b c

 
 

=  
 
 

  is non-singular. 

 Let 

x

X y

z

 
 

=  
 
 

 be the solution of the equation AX B=  Where  

1

2

3

d

B d

d

 
 

=  
 
   

Let 

1 1 1

2 2 2

3 3 3

a b c

a b c

a b c

∆ =  then 

1 1 1

2 2 2

3 3 3

a x b c

x a x b c

a x b c

∆ =

 

On applying 
1 1 2 3C C yC zC→ + +  we get   
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1 1 1 1 1 1 1 1

2 2 2 2 2 2 2 2 1

3 3 3 3 3 3 3 3

a x b y c z b c d b c

x a x b y c z b c d b c

a x b y c z b c d b c

+ +

∆ = + + = = ∆

+ +
 

 
1x

∆
∴ =

∆
 where 

1 1 1

1 2 2 2

3 3 3

d b c

d b c

d b c

∆ =

 

Similarly we get 2y
∆

=
∆

 where 

1 1 1

2 2 2 2

3 3 3

a d c

a d c

a d c

∆ =

 

                                  

3z
∆

=
∆

 where 

1 1 1

3 2 2 2

3 3 3

a b d

a b d

a b d

∆ =

 

This is known as Crammer’s Rule. 

3.6.2 Matrix Inversion Method: 

          Consider the system of equations  

                     

1 1 1 1

2 2 2 2

3 3 3 3

a x b y c z d

a x b y c z d

a x b y c z d

+ + =

+ + =

+ + =
 

Where  

1 1 1

2 2 2

3 3 3

a b c

A a b c

a b c

 
 

=  
 
 

  is non-singular. Then we can find  1A−  

 AX B= ⇔  1 1( )A AX A B− −= ⇔ 1 1( )A A X A B− −= ⇔ 1 1I X A B I A A− − = = ∵  

1X A B−= From this ,x y  and z   are known. 

 

3.6.3 Solved Problems:  

1. Problem: Solve the following system of equations using crammer’s rule  

3 5, 4 2 0, 3 5.x y z x y z x y z− + = + − = − + + =   

      Solution: Let 

1 1 3 5

4 2 1 , , 0

1 3 1 5

x

A X y B

z

−     
     

= − = =     
     −     

  

             Then we can rewritten the given equations in the form of matrix equation as 

AX B=  
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               We have 

1 1 3
2 1 4 1 4 2

det( ) 4 2 1 1 1 3
3 1 1 1 1 3

1 3 1

A A

−
− −

∆ = = = − = + +
− −

−
  

                                

1(2 3) 1(4 1) 3(12 2) 5 3 42 50 0= + + − + + = + + = ≠  We have 

1 1 1

5 1 3
2 1 0 1 0 2

det( ) 0 2 1 5 1 3
3 1 5 1 5 3

5 3 1

A A

−
− −

∆ = = = − = + +  

                                     5(2 3) 1(0 5) 3(0 10) 25 5 30 0= + + + + − = + − =

 

            We have 
2 2 2

1 5 3
0 1 4 1 4 0

det( ) 4 0 1 1 5 3
5 1 1 1 1 5

1 5 1

A A
− −

∆ = = = − = − +
− −

−
 

                                         1(0 5) 5(4 1) 3(20 0) 5 15 60 50= + − − + − = − + =  

            We have 
3 3 3

1 1 5
2 0 4 0 4 2

det( ) 4 2 0 1 1 5
3 5 1 5 1 3

1 3 5

A A

−

∆ = = = = + +
− −

−
                                                                                                                             

1(10 0) 1(20 0) 5(12 2) 10 20 70 100= − + + + + = + + =

         Hence by Crammer’s rule  

                            
1 0

0,
50

x
∆

= = =
∆

2 50
1,

50
y

∆
= = =

∆

3 100
2

50
z

∆
= = =

∆
 

∴   The solution of the given system of equations is 0, 1, 2.x y z= = =  

2. Problem: Solve the  following system of equations using crammer’s rule     

2 3 9, 6, 2.x y z x y z x y z− + = + + = − + =   

      Solution: Let 

2 1 3 9

1 1 1 , , 6

1 1 1 2

x

A X y B

z

−     
     

= = =     
     −     

  

             Then we can rewritten the given equations in the form of matrix equation as 

AX B=  

               We have 

2 1 3
1 1 1 1 1 1

det( ) 1 1 1 2 1 3
1 1 1 1 1 1

1 1 1

A A

−

∆ = = = = + +
− −

−
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2(1 1) 1(1 1) 3( 1 1) 4 0 6 2 0= + + − + − − = + − = − ≠  We have 

1 1 1

9 1 3
1 1 6 1 6 1

det( ) 6 1 1 9 1 3
1 1 2 1 2 1

2 1 1

A A

−

∆ = = = = + +
− −

−

 

                                     9(1 1) 1(6 2) 3( 6 2) 18 4 24 2= + + − + − − = + − = −

 

            We have 
2 2 2

2 9 3
6 1 1 1 1 6

det( ) 1 6 1 2 9 3
2 1 1 1 1 2

1 2 1

A A∆ = = = = − +

 

                                         2(6 2) 9(1 1) 3(2 6) 8 0 12 4= − − − + − = − − = −  

            We have 
3 3 3

2 1 9
1 6 1 6 1 1

det( ) 1 1 6 2 1 9
1 2 1 2 1 1

1 1 2

A A

−

∆ = = = = + +
− −

−
                                                                                                                             

2(2 6) 1(2 6) 9( 1 1) 16 4 18 6= + + − + − − = − − = −

         Hence by Crammer’s rule  

                            
1 2

1,
2

x
∆ −

= = =
∆ −

2 4
2,

2
y

∆ −
= = =

∆ −

3 6
3

2
z

∆ −
= = =

∆ −
                     

∴   The solution of the given system of equations is 1, 2, 3.x y z= = =  

3. Problem: Solve the following system of equations using crammer’s rule     

2 3 8, 2 4,3 4 0.x y z x y z x y z− + = − + + = + − =   

      Solution: Let 

2 1 3 8

1 2 1 , , 4

3 1 4 0

x

A X y B

z

−     
     

= − = =     
     −     

  

             Then we can rewritten the given equations in the form of matrix equation as 

AX B=  

               We have 

2 1 3
2 1 1 1 1 2

det( ) 1 2 1 2 1 3
1 4 3 4 3 1

3 1 4

A A

−
− −

∆ = = = − = + +
− −

−
  

                                

2( 8 1) 1(4 3) 3( 1 6) 18 1 21 38 0= − − + − + − − = − + − = − ≠   
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We have 
1 1 1

8 1 3
2 1 4 1 4 2

det( ) 4 2 1 8 1 3
1 4 0 4 0 1

0 1 4

A A

−

∆ = = = = + +
− −

−

 

                                     8( 8 1) 1( 16 0) 3(4 0) 72 16 12 76= − − + − − + − = − − + = −

 

            We have 
2 2 2

2 8 3
4 1 1 1 1 4

det( ) 1 4 1 2 8 3
0 4 3 4 3 0

3 0 4

A A
− −

∆ = = = − = − +
− −

−
 

                                         

2( 16 0) 8(4 3) 3(0 12) 32 8 36 76= − − − − + − = − − − = −  

            We have 
3 3 3

2 1 8
2 4 1 4 1 2

det( ) 1 2 4 2 1 8
1 0 3 0 3 1

3 1 0

A A

−
− −

∆ = = = − = + +                                                                                                                              

2(0 4) 1(0 12) 8( 1 6) 8 12 56 76= − + − + − − = − − − = −

         Hence by Crammer’s rule  

                            
1 76

2,
38

x
∆ −

= = =
∆ −

2 76
2,

38
y

∆ −
= = =

∆ −

3 76
2

38
z

∆ −
= = =

∆ −
                  

∴   The solution of the given system of equations is 2, 2, 2.x y z= = =    

4. Problem: Solve the following system of equations using matrix inversion method  

3 5, 4 2 0, 3 5.x y z x y z x y z− + = + − = − + + =   

      Solution: Let 

1 1 3 5

4 2 1 , , 0

1 3 1 5

x

A X y B

z

−     
     

= − = =     
     −     

  

             Then we can rewritten the given equations in the form of matrix equation as 

AX B=  

               We have 

1 1 3
2 1 4 1 4 2

det( ) 4 2 1 1 1 3
3 1 1 1 1 3

1 3 1

A A

−
− −

= = − = + +
− −

−
  

                                
1(2 3) 1(4 1) 3(12 2) 5 3 42 50 0= + + − + + = + + = ≠   

              Hence A  is invertible.  
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 Adjoint matrix of A  is  

5 3 14 5 10 5

Adj 10 4 2 3 4 13

5 13 6 14 2 6

T

A

− −   
   

= − = −   
   − −   

      

   

1

5 10 5
Adj 1

A = 3 4 13
det 50

14 2 6

A

A

−

− 
 

= − 
 − 

 

 

 Hence by matrix inversion method   

                            
1X A B−=  

                    

4 10 5 5
1

3 4 13 0
50

14 2 6 5

X

−  
  

= −  
  −    

                    

25 0 25
1

15 0 65
50

70 0 30

+ − 
 

= − + + 
 + +   

                      

0 0
1

50 1
50

100 2

   
   

= =   
   
   

 

∴   The solution of the given system of equations is 0, 1, 2.x y z= = =  

                        Exercise 3(d) 

1. Solve the following system of equations using crammer’s rule     

3 5, 4 2 0, 3 5.x y z x y z x y z− + = + − = − + + =   

2. Solve the following system of equations using crammer’s rule     

3 4 5 18, 2 8 13,5 2 7 20.x y z x y z x y z+ + = − + = − + =   

3. Solve the system following of equations using crammer’s rule     

3, 2 2 3, 1.x y z x y z x y z+ + = + − = + − =   

4. Solve the following system of equations using matrix inversion method  

2 3 8, 2 4,3 4 0.x y z x y z x y z− + = − + + = + − =   

5. Solve the following system of equations using matrix inversion method  

3 4 5 18, 2 8 13,5 2 7 20.x y z x y z x y z+ + = − + = − + =   

6. Solve the following system of equations using matrix inversion method  

2 4 0, 2 2 5,3 6 7 2.x y z x y z x y z+ − = + + = + − =   
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                                                 Key Concepts 

 1.  An ordered rectangular array of elements is called a matrix. The elements of  matrices 

are real or complex numbers.                

 2.  A matrix having m rows and n  columns is said to be of order ,m n×  read as of m  

cross n or m by .n In compact form it is denoted by ( )ij m n
A a

×
= where 1 i m≤ ≤  and 

1 .j n≤ ≤  

3. In a matrix if the number of rows is not equal to the number of columns then that  

matrix is called a rectangular matrix.   

4.   A matrix in which the number of rows is equal to the number of columns, 

      is called a square matrix.   

5. ( )ij m n
A a

×
= is a square matrix if .m n=  In this case A  is a square matrix of order .n  

1 .j n≤ ≤  

6.  A matrix having only one row is called a row matrix.   

7.  A matrix having only one column is called a column matrix.   

8.  A matrix consisting of all zero elements is called a null matrix or zero matrix.   

9.  If ( )ij n n
A a

×
= where 1 ,i j n≤ ≤  then the principal diagonal elements are

11 22 33, , ... .nna a a a  Trace of a square matrix A  is denoted by ( )Tr A and is denoted by  

11 22 33

1

( ) ... .
n

ii nn

i

Tr A a a a a a
=

= = + + + +∑
 

10.  A square matrix ( )ij n n
A a

×
= is said to be an upper triangular matrix if 

0
ij

a for all i j= >                     11.  A square matrix ( )ij n n
A a

×
= is said to be a lower 

triangular matrix if 0
ij

a for all i j= <  

12.  A square matrix ( )ij n n
A a

×
= is said to be a unit or identity matrix if 

0
ij

a for all i j= ≠    

 13.  If ( )ij m n
A a

×
=  and ( )ij m n

B b
×

=  then ( )ij m n
A B c

×
+ =  where ij ij ij

c a b= +  

      1 ,1for i m j n≤ ≤ ≤ ≤   

14.  If ( ) ( ),
ij ijm n m n

A a B b
× ×

= = and ( )ij m n
C c

×
= be matrices of the same order.  
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(v) Commutative Property: A B B A+ = +  

     

(vi) Associative Property: ( ) ( )A B C A B C+ + = + +  

          
 

(vii) Additive identity: A O O A A+ = + =  

 

(viii) Additive inverse: A B B A O+ = + =  

15.  If ( )ij m n
A a

×
=  then ( ) ( )ij ijm n m n

kA k a k a
× ×

= =
 

16.  Let ( ) ( ),ij ijm p p n
A a B b

× ×
= = be two matrices. Then the matrix ( )ij m n

C c
×

= where 

1

p

ij ik kj

k

c a b
=

=∑  is called the product of the matrices A  and B denoted by .AB
 

17.  If ( ) ( ),
ij ij

A a B b= = and ( )ij
C c= be matrices conformable for multiplication. Then 

(iii) Associative Law: ( ) ( )A BC AB C=  

(iv) Distributive Law: ( ) ( )A B C AB AC Left Distibutive Law+ = +
                              

( ) ( )A B C AC BC Right Distibutive Law+ = +  

 (iii)    Existence of multiplicative identity:  

    If I is the identity matrix of order ,n
 
then for any square matrix A of order ,n

 

                           
AI IA A= =

  

18.  Matrix multiplication need not be commutative.  

19. If andA B are two matrices conformable for multiplication, AB  exists, but BA  may 

not exist, even if BA  exists, AB  and BA  may not equal.  

20. If andO A O B≠ ≠ are two matrices conformable for multiplication, AB  exists and

AB O=  If and ,AB AC O A= ≠ then it is not necessary that B C=   

21.For any positive integer ,n  ( ) . . .... ( )nA A A A A ntimes=   

22. If is α a scalar and A  is any square matrix and is n  a positive integer, then 
 

                     ( ) ( )( )( )....( )( )nA A A A A ntimesα α α α α=  

23.  If A is a matrix of order ,m n× then the matrix obtained by interchanging the rows 

into columns or columns into rows of A  is called the transpose of .A  The transpose of 

the matrix A  is denoted by ( )TA or A′   
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24.  If ( )ij m n
A a

×
=  then ( )T

ji n m
A a

×
=

 

25.  Let A  and B  be matrices of suitable order. Then
 

          ( ) ( )T T
i A A=

       
                          ( ) ( )T T

ii kA kA=  

        
( ) ( )T T Tiii A B A B+ = +

              
( )( )T T Tiv AB B A=

 

26.  A square matrix A  is said to be symmetric matrix if  .TA A=  

                    (i)    Let ( )ij n n
A a

×
= be a symmetric matrix if 1 , .

ij ji
a a i j n= ∀ ≤ ≤   

                    (ii)   We have ,n n n nO I× × are  symmetric matrices. 

                   (iii)   If A is a square matrix then 
TA A+  is a symmetric matrix. 

27.  A square matrix A  is said to be skew-symmetric matrix if  .TA A= −  

                    (i)    ( )ij n n
A a

×
= is a skew-symmetric matrix if   

                                          1 , and 0 1 .
ij ji ii

a a i j n a i n= − ∀ < < = ∀ ≤ ≤   

                    (ii)   We have n nO × is a skew-symmetric matrix. 

                   (iii)   If A is a square matrix then 
T

A A−  is a skew-symmetric matrix. 

28.   We have learnt in lower classes that the value 1 2 2 1a b a b−  is called the determinant of 

the matrix 
1 1

2 2

a b

a b

 
 
 

 Consider a square matrix 

1 1 1

2 2 2

3 3 3

.

a b c

a b c

a b c

 
 
 
 
 

 The minor of an element in 

this matrix is defined as the determinant of the 2 2×   matrix, obtained after deleting the 

row and column in which the element is present.
                    

29.   Let 

1 1 1

2 2 2

3 3 3

.

a b c

A a b c

a b c

 
 

=  
 
 

 The sum of the products of elements of the first row with 

their corresponding cofactors is called the determinant of .A  The determinant of the 

matrix 

1 1 1

2 2 2

3 3 3

a b c

a b c

a b c

 
 
 
 
 

 is written as 

1 1 1

2 2 2

3 3 3

.

a b c

a b c

a b c

We also denote the determinant of the 

matrix A  by det A or .A   

1 1 1 1 1 1det A a A b B c C= + +      
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           Let  ( ) .ij m n
A a

×
=  Then the determinant of A  is defined as 

1

,
n

ij ij

j

a A
=

∑  where 

i j
A  is the cofactor of  

i j
a

 

We thus have 
1

det
n

ij ij

j

A a A
=

=∑ for 1 .i n≤ ≤    

 If  

1 1 1

2 2 2

3 3 3

a b c

A a b c

a b c

 
 

=  
 
 

 then 
1 1 1 1 1 1det A a A b B c C= + +  expansion along first row. 

                
2 2 1 1 1 11 1 2 1 3 1

1 1 2 2 3 3 1 2 3

3 3 3 3 2 2

( 1) ( 1) ( 1)
b c b c b c

a A a A a A a a a
b c b c b c

+ + ++ + = − + − + −   

                                        

1 2 3 3 2 2 1 3 3 1 3 1 2 2 1( ) ( ) ( )a b c b c a b c b c a b c b c= − − − + −

 

                                        

1 2 3 3 2 1 2 3 3 2 1 2 3 3 2( ) ( ) ( )a b c b c b a c a c c a b a b= − − − + −

 

                                        1 1 1 1 1 1 deta A b B c C A= + + =

 
  (i)        If each element of a row (or column) of a square matrix is zero, then the  

         determinant of that matrix is zero.   

 (ii)        If two rows (or columns) of a square matrix are interchanged, then the sign of the  

         determinant changes.  

 (iii)        If each element of a row (or column) of a square matrix is multiplied by a  

      number k , then the determinant of the matrix obtained is k times the determinant 

       of the given matrix.  

 

(iv)      If A  is a square matrix of order 3 and k  is a scalar, then  
3 .kA k A=

 

(v)        If two rows (or columns) of a square matrix are identical, then the value of the  

              determinant is zero.  

  

(vi)     If the matrix is a diagonal matrix then the determinant of the matrix is product  of 

             the diagonal elements. 

    (vii)       If the matrix is a triangular (upper or lower) matrix then the determinant of  

            the matrix is product of the diagonal elements. 

 (viii)        If the corresponding elements of  two rows (or columns) of a square matrix are 
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              in the same ratio, then the value of the determinant is zero.  

 (ix)        If each element in a row (or column) of a square matrix is the sum of two  

        numbers then its determinant can be expressed as the sum of the determinants of two   

        square matrices as shown below. 

 (x)       If each element in a row (or column) of a square matrix is multiplied by a number 

   k   and added to the corresponding element of another row (or column) of the matrix 

   then the determinant of the resulting matrix is equal to the determinant of the given  

   matrix. 

    (xi)       For any square matrix , det det .T
A A A=    

    (xi)       For any square matrix ,A B of same order det( ) det det .AB A B=  

    (xii)       For any positive integer ,n  det( ) (det ) .n n
A A=  

 30.   While evaluating the determinant we use the following notations. 

     (i)     
1 2 ,R R↔ to mean that the rows 

1R  and  
2R  are interchanged.  

    (ii)     
1 1,R kR→ to mean that the elements of  row 

1R  are multiplied by .k         

    (iii)     
1 1 2 ,R R kR→ + to mean that the elements of  row 

1R  are added with k  the  

                corresponding elements of  row 
2.R     

31.   A square matrix is said to be singular if its determinant is zero. Otherwise it is said 

to be non-singular. 

32.
  
The transpose of the matrix formed by replacing the elements of a square matrix A  

with the corresponding cofactors is called the Adjoint of A   and it is denoted by .Adj A
                    

33.   Let A  be a non-singular matrix. We say that A  is invertible if a matrix B  exists 

such that AB BA I= =  where I  is the unit matrix of the same order as A and B   

          (i)   If  B  exists such that AB BA I= =  then such a unique B  is denoted by 
1A− and is called the multiplicative inverse of A  

          (ii) If A is invertible then A  is non-singular matrix, hence det 0A ≠    

34.     If 

1 1 1

2 2 2

3 3 3

a b c

A a b c

a b c

 
 

=  
 
 

is a non-singular matrix then A  is invertible and 1 Adj
A =

det

A

A

−   
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35.     Let A and  B  are invertible matrices. Then 1,A A− and  AB  are invertible matrices. 

1 1( ) ( )i A A
− − =     1 1( ) ( ) ( )T T

ii A A
− −=

        

1 1 1( ) ( )iii AB B A
− − −=    

36. Consider the system of equations  

        1 1 1 1 2 2 2 2 3 3 3 3, ,a x b y c z d a x b y c z d a x b y c z d+ + = + + = + + =
 

Let ,AX B=  Where 

1 1 1

2 2 2

3 3 3

a b c

A a b c

a b c

 
 

=  
 
 

  is non-singular and 

1

2

3

,

dx

X y B d

z d

  
  

= =   
   
   

  

Let 

1 1 1

2 2 2

3 3 3

a b c

a b c

a b c

∆ =  

1 1 1

1 2 2 2

3 3 3

d b c

d b c

d b c

∆ =

1 1 1

2 2 2 2

3 3 3

a d c

a d c

a d c

∆ =

1 1 1

3 2 2 2

3 3 3

a b d

a b d

a b d

∆ =

 

1 ,x
∆

∴ =
∆

 2 ,y
∆

=
∆

3     ’  This is known as Crammer s ulez R
∆

=
∆

. 

37.           Consider the system of equations 

 
                     1 1 1 1 2 2 2 2 3 3 3 3, ,a x b y c z d a x b y c z d a x b y c z d+ + = + + = + + =

 

Where  

1 1 1

2 2 2

3 3 3

a b c

A a b c

a b c

 
 

=  
 
 

  is non-singular. Then we can find  1A−  

 AX B= ⇔  1 1( )A AX A B− −= ⇔ 1 1( )A A X A B− −= ⇔ 1 1
I X A B I A A

− − = = ∵  

1X A B−= From this ,x y  and z   are known. 

                            

                             Answers 
                      Exercise 3(a) 

3 3 0
(1)

9 4 4

 
 
 

   

1 4
(2)

7 3

 
 

− 
  

0 1 1

(3) 4 1 3

5 2 3

− 
 

− 
 
 

5
(4) 1, , 2, 0.

2
x y z w= = = =  

(5) 2, 2, 5, 5.x y z w= = = = (6) 1
  

20 22
(7)

22 34

− 
 

− 

1 2
(8)

2 20

− 
 

− 

12 8
(9)

4 3

 
 
 

 

5 15 5

(11) 10 20 8

9 23 15

− 
 

− 
 − − 

6 14

(12) 13 0

1 10

− 
 
 
 − 

 

                      Exercise 3(b) 

(1) 1
   

      (2) 4
         

(3) 2

          

(4) 108−
        

(5) 37  
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(6) 54−
 
(7) 27

       

2 2 2(8) 2abc fgh af bg ch+ − − −
 

                      Exercise 3(c) 

5 11
(1)

1 211

− − −
 

− 

1 1

4 8
(2)

1 1

6 12

 
 
 
 − 
 

1 3 4
1

(3) 3 1 0
4

1 1 4

− 
−  

− 
 − 

1 4 2
1

(4) 2 5 4
3

1 2 1

− 
 

− − 
 − 

9 8 2

(5) 8 7 2

5 4 1

− − − 
 
 
 − − − 

 

                      Exercise 3(d) 

(1) 0, 1, 2x y z= = = (2) 3, 1, 1x y z= = = (3) 1, 1, 1x y z= = = (4) 2, 2, 2x y z= = =

(5) 3, 1, 1x y z= = = (6) nosolution  
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                   4. ADDITION OF VECTORS  

Introduction: 

                 In our day to day life we come across many queries such as What is your 

height? How should a foot ball player hit the ball, to give a pass to one another player of 

his team? Observe that one possible answer to the first query is 1.75 meters, a quantity 

that specifies a value (magnitude) which is a real number. Such quantities are called 

scalars. However, the answer to the second query is a quantity (called force) which 

involves muscular strength (magnitude) and also direction (in which another player is 

positioned). Such quantities are called vectors. In Physics, Engineering and Mathematics, 

we frequently come across with both types of quantities, namely scalar quantities such as 

length, mass, volume, temperature, density, area, work, resistance etc. and vector 

quantities like displacement, velocity, acceleration, force, weight, momentum etc. 

                Vector methods have revolutionised Mechanics, Engineering, Physics and 

Mathematics. Rene Descarte (1596-1660) after whom the Cartesian coordinate system is 

named, G.W. Leibnitz (1646-1716), a famous mathematician of 17
th 

 century and R.H. 

Hamilton (1835-1865), a well known theoretical physicist are the trio who laid the seeds 

to this branch of Mathematics. J.W. Gibb’s (1839-1903) work on vector analysis was of  

major importance in Mathematics. 

               In this chapter, we will study some of the basic concepts about vectors, various 

operations on vectors and their algebraic and geometric properties. Angle between two 

non-zero vectors, vector equations of a line and a plane are discussed to give a full 

realisation of the applicability of vectors in various areas as mentioned above. 

4.1 Vectors as a triad of real numbers, some basic concepts:  

               Let l  be any straight line in a plane or three dimensional space. This line can be 

given two directions by means of arrow heads. A line with one of these directions 

prescribed, is called a directed line.  

            

4.1.1 Definition (Directed line segment): 

        If A  and B  are two distinct points in the space, the ordered pair ( , ),A B

denoted by AB  is called a directed line segment with initial point A  and terminal 

point .B   The magnitude of ,AB  denoted by  ( ),AB a say=   is the length of AB  

 or distance between A  and .B   

 

l l

a  

A
 

B
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4.1.2 Definition: 

        A line segment with a specified magnitude and direction is called a vector.  

Notice that the directed line segment AB   is a vector. 

         The zero vector, denoted by 0,  is the collection of  PP where P  is any point 

in the space. The zero vector, also known as null vector, has neither support nor 

any direction. Observe that, for the zero vector, the initial and terminal points 

coincide and its magnitude is the scalar 0.  
        Let  ,a b and c  be real numbers (not necessarily distinct). A set formed with 

, ,a b c  in which the order of occurance is also preassigned is called an ordered 

triad or a triple. If , ,a b c  are distinct real numbers, then we get six ordered triads, 

namely ( , , ), ( , , ), ( , , ), ( , , ), ( , , ), ( , , ).a b c a c b b c a b a c c a b c b a For the ordered triad 

( , , ), , ,a b c a b c are called the first, the second and the third components 

respectively.  

       The set of all ordered triads ( , , )a b c of real numbers is denoted by  3.R  

4.1.3 Position vector: 

       Consider a three-dimensional rectangular coordinate system , ,OX OY OZ  and 

a point P in the space having coordinates ( , , )x y z  with respect to the origin 

(0,0,0)O as shown in the Fig given below. Then the vector OP  having O  and P  

as its initial and terminal points respectively, is called the position vector of the 

point with respect to .O  This is denoted by .r  The magnitude of ,OP using the 

distance formula is given by 2 2 2 .OP r x y z= = + +  It is customary that the 

position vector of A  with respect to the origin O  is denoted by .a   

 

 

 

 

 

 

 

 

 

                 

 

 

 

X
1 
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Y
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Z
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Z 

O 
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4.1.4 Direction cosines and Direction ratios: 

                   Consider the position vector OP r=  of a point ( , , ).P x y z= Let , ,α β γ be the 

angles made by the vector r  with the positive direction (counter clockwise direction) of 

, ,X Y Z axes respectively. Then cos ,cosα β  and cosγ  are called the direction cosines of 

the vector .r These direction cosines are usually denoted by , ,l m n  respectively. 

                   Draw perpendicular from P to the ,X Y and Z  axes and let , ,A B C  be the 

feet of the perpendiculars respectively. 

                  We observe that OAP∆  is right angled and hence cos
x x

rr
α = = . Similarly 

from the right angled triangles OBP∆  and ,OCP∆  we may write cos
y

r
β =  and 

cos .
z

r
γ =  Thus the coordinates , ,x y z  of the point P  may also be expressed as 

( , , ).lr mr nr  The numbers , ,lr mr nr which are proportional to the direction cosines are 

called the direction ratios of the vector r . These are usually denoted by , ,a b c  

respectively. 

                  We observe that  

                          
2 2 2 2r x y z= + +

 

                               
2 2 2 2 2 2l r m r n r= + +

 

                               
2 2 2 2( )r l m n= + +  

so that 
2 2 2 1l m n+ + =  but 

2 2 2 1.a b c+ + ≠    

4.2 Classification (Types) of vectors:  

4.2.1 Definition (Unit vector): 

        A vector whose magnitude is unity ( . 1i e  unit) is called a unit vector. It is 

denoted by .e  The unit vector in the direction of a given vector a  is usually 

denoted by ɵ.a  

4.2.2 Definition (Equal vectors): 

      Two vectors a  and b  are said to be equal vectors and written as ,a b=  if they 

have the same magnitude and direction, regardless of the positions of their initial 

points.  
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4.2.3 Definition (Collinear vectors, like and unlike vectors): 

      Two or more vectors are said to be collinear vectors if they are parallel to the 

same line, irrespective of their magnitudes and direction. Such vectors have the 

same support or parallel support. 

     Two vectors are called like vectors or unlike vectors according as they have the 

same direction or opposite direction. In the following Fig a  and b  are like 

vectors, where as a  and c  are unlike vectors.  

 

4.2.4 Definition (Negative of a vector): 

      Let a  be a vector. The vector having the same magnitude as a  but having the 

opposite direction is called the negative vector of a  and denoted by .a−   Note 

that if a AB= then .a BA− =    

 

 

4.2.5 Definition (Co-initial vectors and Co-terminal vectors): 

      Two or more vectors having same initial point are called co-initial vectors and 

same final point are called co-terminal vectors.  

 

 

 

 

 

4.2.5 Definition (Co-initial vectors and Co-terminal vectors): 

      Vectors whose supports are in the same plane or parallel to the same plane are 

called coplanar vectors. Vectors which are not coplanar are called non-coplanar 

vectors. 

      Note that the vectors ,a PA b PB= =  and c PC=  are coplanar vectors if and 

only if the four points , , ,P A B C  lie in the same plane. Coplanarity or non-

coplanarity of vectors arises only when there are three or more non-zero vectors, 

since any two vectors are always coplanar. 
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4.3 Sum (addition) of vectors:  

                We shall now introduce the concept of addition (sum) of vectors, derive the 

commutative law, associative law and a few other properties. 

4.3.1 Triangle law of vector addition: 

                A vector AB  simply means the displacement from a point A  to the point B

along the line .AB  Now consider a situation that a person moves from A  to B and then 

from B  to .C The net displacement made by the person from point A  to the point ,C  is 

given by the vector AC and expressed as  

                 AC AB BC= +  

 This is known as the triangle law of vector addition. 

4.3.2 Parallelogram law of vector addition: 

               If we have two vectors a  and b represented by the two adjacent sides of a 

parallelogram in magnitude and direction, then their sum a b+  is represented in 

magnitude and direction by the diagonal of the parallelogram through their common point 

known as the parallelogram law of vector addition. 

We have  OA AC OC+ =  

         or  ( )OA OB OC OB AC+ = =∵  

 

4.3.3 Properties of vector addition: 

       1. Commutative property: For any two vectors a  and ,b .a b b a+ = +  

       2. Associative property: For any three vectors ,a b  and ,c ( ) ( ).a b c a b c+ + = + +  

       3. Identity property: For any vector ,a 0 0 .a a a+ = + =  Here the zero vector is the 

                                         additive identity vector. 

        4. Inverse property: For any vector ,a 0.a b b a+ = + =  Here the vector b  is the 

                                         additive inverse of the vector .a  
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4.4 Scalar Multiplication of a vector:  

              We shall now introduce the operation of scalar multiplication of a vector, 

initially through a geometric visualisation and later state some laws of scalar 

multiplication.  

4.4.1 Scalar multiplication: 

               Let a  be a given non-zero vector and λ a scalar. Then the product of the vector 

a  by a scalar ,λ  denoted as ,aλ  is defined as a vector aλ  collinear with .a  The vector 

aλ  is  called the multiplication of vector a  by the scalar λ  and aλ  has the direction 

same (or opposite) to that of vector a  according as the value of λ   is a positive (or 

negative).  

              The geometric visualisation of multiplication of a vector by a scalar is given in 

the following Fig. 

 

               
2

a                      

 

           When 1λ = −  then ,a aλ = −  which is a vector having magnitude equal to the 

magnitude of a  and direction opposite to that of  .a  The vector a−  is called the negative 

of  a vector ,a  we always have  

                               ( ) ( ) 0.a a a a+ − = − + =  

            Also, if 
1

,
a

λ = provided 0a ≠  then  

                              
1

1.a a a
a

λ λ= = =  

            So aλ  represents the unit vector ɵa  in the direction of .a  

           Hence ɵ
1

.a a
a

=  

 

a

a

a
2a

a−

 

a−

 

2a−

 

 



 

87 

 

4.4.2 Definition: 

                   Let a  be a vector and λ  be a scalar. Then we define the vector  aλ  to be the 

vector 0   if either the vector a  is a zero vector or λ  is the zero scalar; otherwise  aλ  is 

the direction of  a with magnitude aλ  if 0,λ >  and ( )( ),a aλ λ= − −  if 0.λ <  

4.4.3 Some laws of scalar multiplication of a vector: 

                 We now state some laws of scalar multiplication of a vector which are useful 

for further discussion. 

       1. If a  is a vector and λ  is a scalar, then  ( ) ( ) ( ).a a aλ λ λ− = − = −  

       2. If a  is a vector and ,m n  are scalars, then  ( ) ( ) ( ) ( ).m na mn a nm a n ma= = =  

       3. If a  is a vector and ,m n  are scalars, then  ( ) .m n a ma na+ = +  

       4. If m  is a scalar and ,a b  are any two vectors, then  ( ) .m a b ma mb+ = +   

4.4.4 Note: 

       1. Two vectors are collinear (parallel) if and only if one is a scalar multiple of the 

other.   

       2. Three points ,A B  and C are collinear if and only if ,AB BC  are collinear vectors.   

4.5 Angle between two non-zero vectors:  

              We have learnt about angle between two lines in plane geometry. We now 

introduce the concept of the angle between two non-zero vectors, which is slightly 

different from the angle between two lines. The concept of angle between two vectors is 

largely useful in Chapter 5, which deals with dot and cross product of two vectors.  

4.5.1 Definition: 

                   Let a  and b  be two non-zero vectors. Let ,O A  and B  be points such that 

OA a=  and .OB b=   Then the measure of AOB∠  which lies between 00  and 0180  is 

called the angle between a  and b and is denoted by ( , ).a b   
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0 00 ( , ) 90a b< <

 

0 090 ( , ) 180a b< <
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4.5.2 Note: 

       1. Let a  and b  be non-zero vectors. Then 

              0( ) ( , ) 0i a b a= ⇔  and b  are like vectors. 

                 
0

( ) ( , ) 180ii a b a= ⇔  and b  are unlike vectors. 

                 
0 0( ) ( , ) 0 180iii a b or a= ⇔  and b  are collinear vectors. 

                
( )iv  If 0( , ) 90a b =

 
then a  and b  are perpendicular vectors. 

       2. Let a  and b  be non-zero vectors and ,m n  be positive scalars. Then 

              ( ) ( , ) ( , ).i a b b a=   

                 
( ) ( , ) ( , ).ii a b a b= − −   

                 
0( ) ( , ) ( , ) 180 ( , ).iii a b a b a b− = − = −   

                
( ) ( , ) ( , ).iv a b ma nb=

 

                
0

( ) ( , ) ( , ) 180 ( , ).v ma nb ma nb ma nb− = − = −  

4.5.3 Definition: 

                   Let A  and B  be two points and P  a point on the straight line .AB  We say 

that  P   divides the line segment AB  in the ratio : ( 0),m n m n+ ≠  if .n AP m PB=   

4.5.4 Theorem: 

                   Let a  and b  be position vectors of the points A  and B  with respect to the 

origin .O   If a point P  divides the line segment AB  in the ratio : ( 0),m n m n+ ≠  then the 

position vector of  P  is .
mb na

m n

+

+
  

Proof:  Let  P  be a point on the straight line AB lying between A  and ,B  in which case  

P    is said to divide the line segment AB  internally. Let  .OP r=  

By definition  n AP m PB=  

( ) ( )n AO OP m PO OB⇒ + = +  

( ) ( )n OP OA m OB OP⇒ − = −  

A 

O 

P B 

m

n

a

b
 

r
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( ) ( )n r a m b r⇒ − = −  

( )m n r m b na⇒ + = +  

m b na
r

m n

+
∴ =

+
 

4.5.5 Note: 

                   The above formula is called (division) section formula and it holds weather 

P   divides AB  internally or externally. The position vector of the point P  which divides 

the line segment AB  in the ratio : ( 0),m n m n− ≠  is given by  .
mb na

m n

−

−
  

4.5.6 Corollary: 

                  If P   is the mid point of  AB  then ,m n=  and hence the position vector of P  

is .
2

a b
r OP

+
= =  

Proof:  In Theorem 4.5.4, take 1.m n= =   

4.5.7 Theorem: 

                   Let a  and b  be any two non-collinear vectors. If r  is any vector in the plane 

Π  determined by a pair of supports a  and ,b  then there exist unique scalars x and  y  

such that  .r xa yb= +   

Proof:  Choose a point  O  in the plane Π  as the origin and 

points A and B  in .Π  a OA= and b OB=  so that ,O A  and B   

are not collinear. Let P  be a point in the plane Π  such that  

.OP r= If  P  lies either on the support of  ( . )a i eonthelineOA   

or on the support of  ( . ),b i eonthelineOB  then 0y = or 0.x =
 

               Suppose P  does not lie on the supports of   a  and .b  

Through P  draw lines parallel to b  meeting the support of a  

in L  and parallel to a  meeting the support of b  in .M   

 

B 

O 
A 

L 

M P 
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b
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Thus OL  is collinear with a  and OM  is collinear with .b  Hence there exist scalars x and  

y  such that  OL x a=  and .OM y b=  

Then r OP OL LP= = +  

              .OL OM x a y b= + = +  

If ,r x a y b′ ′= + then ( ) ( )x x a y y b′ ′− = −  so that , ,x x y y′ ′= =  otherwise a  and b  will 

be collinear vectors. Thus x and  y  are unique. 

4.5.8 Corollary: 

              Let a  and b  be vectors and ,x y are scalars then 0xa yb+ =  if and only if  

0.x y= =  

Proof:  If  0,x y= =  then 0.xa yb+ =   

    Since 0 0. 0. ,a b= +  by Theorem 4.5.7, 0.x y= =
 

               
It is known that non-coplanar vectors do exist in the space and in particular three 

non-zero vectors with the same initial point exist. Now, we have the following theorem 

which we called representation theorem.  

4.5.9 Theorem: 

                   Let ,a b  and c  be any three non-coplanar vectors and r  is any vector in the 

space .Π  Then, there exist unique triad of scalars , ,x y z  such that  .r xa yb zc= + +   

Proof:  Let O  be the origin, ,a OA= b OB= and 

.c OC=  Let P  be a point in the space. If P  lies 

 on the supports of  ,a  that is r  is collinear with a  

then we choose 0.y z= =  Similarly, if P  lies on
 

the supports of  ,b or c  then choose 0z x= =  or 

0x y= =  respectively. Suppose P  lies in the plane  

.AOB  Then by Theorem 4.5.7, r xa yb= +  so that 

0.z =  Similarly if P  lies in the plane ,BOC  then 

, 0r yb zc x= + =  and P  lies in the plane ,COA  then 
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, 0.r xa zc y= + =  

               Now suppose P  does not belong to any one of the planes ,AOB BOC  and 

.COA  Through P  draw planes parallel to the planes ,AOB BOC  and COA  meeting the 

support of ,c a  and b  in ,N L  and M  respectively.
 

Now r OP OQ QP= = + ( ) ( )OL LQ OM OL ON OM= + + = + + .OL OM ON= + +  

Since  ,OL OM  and ON  are collinear with ,a b  and c  respectively, then there exist 

scalars ,x y and  z  such that  ,OL x a OM y b= =  and .ON z c=
 

Then .r xa yb zc= + +
   

If ,r x a y b z c′ ′ ′= + + then ( ) ( ) ( ) .x x a y y b z z c′ ′ ′− = − + −   

If ,x x′≠  then a  is coplanar with b  and c  which is not true. 

.x x′∴ =  Similarly y y′=  and .z z′=  

4.5.10 Corollary: 

              Let ,a b  and c   are non-coplanar vectors, then 0xa yb zc+ + =  if and only if  

0.x y z= = =  

Proof:  If  0,x y z= = =  then clearly 0.xa yb zc+ + =   

    Suppose 0.xa yb zc+ + =  Since 0 0. 0. 0.a b c= + +  by Theorem 4.5.9, 0.x y z= = =
 

4.5.11 Definition: 

          Let 
1 2 3, , ,...

n
a a a a  be vectors and 

1 2 3, , ,... nx x x x  be scalars. Then the vector 

1 1 2 2 3 3 ...
n n

x a x a x a x a+ + + +  is called the linear combination of the vectors 
1 2 3, , ,... .

n
a a a a   

4.5.12 Note: 

(i) If  ,a b  are non-collinear vectors, then by Theorem 4.5.7, every vector in the plane  

determined by pair of supports of  a  and b  can be expressed as linear combination of  a  

and b  in one and only one way. 

(ii) If  ,a b  and c are non-coplanar vectors, then by Theorem 4.5.9, every vector in the 

space  can be expressed as linear combination of  ,a b  and c  in one and only one way. 

(iii) Three vectors are coplanar vectors if and only if one of them is a scalar multiple of 

the other two. 
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4.5.13 Components of a vector in Three Dimensions:  

              In Theorem 4.5.9, we have proved that every vector can be expressed as a linear 

combination of three non-coplanar vectors. Here we introduce the concept of components 

of a vector with respect to non-coplanar vectors ,a b  and .c    

4.5.14 Definition (Components): 

             Consider an ordered triad ( , , )a b c  of non-coplanar vectors , , .a b c If r  is any 

vector then there exists a unique triad ( , , )x y z  of scalars such that .r xa yb zc= + + These 

scalars , ,x y z are called the components of r with respect to the triad ( , , ).a b c  

              
Any ordered triad of non-coplanar vectors is called a base for the space. The 

components of a vector depend on the choice of the base. 
 

4.5.15 Representing a vector in component form: 

           We shall now express a given vector in component form. Let O  be a point in 

space. Call it the origin. Take three mutually perpendicular ,X Y  and Z   axes. Let us take 

the points (1,0,0), (0,1,0)A B and (0,0,1)C  on the X −  axis, Y − axis and  Z −  axis 

respectively. Then clearly 1, 1OA OB= =  and 1.OC =   

           The vectors ,OA OB  and ,OC  each having magnitude 1 are called unit vectors 

along OX , OY  and  OZ  respectively, and denoted by ,i  j  and  k  respectively. 

           Now consider the position vector OP  of a point ( , , ).P x y z  Let 
1P  be the foot of 

the perpendicular from P  on the plane .XOY  We thus see that 
1PP  is parallel to Z −  axis.  

 

 

 

 

 

 

 

               As ,i  j  and  k  are unit vectors along the X −  axis, Y − axis and  Z −  axis, 

respectively, and by the coordinates of  P  we have 
1 .PP OR zk= =
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Similarly 
1QP OS y j= =  and .OQ xi=

 

Therefore, it follows that 
1 1OP OQ QP xi y j= + = +  and

1 1 .OP OP PP xi y j zk= + = + +
 

Hence the position vector of P with respect to O  is given by  .OP r xi y j zk= = + +
 

            This form of any vector is called its component form. Here , ,x y z are called the 

scalar components of r  and , ,xi y j zk are called the vector components of r along the 

respective axes. Sometimes , ,x y z are also termed as the rectangular components of .r  

4.5.16 Length of a vector in terms of its components: 

              The length of any vector ,r xi y j zk= + +  is readily determined by applying the 

Pythagoras theorem twice. We note that in the right angle triangle 
1OQP   

                 
2 2 2 2

1 1OP OQ QP x y= + = +  

and in the right angle triangle 
1 ,OPP we have 

                 
2 2 2 2 2

1 1OP OP PP x y z= + = + +  

Hence the length of any vector ,r xi y j zk= + +  is given by  

2 2 2
r xi y j zk x y z= + + = + +                

4.5.17 Note: 

          If  a  and b  are any two vectors given in the component form 
1 2 3a i a j a k+ + and 

1 2 3b i b j b k+ +  respectively, then the following results of addition, subtraction and scalar 

multiplication to vectors hold in component form: 

(i) The sum (or resultant) of the vectors a  and b  is given by  

1 1 2 2 3 3( ) ( ) ( )a b a b i a b j a b k+ = + + + + +
 

(ii) The difference of the vectors a  and b  is given by  

1 1 2 2 3 3( ) ( ) ( )a b a b i a b j a b k− = − + − + −  

(iii) The vectors a  and b  are equal if and only if 
1 1 2 2 3 3, , .a b a b a b= = =  

(iv) The multiplication of  vectors a  by any scalar is given by 

1 2 3a a i a j a kλ λ λ λ= + +  
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4.5.18 Vectors joining two points: 

             If  
1 1 1 1( , , )P x y z  and 

2 2 2 2( , , )P x y z  are any two points, then the vector joining 
1P  

and 
2P   is the vector 

1 2.PP   

             Joining the points 
1P  and 

2P   with the origin O  and applying triangle law, to the 

triangle  
1 2 ,OPP   we have 

1 1 2 2OP PP OP+ =   

             Using the properties of vector addition, the above equation becomes  

                  1 2 2 1PP OP OP= −  

              1 2 2 2 2 1 1 1. , ( ) ( )i e PP x i y j z k x i y j z k= + + − + +  

                          2 1 2 1 2 1( ) ( ) ( )x x i y y j z z k= − + − + −  

Therefore the magnitude of the vector
1 2PP  is given by  

 
1 2 2 1 2 1 2 1

2 2 2

2 1 2 1 2 1

( ) ( ) ( )

( ) ( ) ( )

P P x x i y y j z z k

x x y y z z

= − + − + −

= − + − + −
               

4.5.19 Definition (Right handed and left handed triads): 

               Let , ,OA a OB b OC c= = =  be three non-coplanar vectors.  

               Viewing from the point ,C  if the rotation of OA to OB does not exceed angle 

0180 in anti-clock sense, then , ,a b c  are said to form a right handed system of vectors and 

we say simply that ( , , )a b c  is a right handed system. If ( , , )a b c  is not a right handed 

system ten it is called a left handed system of vectors.             
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4.6 Vector Equations of Line and Plane:  

              In this section we discuss the parametric vector equations of a straight line and 

plane which are useful in solving certain geometric problems. Hereafter ( )P r  means, P  

is a point with position vector .r    

4.6.1 Theorem: 

           The vector equation of the straight line passing through the point ( )A a  and parallel 

to the vector b  is , .r a tb t R= + ∈   

Proof:  Let  ( )P r  be any point on the line. 

    Then AP  and b  are collinear vectors. 

 r a tb∴ − =  for some .t R∈  

   Conversely suppose , .r a tb t R= + ∈   

   Then r a tb− =
 

AP tb∴ =  

∴ AP  and b  are collinear vectors. 

∴ ( )P r  lies on the line. 

4.6.2 Corollary: 

           The equation of the line passing through origin O  and parallel to the vector b  is 

, .r tb t R= ∈
 

4.6.3 Cartesian form: 

          Cartesian equation for the line passing through 
1 1 1( , , )A x y z  and parallel to the 

vector b li m j nk= + +  is 1 1 1 .
x x y y z z

l m n

− − −
= =  

         Fix the origin at O  so that 
1 1 1 .OA x i y j z k= + +   

         If ( ) ( , , )P r x y z=  so that r OP xi y j zk= = + +  then P  lies on the above line 

           r a tb⇔ = +  for some .t R∈
 

           
Now 

1 1 1( ) ( )r a tb xi y j zk x i y j z k t li m j nk= + ⇔ + + = + + + + +   

O 

A P 

a

b

r  



 

96 

 

1 1 1, ,x x lt y y mt z z nt⇔ = + = + = + 1 1 1x x y y z z
t

l m n

− − −
⇔ = = =  

We represent these equations by 1 1 1 .
x x y y z z

l m n

− − −
= =   

4.6.4 Theorem: 

                     The vector equation of the plane passing through the points ( )A a  and ( )B b  

is (1 ) , .r t a tb t R= − + ∈
 

Proof: Let O  be the origin so that  OA a=  andOB b=  

              Let  ( )P r  be any point on the line. 

               AP⇔  and AB  are collinear vectors. 

            ,AP t AB t R⇔ = ∈   

            ( ),r a t b a t R⇔ − = − ∈  

                  
(1 ) , .r t a tb t R⇔ = − + ∈  

4.6.5 Cartesian form: 

                 Let
1 1 1( , , )A x y z  and 

2 2 2( , , ),B x y z ( )P r  be any point on the line. 

                 Let .r xi y j zk= + +  Then P  lies on the above line .AB  

                                     (1 )r t a tb⇔ = − +  for some .t R∈
 

                                     1 1 1 2 2 2(1 )( ) ( )xi y j zk t x i y j z k t x i y j z k⇔ + + = − + + + + +
 

                                    1 1 1 2 1 2 1 2 1( ) ( ) ( ) ( ) ( ) ( )x x i y y j z z k t x x i y y j z z k ⇔ − + − + − = − + − + −   

                                     1 2 1 1 2 1 1 2 1( ) ( ), ( ) ( ), ( ) ( )x x t x x y y t y y z z t z z⇔ − = − − = − − = −
 

                                     

1 1 1

2 1 2 1 2 1

x x y y z z
t

x x y y z z

− − −
⇔ = = =

− − −  

                  We represent these equations by 1 1 1

2 1 2 1 2 1

.
x x y y z z

x x y y z z

− − −
= =

− − −
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4.6.6 Theorem: 

                     The vector equation of the plane passing through the points ( )A a  and 

parallel to the vectors b  and c  is ; , .r a tb sc t s R= + + ∈
 

Proof:  Let  σ  be the plane passing through the point ( )A a  and parallel to the vectors b  

and c  and ( )P r  be any point in .σ  

              In the plane ,σ  through the point ,A  draw lines parallel to the vectors b  and .c  

With the line segment AP  as diagonal, complete the parallelogram ALPM  in σ with 

 the point L  on the line parallel to c  and M  on the line parallel to .b  

,AL sc∴ =  for some s R∈  and ,AM tb=  for some .t R∈
 

Now r a AP AL AM sc tb− = = + = +  

; , .r a tb sc t s R∴ = + + ∈
 

Conversely suppose ; , .r a tb sc t s R= + + ∈   

   Then r a tb sc− = +
 

AP tb sc∴ = +  

∴ ( )P r  lies in the plane .σ  

 

4.6.7 Corollary:   

           The vector equation of the plane passing through the points ( ),A a ( )B b  and 

parallel to the vector c  is (1 ) ; , .r t a tb sc t s R= − + + ∈  

Proof:  In Theorem 4.6.6, replace the vector   b  with .AB   

               Then the equation of the plane is r a t AB sc= + +
 

                                                      
. ( )i e r a t b a sc= + − +

 

                                                     
. (1 )i e r t a tb sc= − + +

  
for some , .t s R∈  

 

 

A 

O 

A P 

M 

a
 

b

b
c

c

σ
 

r

L 
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4.6.8 Corollary:   

           The vector equation of the plane passing through the points ( ),A a ( )B b  and ( )C c  

is (1 ) ; , .r t s a tb sc t s R= − − + + ∈  

Proof:  In Theorem 4.6.6, replace the vector  b  with AB  and c  with .AC  

               Then the equation of the plane is r a t AB s AC= + +
 

                                                      
. ( ) ( )i e r a t b a s c a= + − + −

 

                                                     
. (1 )i e r t s a tb sc= − − + +

  
for some , .t s R∈  

4.6.9 Theorem:   

           Three points ( ),A a ( )B b  and ( )C c  are collinear if and only if there exist scalars 

, ,x y z  (not all zero) such that 0xa yb zc+ + =  and 0.x y z+ + =  

Proof:  Suppose ( ),A a ( )B b  and ( )C c  are collinear.  

             Then  AB BCλ=  for some .Rλ ∈  

                   
( )b a c aλ⇒ − = −

 

                   
( 1 ) 0a b cλ λ⇒ + − − + =

 

             Take  1, 1x y λ= = − −   and  z λ=  so that 0x y z+ + = and 0.x ≠  
 

             Conversely, let , ,x y z  be scalars such that at least one of them is not zero, 

0xa yb zc+ + =  and 0.x y z+ + =   

             Suppose 0.z ≠  Since z x y= − −  and 0xa yb zc+ + =
 

                           
( ) 0xa yb x y c⇒ + − + =

 

                          
( ) ( ) 0x a c y b c⇒ − + − =

 

              
0x CA y CB∴ + =  and 0.x y+ ≠  

       
CA∴  and CB  are collinear vectors and hence ( ),A a ( )B b  and ( )C c  are collinear 

points.  
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4.6.10 Theorem:   

           Four points ( ),A a ( ), ( )B b C c  and ( )D d  are coplanar if and only if there exist 

scalars , ,x y z  and u  (not all zero) such that 0xa yb zc ud+ + + =  and 0.x y z u+ + + =  

Proof:  Suppose ( ),A a ( ), ( )B b C c  and ( )D d  are coplanar. 

             Then the vectors ,AB AC and AD are coplanar. 

           Therefore there exist scalars λ  and µ such that  AD AB ACλ µ= +  

             . ( ) ( )i e d a b a c aλ µ− = − + −  

             Take  1 , ,x y zλ µ λ µ= − − = =   and  1.u = −   

             Then 0xa yb zc ud+ + + =  and 0.x y z u+ + + =
 

             Conversely, let , ,x y z  and u  be scalars such that at least one of them is not zero, 

0xa yb zc ud+ + + =  and 0.x y z u+ + + =   

             Suppose 0.u ≠  Since u x y z= − − −  and 0xa yb zc ud+ + + =
 

                           
( ) 0xa yb zc x y z d⇒ + + − + + =

 

                          
( ) ( ) ( ) 0x a d y b d z c d⇒ − + − + − =

 

              
0x DA y DB z DC∴ + + =  and one of , ,x y z  is non zero. ( 0)x y z+ + ≠∵  

            
,DA DB∴  and DC  are coplanar vectors 

            ( ),A a∴ ( ), ( )B b C c  and ( )D d  are coplanar. 

4.6.11 Solved Problems:  

1. Problem: If 2 3a i j k= + + and 3b i j= +  then find the unit vector in the direction  

                 of  .a b+                       

           Solution: Given 2 3a i j k= + + and 3b i j= +  

                                We have a b+ =  2 3 3i j k i j+ + + +  4 3 3i j k= + +  

                                                       a b+ = 4 3 3i j k+ + =
2 2 24 3 3+ + = 16 9 9+ + = 34  
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                               Unit vector in the direction of a b+  is 
4 3 3

34

a b i j k

a b

+ + +
=

+
 

   2. Problem:  If 3 4i j kλ− + + and 8 6i j kµ + +  are collinear vectors then find λ and µ  

       Solution: Let 3 4a i j kλ= − + + and 8 6b i j kµ= + +  

        Two vectors 
1 2 3a a i a j a k= + + and 

1 2 3b b i b j b k= + +  are collinear then 

                      
31 2

1 2 3

aa a

b b b
= =

3 4

8 6

λ

µ

−
⇒ = =

3 4 4
,

8 6 8

λ

µ

−
⇒ = =

3 1 1
,

2 6 2

λ

µ

−
⇒ = =  

                                            6, 3µ λ⇒ = − =  

3. Problem: If the points whose position vectors are 3 2 ,i j k− −
 
2 3 4 ,i j k+ −

  

                          
2i j k− + +  and 4 5i j kλ+ +  are coplanar then show that 

146
.

17
λ

−
=                   

Solution: Let , , ,A B C D  be the given points respectively  

                   3 2 ,OA i j k∴ = − − 2 3 4 ,OB i j k= + − 2 ,OC i j k= − + + 4 5OD i j kλ= + +
 

                    We have (2 3 4 ) (3 2 )AB OB OA i j k i j k= − = + − − − − 5 3i j k= − + −
 

        
( 2 ) (3 2 )AC OC OA i j k i j k= − = − + + − − − 4 3 3i j k= − + +

 

       
(4 5 ) (3 2 )AD OD OA i j k i j kλ= − = + + − − − 7 ( 1)i j kλ= + + +

 

        
Since , , ,A B C D  are coplanar

 

1 5 3

4 3 3 0

1 7 1λ

− −

− =

+
 

                  

3 3 4 3 4 3
1 5 3 0

7 1 1 1 1 7λ λ

− −
⇒ − − − =

+ +  

                 ( ) ( ) ( )1 3( 1) 21 5 4( 1) 3 3 28 3 0λ λ⇒ − + − − − + − − − − =
 

                 ( ) ( ) ( )1 3 18 5 4 7 3 31 0λ λ⇒ − − − − − − − = 3 18 20 35 93 0λ λ⇒ − + + + + =
 

                 
17 146 0λ⇒ + =

146

17
λ

−
⇒ =

                       

4. Problem: If ,OA i j k= + +
 

3 2 ,AB i j k= − + 2 2BC i j k= + −  and 2 3CD i j k= + +
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                         then find the vector .OD                   

 Solution: Given ,OA i j k= + + 3 2 ,AB i j k= − + 2 2BC i j k= + − and 2 3CD i j k= + +
 

                      
We have AB OB OA OB AB OA= − ⇒ = +   

                                         
3 2OB i j k i j k⇒ = − + + + + 4 2OB i j k⇒ = − +

 

                      
We have BC OC OB OC BC OB= − ⇒ = +   

                                         
2 2 4 2OC i j k i j k⇒ = + − + − + 5OC i j⇒ = +

 

               We have CD OD OC OD CD OC= − ⇒ = +   

                                         
2 3 5OD i j k i j⇒ = + + + + 7 2 3OD i j k⇒ = + +  

 

5. Problem: If 2 4 5 ,a i j k= + −
 
b i j k= + + and 2c j k= +  then find the unit vector in  

                         the opposite direction of  .a b c+ +       

    Solution: Given 2 4 5 ,a i j k= + − b i j k= + + and 2c j k= +  

                         We have a b c+ +  2 4 5 2i j k i j k j k= + − + + + + +  3 6 2i j k= + −  

                              a b c+ + = 3 6 2i j k+ − =
2 2 23 6 ( 2)+ + − = 9 36 4+ + = 49 7=  

        Unit vector in the direction opposite to a b c+ +  is 
3 6 2

7

a b c i j k

a b c

   + + + − − = − 
 + +   

 

                                                                                                                                         

3 6 2

7

i j k− − +
=

    
                         

6. Problem: Find the vector equation of the plane passing through the points 

                         2 5 ,i j k− +
 

5 j k− − and 3 5i j− +  
 

                           
 

Solution: Let 2 5 ,a i j k= − + 5b j k= − − and 3 5c i j= − +  

                    The vector equation of the plane passing through the points , ,a b c  is 

                                             
(1 )r s t a sb tc= − − + +  where ,s t R∈  
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(1 )( 2 5 ) ( 5 ) ( 3 5 )r s t i j k s j k t i j⇒ = − − − + + − − + − +

 

                                              
(1 3 ) ( 2(1 ) 5 5 ) (5(1 ) )r s t t i s t s t j s t s k⇒ = − − − + − − − − + + − − −

 

                                              
(1 4 ) ( 2 3 7 ) (5 6 5 )r s t i s t j s t k⇒ = − − + − − + + − −  

7. Problem: If 2a i j k= − + and 3 5b i j k= − −  then find the vector c  such that ,a  b   

                           and c  forms the sides of a triangle.   

   Solution: Let 2a i j k= − + and 3 5b i j k= − −
 

                            Given that ,a
 
b and c forms the sides of a triangle 0a b c⇒ + + =   

                ( )c a b⇒ = − +  (2 3 5 )c i j k i j k⇒ = − − + + − − (3 4 4 )c i j k⇒ = − − −
 

                   
3 4 4c i j k⇒ = − + +

   

8. Problem: Find the point of intersection of the line 2 ( )r a b t b c= + + − and the plane  

                     ( ) ( 2 )r a x b c y a b c= + + + + −  where ,a  b  and c  are non-coplanar vectors.                          

   Solution: At the point of intersection of the line and plane, we have  

                         2 ( )a b t b c+ + −  ( ) ( 2 )a x b c y a b c= + + + + −
 

                               
2 (1 )a t b tc⇒ + + −  (1 ) ( 2 ) ( )y a x y b x y c= + + + + −

 

                   On comparing the corresponding coefficients, 

                2 1 ,1 2 ,y t x y t x y⇒ = + + = + − = −   

                     
1 , 2 1,y t x y t x y⇒ = = + − − = −

 

                     
1, 0, 1y x t⇒ = = =

   

          The point of intersection is 2 2a b c+ −  

                                        Exercise 4 

1. Find  unit vector in the direction of  2 3 .a i j k= + +   

2. Find a vector in the direction of vector 2a i j= − that has magnitude 7 units. 

3. Find  unit vector in the direction of sum of the vectors  2 2 5i j k+ −  and 

2 3 .i j k+ +  
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4. Find the direction ratios and direction cosines of the  vector 2 .i j k+ −  

5. Consider two points P  and Q  with position vectors 3 2OP a b= −  and 

.OQ a b= +  Find the position vector of a point R  which divides the line joining 

P  and Q  in the ratio 2 :1,   (i) internally and (ii) externally. 

6. Show that the points (2 ), ( 3 5 )A i j k B i j k− + − −  and (3 4 4 )C i j k− −  are the 

vertices of a right angled triangle. 

7. If  , ,a b c are non-coplanar vectors. Prove that 

4 3 ,3 2 5 , 3 8 5 ,a b c a b c a b c− + − + − − + − 3 2a b c− + +  are coplanar. 

8. OABC
 
is a parallelogram. If OA a=  and OC c=  then find the vector equation of 

the side .BC  

9. Find the vector equation of the line passing through the point 2 3i j k+ +  and 

parallel to the vector 4 2 3 .i j k− +  

10. Find the vector equation of the line joining the points 2 3i j k+ +  and 4 3 .i j k− + −  

11.  Find the vector equation of the plane passing through the points 

2 5 , 5i j k j k− + − −  and 3 5 .i j− +  

                                         Key Concepts 

1.   The set of all ordered triads ( , , )a b c of real numbers is denoted by  3.R  

2.  The position vector of the point with respect to O  is denoted by .r The magnitude of     

     ,OP  is given by 2 2 2 .OP r x y z= = + +   

3.  Let , ,α β γ be the angles made by the vector r  with the positive direction (counter 

clockwise direction) of , ,X Y Z axes respectively. Then cos ,cosα β  and cosγ  are called 

the direction cosines of the vector .r  These direction cosines are usually denoted by 

, ,l m n  respectively. 
2 2 2 1l m n+ + =  

4.  A vector whose magnitude is unity ( . 1i e  unit) is called a unit vector. It is denoted by 

.e  The unit vector in the direction of a given vector a  is usually denoted by ɵ.a  

5. Two vectors a  and b  are said to be equal vectors and written as ,a b=  if they have the 

same magnitude and direction, regardless of the positions of their initial points.  

6.  Two or more vectors are said to be collinear vectors if they are parallel to the same 

line, irrespective of their magnitudes and direction.  

7.  Two or more vectors having same initial point are called co-initial vectors and same 

final point are called co-terminal vectors.  
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8.  Vectors whose supports are in the same plane or parallel to the same plane are called 

coplanar vectors. Vectors which are not coplanar are called non-coplanar vectors. 

9.  Triangle law of vector addition AC AB BC= +  

10.  Parallelogram law of vector additionOA AC OC+ =  or  ( )OA OB OC OB AC+ = =∵  

11.  Properties of vector addition: 

       ( )i Commutative property: For any two vectors a  and ,b .a b b a+ = +  

       ( )ii Associative property: For any three vectors ,a b  and ,c ( ) ( ).a b c a b c+ + = + +  

       ( )iii Identity property: For any vector ,a 0 0 .a a a+ = + =  Here the 0 is the 

                                            additive identity vector. 

    ( )iv Inverse property: For any vector ,a 0.a b b a+ = + =  Here the vector b  is the 

                                         additive inverse of the vector .a  

12.            Let a  be a given non-zero vector and λ a scalar. Then the product of the vector 

a  by a scalar ,λ  denoted as ,aλ  is defined as a vector aλ  collinear with .a    

              ( )i If 1λ = −  then ,a aλ = −  ( )ii   ( ) ( ) 0.a a a a+ − = − + =  

              ( )iii   If

 

1
,

a
λ = provided 0a ≠  then 

1
1.a a a

a
λ λ= = =

 

13.  The unit vector ɵa  in the direction of a  is ɵ
1

.a a
a

=

 

14. ( )i If a  is a vector and λ  is a scalar, then  ( ) ( ) ( ).a a aλ λ λ− = − = −  

      ( )ii If a  is a vector and ,m n  are scalars, then  ( ) ( ) ( ) ( ).m na mn a nm a n ma= = =  

      ( )iii If a  is a vector and ,m n  are scalars, then  ( ) .m n a ma na+ = +  

      ( )iv If m  is a scalar and ,a b  are any two vectors, then  ( ) .m a b ma mb+ = +   

15.    Two vectors are collinear (parallel) iff one is a scalar multiple of the other.   

16.   Let a  and b  be two non-zero vectors. Let OA a=  and .OB b=   Then the measure of 

AOB∠  which lies between 00  and 0180  is called the angle between a  and b and is 

denoted by ( , ).a b   
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17.    Let a  and b  be non-zero vectors. Then 

              0( ) ( , ) 0i a b a= ⇔  and b  are like vectors. 

                 
0( ) ( , ) 180ii a b a= ⇔  and b  are unlike vectors. 

                 
0 0( ) ( , ) 0 180iii a b or a= ⇔  and b  are collinear vectors. 

                
( )iv  If 0( , ) 90a b =

 
then a  and b  are perpendicular vectors. 

18. Let a  and b  be non-zero vectors and ,m n  be positive scalars. Then 

    ( ) ( , ) ( , ),i a b b a=  ( ) ( , ) ( , ),ii a b a b= − − 0( ) ( , ) ( , ) 180 ( , ),iii a b a b a b− = − = −
 

    
( ) ( , ) ( , ),iv a b ma nb= 0( ) ( , ) ( , ) 180 ( , ).v ma nb ma nb ma nb− = − = −

 

19.  Let a  and b  be position vectors of the points A  and B  with respect to the origin .O  

                 
 

  ( )i If P  divides the line segment AB  in the ratio : ( 0)m n m n+ ≠  internally then  the 

position vector of  P  is .
mb na

m n

+

+
  

   ( )ii  If P  divides the line segment AB  in the ratio : ( 0)m n m n− ≠  externally then  the 

position vector of  P  is .
mb na

m n

−

−
  

( )iii  If P   is the mid point of  AB  then ,m n=  and hence the position vector of P  is  

.
2

a b
r OP

+
= =

 

20.  Let a  and b  be vectors and ,x y are scalars then 0xa yb+ = ⇔  0.x y= =  

21.  Let ,a b  and c   are non-coplanar vectors, then 0xa yb zc+ + = ⇔ 0.x y z= = =  

22.   Let 
1 2 3, , ,...

n
a a a a  be vectors and 

1 2 3, , ,... nx x x x  be scalars. Then the vector 

1 1 2 2 3 3 ...
n n

x a x a x a x a+ + + +  is called the linear combination of the vectors 
1 2 3, , ,... .

n
a a a a   

23. ( )i If  ,a b  are non-collinear vectors, then every vector in the plane can be expressed  

as linear combination of  a  and b  in one and only one way. 

( )ii If  ,a b  and c are non-coplanar vectors, then every vector in the space  can be 

expressed as linear combination of  ,a b  and c  in one and only one way. 
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( )iii Three vectors are coplanar vectors if and only if one of them is a scalar multiple of 

the other two. 

 24. The ordered triad of non-coplanar vectors , ,a b c  is ( , , ).a b c  If r  is the position 

vector scalars such that .r xa yb zc= + + These scalars , ,x y z are called the components of 

r with respect to the triad ( , , ).a b c  

  
25. The length of any vector ,r xi y j zk= + +  is given by  

2 2 2
r xi y j zk x y z= + + = + +         

26.
  

If  a  and b  are any two vectors given in the component form 
1 2 3a i a j a k+ + and 

1 2 3b i b j b k+ +  respectively.
      

      ( )i  The sum of the vectors a  and b  is 
1 1 2 2 3 3( ) ( ) ( )a b a b i a b j a b k+ = + + + + +

 

   
( )ii  The difference of the vectors a  and b  is 

1 1 2 2 3 3( ) ( ) ( )a b a b i a b j a b k− = − + − + −
 

( )iii  The vectors a  and b   are equal if and only if 
1 1 2 2 3 3, , .a b a b a b= = =  

( )iv  The multiplication of vectors a  by any scalar is
 1 2 3a a i a j a kλ λ λ λ= + +  

27.   If  
1 1 1 1( , , )P x y z  and 

2 2 2 2( , , )P x y z  are any two points, then the vector joining 
1P  and 

2P   is the vector 
1 2.PP  

1 2 2 1 2 1 2 1. , ( ) ( ) ( )i e PP x x i y y j z z k= − + − + −  and the magnitude is 

2 2 2

1 2 2 1 2 1 2 1 2 1 2 1 2 1( ) ( ) ( ) ( ) ( ) ( )P P x x i y y j z z k x x y y z z= − + − + − = − + − + −                

28.     Let , ,OA a OB b OC c= = =  be three non-coplanar vectors. From the point ,C  if the 

rotation of OA to OB does not exceed angle 0180 in anti-clock sense, then , ,a b c  are said 

to form a right handed system of vectors and we say simply that ( , , )a b c  is a right handed 

system. If ( , , )a b c  is not a right handed system ten it is called a left handed system of 

vectors.    

29.   The vector equation of the straight line passing through the point ( )A a  and parallel 

to the vector b  is , .r a tb t R= + ∈   

30.   The equation of the line passing through origin O  and parallel to the vector b  is 

, .r tb t R= ∈
 

31.   Cartesian equation for the line passing through 
1 1 1( , , )A x y z  and parallel to the vector 

b li m j nk= + +  is 1 1 1 .
x x y y z z

l m n

− − −
= =
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32.  The vector equation of the plane passing through the points ( )A a  and ( )B b  is 

(1 ) , .r t a tb t R= − + ∈
 

33.  Let
1 1 1( , , )A x y z  and 

2 2 2( , , ),B x y z ( )P r  be any point on the line. Let .r xi y j zk= + +  

Then P  lies on the above line .AB  The equation of AB   is 1 1 1

2 1 2 1 2 1

.
x x y y z z

x x y y z z

− − −
= =

− − −  

34.  The vector equation of the plane passing through the points ( )A a  and parallel to the 

vectors b  and c  is ; , .r a tb sc t s R= + + ∈
 

35.  The vector equation of the plane passing through the points ( ),A a ( )B b  and parallel 

to the vector c  is (1 ) ; , .r t a tb sc t s R= − + + ∈  

36.  The vector equation of the plane passing through the points ( ),A a ( )B b  and ( )C c  is 

(1 ) ; , .r t s a tb sc t s R= − − + + ∈  

37.  Three points ( ),A a ( )B b  and ( )C c  are collinear if and only if there exist scalars 

, ,x y z  (not all zero) such that 0xa yb zc+ + =  and 0.x y z+ + =  

38.   Four points ( ),A a ( ), ( )B b C c  and ( )D d  are coplanar if and only if there exist scalars 

, ,x y z  and u  (not all zero) such that 0xa yb zc ud+ + + =  and 0.x y z u+ + + =  

                            Answers 
                      Exercise 4 

ɵ 2 3 1
(1)

14 14 14
a i j k= + +    

7 14
(2) 7

5 5
a i j= −    

4 3 2
(3)

29 29 29
i j k+ −  

              
1 1 2

(4) 6, , ,
6 6 6

 
− 

 
        

5
(5) ( ) , ( ) 4

3
i a ii b a−       (8) , Rr c ta t= + ∈  

             (9) (2 4 ) (3 2 ) (1 3 ), Rr t i t j k t t= + + − + + ∈  

             (10) (2 6 ) (1 2 ) (3 4 ), Rr t i t j k t t= − + + + − ∈  

            (11) (1 )( 2 5 ) ( 5 ) ( 3 5 ), , Rr s t i j k s j k t i j s t= − − − + + − − + − + ∈  
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              5. PRODUCT OF VECTORS  

Introduction: 

                 In Chapter 4, we studied about the addition and subtraction of vectors. We also 

introduced the concept of multiplication of a vector with a scalar and derived the 

parametric vectorial equations of straight line and plane. In this unit, we intend to 

introduce another algebraic operation, called the product of vectors. 

                 Recall that product of two real numbers is a real number and product of two 

matrices that are compatible for multiplication, is again a matrix. But in case of functions, 

we may operate them in many ways, Two such operations are multiplication of functions 

point and composition of two functions. Similarly we define two different types of 

products, namely, scalar(or dot) product where the resultant is a scalar and vector (or 

cross) product where the resultant is a vector. In the case of vectors, both the types of 

products have several applications in Geometry, Mechanics, Physics and Engineering. 

                We shall conclude this chapter by introducing the concept of scalar triple 

product of three vectors, explain its geometrical interpretation, indicate its use in 

obtaining the shortest distance between two skew lines and also discuss the vector triple 

product of three vectors. 

5.1 Scalar or Dot product of two vectors- Geometrical Interpretation- 

Orthogonal Projections:  

5.1.1 Definition (Scalar or Dot product): 

        Let a  and b  be two vectors.  The scalar (or dot) product of  a  and b  

written as . ,a b is defined by  

           
0 , 0

.
cos , 0 .

if one of a b is
a b

a b if a b and is the anglebetween a and bθ θ


= 

≠ ≠

  

5.1.2 Note: 

       1. For any two vectors a  and ,b .a b  is a scalar. 

       2. If ,a b  are non-zero vectors, then .a b  is positive or zero or negative according as  

            the angle ,θ  is acute or right or obtuse angle. 
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       3. If 00θ = then . .a b a b=  In particular 
2

0. cos0a a a a a= =  and .a a  is generally  

            denoted by 
2

2
( ) .a or a   

        4. If 0180θ = then . .a b a b= −  In particular 
2

0
. cos180 .a a a a a= = −  

5.1.3 Orthogonal Projection: 

       We introduce the concept of orthogonal projection of a  

vector b on a vector a and derive formulae for orthogonal  

projection of  b on a  and its magnitude, we notice that the  

orthogonal projection of b on a  is same as the  orthogonal  

projection of  b on any vector collinear with .a  

5.1.4 Definition: 

                   Let AB a= andCD b=  be two non-zero vectors. Let P andQ  be the feet of 

the perpendiculars from C and D   respectively onto the line .AB Then PQ  is called the 

orthogonal projection of  b on a  and the magnitude
 

PQ  is called the magnitude
 

projection of  b on .a   If 0a ≠  and 0b ≠  then the projection vector of b on a  is defined 

as the zero vector. 

5.1.5 Note: 

 (i). Some people use the word ‘ projection’ for the projection of a vector as well as the              

       magnitude of the projected vector. It should be understood according to the context.           

(ii). The projection remains unchanged even if the supports of the vector are replaced by 

       parallel lines. Hence we may choose  ,a b  are coinitial vectors. 

5.1.6 Theorem: 

               The projection vector of b on a  is 
2

.a b
a

a

 
 
  
 

 and its magnitude is  
.a b

a
 

Proof:  Let  OA a= and ;OB b=  P  be the foot of the perpendicular from B  on OA  and 

.AOBθ = ∠    

 Case 1: θ  is acute. Then by definition, the projection of b on a OP=    

B A 

C D 

P Q 

a

b  
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a

OP
a

 
 =
 
 

 

                                  
cos

a
OB

a
θ
 
 =
 
 

 

                                 
cos

a
b

a
θ
 
 =
 
 

 

                                 ( ) 2
cos

a
a b

a
θ

 
 =
  
 

( ) 2
.

a
a b

a

 
 =
  
 

2

.a b
a

a

 
 =
  
 

 

Case 2: θ  is obtuse. In this case, OP is in the opposite direction of a  and hence the angle 

( , ) .b OP π θ= −    

∴ the projection of b on a = OP
a

OP
a

 
− =

 
 

 

                                  
cos( )

a
OB

a
π θ

 
− = −

 
 

 

                                  
cos

a
OB

a
θ
 

− = −
 
 

cos
a

b
a

θ
 
 =
 
 

 

                                  ( ) 2
cos

a
a b

a
θ

 
 =
  
 

( ) 2
.

a
a b

a

 
 =
  
 

2

.a b
a

a

 
 =
  
 

 

Case 3: When θ  is a right angle, P coincides with O  so that 0OP = and also . 0.a b =   

         Hence 
2

.a b
OP a

a

 
 =
  
 

 

Thus the the projection of b on a =  
2

.a b
a

a

 
 
  
 

   and magnitude is 
.a b

a
 

 

B 

O A 

P 

a

b  

θ

 

A 

a

b  

B 

P O 

π θ−
θ
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5.1.7 Definition: 

                   Let OA a= andOB b=  be two non-zero vectors. Let P  be the feet of the 

perpendicular from B on the line .OA   Then OP is called the component of b parallel to a  

and PB  is called component of  b perpendicular to a   

                                2

( . )
.

a b
PB b a

a
= −

 

5.1.8 Geometrical interpretation of the scalar product: 

                Let a and b  be two non-zero vectors and is the angle between anda bθ  

 Let OA a= and .OB b=  Let P  be the feet of the perpendicular from B on the line .OA
 

Then  . cosa b a b θ=   

. cosa b a b θ∴ =  a OP= =  Area of the rectangle whose sides are a  and .OP

 
projection vector of b on a  is defined as the zero vector. 

5.1.9 Theorem: 

                     Let ,a b and c  be three non-zero vectors. Then the projection b c+  of on a is 

equal to the sum of the projections of b  and c  on a  and hence 

2 2 2

.( ) . .a b c a b a c
a a a

a a a

+
= +

 

Proof:  Let  ,OA a PQ b= = and ;QR c=   so that .PR b c= +    

We may assume that 0.b c+ ≠  Let ,L M  and N  be the foot 

 of the perpendiculars from ,P Q  and R  respectively on the 

line .OA    

2

.( )a b c
a

a

+
=  projection of b c+  on a LN LM MN= = +

 

=  projection of b  on a +  projection of c  on a
2 2

. .a b a c
a a

a a
= +  

O A M 

P 

Q 

R 

L N 

a

b  

c
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5.1.10 Corollary: 

                   Let ,a b and c  be three vectors then .( ) . .a b c a b a c+ = +  

Proof:  We may assume that   , ,a b c andb c+  are non-zero vectors. 

From Theorem 5.1.9,   

the projection of b c+  on a =  projection of b  on a +  projection of c  on a   

                        2 2 2

.( ) . .a b c a b a c
a a a

a a a

+
∴ = +

 

                                                  2

. .a b a c
a

a

+
=

 

            
.( ) . .a b c a b a c∴ + = +

 

5.2 Properties of dot product:  

                 In this section, we discuss some of the basic laws of dot product of two vectors. 

5.2.1 Theorem: 

                    Let ,a b  be two vectors. Then 

                                       
( ) . . ( )i a b b a commutative law=

 

                                       
( ) ( ). .( ) ( . ),ii la b a lb l a b l R= = ∈

 

                                       
( ) ( ).( ) ( . ),iii la mb lm a b l and m R= ∈

 

                                        
( ) ( ). .( ) ( . )iv a b a b a b− = − = −

 

                                        
( ) ( ).( ) .v a b a b− − =

 

Proof:  If one of ,a b  is a zero vectors, then by the definition of dot product (i) to (v) 

hold. 

Suppose 0a ≠   and 0.b ≠  Let ( , ) .a b θ=  Then 

( ) ( , ) ( , ).i a b b aθ= =
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. cos cos . .b a b a a b a bθ θ∴ = = =  

( )ii  Case 1: 0.l >  Then ( , ) ( , ) ( , )la b a lb a b θ= = =
 

               
[ ]( ). cos cos 0la b la b l a b lθ θ∴ = = >∵

 

                                           
( cos ) .( )a l b a lbθ= =

 

                
( ). .( ) ( . ), 0la b a lb l a b l∴ = = >

 

        Case 2: 0.l <  Then ( , ) ( , ) .la b a lb π θ= = −
 

               
Now ( ). cos( )la b la b π θ= −

 

                                      
[ ]( cos ) 0l a b lθ= − − <∵

 

                                      
( . )l a b=

 

               Similarly .( ) ( . ), 0a lb l a b l= < magnitu
 

                
( ). .( ) ( . ), 0la b a lb l a b l∴ = = <

 

               
( ). .( ) ( . )la b a lb l a b l R∴ = = ∀ ∈  

( )iii  In (ii) if we replace b  with ( ),mb m R∈ then 
 

           
( ).( ) ( .( )) (( ). ) ( . ).la mb l a mb l mb a lm a b= = =

 

   
( ).( ) ( . ),la mb lm a b l and m R∴ = ∈

 

( )iv  In (ii) if we replace l  with 1,− then we get 
 

           
( ). .( ) ( . )a b a b a b− = − = −

 

  
( )v  In (iii) if we replace l  with 1,− m  with 1,−  we get 

 

           
( ).( ) .a b a b− − =

 

5.2.2 Note: 

    
( ) ( ). . .i b c a b a c a+ = +

     

2 2
2( ) ( ) 2 .ii a b a b a b+ = + +

 

     
 

B 

A 

O 
a

la
 

a−  

b−

mb

 

b

θ

π θ−
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5.3 Expression for scalar(dot)product, Angle between two  vectors:  

                 In this section, we derive formula for the dot product .a b  when a  and b are 

expressed in terms of a right handed system ( , , ).i j k We observe that, if , ,i j k are 

mutually perpendicular unit vectors, then . . . 1i i j j k k= = =  and . . . 0.i j j k k i= = =   

5.3.1 Theorem:      

             Let ( , , )i j k be the orthogonal unit triad. Let 
1 2 3a a i a j a k= + + and 

1 2 3b b i b j b k= + + be the vectors where ,
j j

a b  are scalars for 1, 2,3.j = Then 

1 1 2 2 3 3.a b a b a b a b= + +  

Proof:  By Corollary 5.1.10, and Theorem 5.2.1 we have  

               1 1 2 3 1 1 1 2 1 3.( ) ( . ) ( . ) ( . )a i b i b j b k a b i i a b i j a b i k+ + = + +
 

                                         1 1 1 2 1 3 1 1(1) (0) (0) .a b a b a b a b= + + =
 

              1 1 2 3 1 1. .( )i e a i b i b j b k a b+ + =
 

Similarly 
2 1 2 3 2 2.( )a j b i b j b k a b+ + =   and  

3 1 2 3 3 3.( )a k b i b j b k a b+ + =
 

 Again by Corollary 5.1.10, we have  
1 1 2 2 3 3.a b a b a b a b= + +

 

5.3.2 Note:      

            
( )i If is theangle between two non-zero and ,a bθ  from the definition of . ,a b  we  

                have  1 .
cos

a b

a b
θ −

 
 =
 
 

 and in particular if 
1 2 3a a i a j a k= + +  and 

                
1 2 3b b i b j b k= + +

 
then 1 1 1 2 2 3 3

2 2 2 2 2 2

1 2 3 1 2 3

cos
a b a b a b

a a a b b b
θ −

 + +
 =
 + + + + 

     
 

            
( )ii If ,a b  are perpendicular to each other if and only if 

1 1 2 2 3 3 0.a b a b a b+ + =  
 

5.3.3 Theorem:   

                 Angle in a semi circle is a right angle. 

Proof:  Let AB be a diameter of a circle with centre .O   

Let OA a=
 
so that .OB a= −       

A 

O 

B 

P 

a

 
a−

r
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Let P  be a point on the circle and OP r=   

Then . ( ).( )PA PB a r a r= − − −  
2 2

( )a r= − − 0 a r radius = = =
 
∵

 

090 .APB∠ =  

5.3.4 Theorem (Parallelogram law):   

                      In a parallelogram, the sum of squares of lengths of the diagonals is equal to 

sum of squares of lengths of its ides.  

Proof:  Let OABC be a parallelogram in which OB and CA  are diagonals. 

Let OA a=
 
and .OC c=  

Then OB a c= +  and CA a c= −
 

2 2 2 2

OB CA a c a c∴ + = + + −
 

                  

2 2 2 2

2 . 2 .a c a c a c a c= + + + + −
 

                  

2 2

2 2a c= +
 

               

2 2 2 2

,OA AB CB OC OA BC AB OC = + + + = =
 
∵                                           

5.4 Vector (cross) product of two vectors and properties:  

              In this section, we recall ‘Right and Left handed system’ of a vector triad 

introduced in Chapter4.We shall define the vector(cross) product of two vectors and some 

of the properties of cross product of vectors.  

5.4.1 Right handed and Left handed system: 

               Let , ,O A B  and C   be points in the space such that no three of them are 

collinear. Let ,OA a OB b= =
 
and .OC c=  Observing from the point ,C  if the angle of 

rotation (in the counter clock wise sense) of OA  to OB does not exceed 0180 ,  then the 

vector triad ( , , )a b c  is said to be a Right handed triad or Right handed system. 

              If ( , , )a b c  is not a Right handed triad, then it is said to be a Left handed triad. 

 

 

A 
O 

B 
C 

a
 

c a c−
a c+
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5.4.2 Note: 

    (i)  If ( , , )a b c  is a Right (Left) handed system, then the triads ( , , )b c a  and ( , , )c a b
 

              
also form Right (Left) handed systems.        

    (ii) If ( , , )a b c  is a Right handed system and , ,a b c are mutually perpendicular to each 

          other, then ( , , )a b c is called an orthogonal triad. Thus the vector triad ( , , )i j k  is  

          an orthogonal triad. 

   (iii) If  any two vectors in a triad are interchanged, then the system will change. For 

            example ( , , )a b c  and ( , , )b a c  form opposite systems. 

5.4.3 Definition: 

.                 Let a  and b  be two non zero non collinear vectors. The cross (or vector) 

product of a  and ,b  is written as a b×  (read as a cross b ) is defined to be the vector 

ɵsina b nθ  where θ  is the angle between the vectors a  and b  and ɵn  is the unit vector 

perpendicular to both a  and b   such that ɵ( , , )a b n is a right handed system.  

               If one of the vectors ,a b is the null vector or ,a b  are collinear vectors then the 

cross product a b×  is defined as the null vector.  

5.4.4 Note: 

              If ,a b are non-zero and non-collinear vectors, then a b×  is a vector, 

perpendicular to the plane determined by a  and ,b whose magnitude is sina b θ defined 

as the null vector. 

               In the following theorem we prove that, the cross product of two non-zero and 

non-collinear vectors does not obey the commutative law.  

5.4.5 Theorem:   

                 Let ,a b  be two vectors. Then a b b a× = − ×
 

        Proof:  If one of ,a b  is a zero vector or ,a b  are collinear vectors then 0a b× =   

                           and 0b a× =  and hence a b b a× = − ×
 

                           Suppose ,a b  are non-zero and non-collinear vectors.  
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                 Let θ  is the angle between the vectors a  and b  and ɵn  is the unit vector 

perpendicular to both a  and b   such that ɵ( , , )a b n is a right handed system. Hence by 

definition ɵsin .a b a b nθ× =  In this case θ  is traversed from a  to .b  If ɵ( , , )b a n−  is a 

right handed triad, here θ  is traversed from b  to .a  

 ɵ ɵsin ( ) sin ( ).b a a b n a b n a bθ θ∴ × = − = − = − ×
 

              Thus a b b a× = − ×
 

5.4.6 Note: 

        sin .a b b a a b θ× = × =  

5.4.7 Theorem:   

               Let ,a b  be two vectors and ,l m  be scalars. Then 

                                       
( ) ( ) ( ) ( )i a b a b a b b a− × = × − = − × = ×

 

                                       
( ) ( ) ( )ii a b a b− × − = ×

 

                                       
( ) ( ) ( ) ( )iii la b a lb l a b× = × = ×

 

                                       
( ) ( ) ( ) ( )iv la mb lm a b× = ×

 

   Proof:  If one of ,a b  is a zero vector or ,a b  are collinear vectors or one of ,l m  is a 

zero scalar then all the above equalities hold good. Hence we assume that ,a b  are non-

zero and non-collinear vectors and ,l m  are non-zero scalars. Let θ  is the angle between 

the vectors a  and b  and ɵn  is the unit vector perpendicular to both a  and b   such that 

ɵ( , , )a b n is a right handed system. The angle between the vectors a  and b  is .π θ−
 
The 

triad ɵ( , , )a b n− is a left handed triad and ɵ( , , )a b n− − is a right handed triad. 

ɵ ɵ( )( ) ( ) sin( ) ( ) sin ( ).i a b a b n a b n a bπ θ θ− × = − − − = − = − ×  

         Also      ( ) [ ]( ) ( ) by Theorem5.4.5a b b a× − = − − × ∵
 

                                          ( )( )b a= − − × b a= × ( )a b= − ×
 

Thus ( ) ( ) ( )a b a b a b b a− × = × − = − × = ×  
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( ) ( ) ( ) ( ) ( ( ) )ii a b a b by i − × − = − × −  ∵  

                                  
( ) ( ( ) )a b by i = − − ×  ∵  

                                  
a b= ×  ( )iii  Let 0.l >   

 The angle between the vectors la   

  and b  is θ and   .la l a=  Further, the vector triad 

          ɵ( , , )la b n is a right handed triad. 

                  
ɵ ɵ( )sin sin ( )l a b la b n l a b n l a bθ θ× = = = ×

 

Similarly, we can get ( )a lb l a b× = ×  

Thus ( ) ( ) ( )la b a lb l a b× = × = ×  

( ) ( ) ( ) ( )iv la mb lm a b× = ×  follows from ( ), ( ), ( ).i ii iii  

          
The proof of the following Theorem 5.4.8, is beyond the scope of this book and 

hence we assume its validity without proof.
                          

5.4.8 Theorem (Distributive law):   

               Let ,a b  and c  are vectors. Then 

                                       
( ) ( )i a b c a b a c× + = × + ×

 

                                       
( ) ( ) .ii a b c a c b c+ × = × + ×

 

5.4.9 Note: 

                If ( , , )i j k  is an orthogonal triad, then from the definition of the cross product of 

vectors, it is easy to see that  ( ) 0i i i j j k k× = × = × =  and 

( ) , , .ii i j k j k i k i j× = × = × =  

5.5 Vector (cross) product in ( , , )i j k system:  

.               In this section, we derive formula for a b×  when a  and b  are given in ( , , )i j k  

system and deduce the formula for .a b×   
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5.5.1 Theorem:   

               Let 
1 2 3a a i a j a k= + +  and 

1 2 3b b i b j b k= + + . Then 

                                       
a b× =

2 3 3 2 1 3 3 1 1 2 2 1( ) ( ) ( ) .a b a b i a b a b j a b a b k− − − + −
 

Proof:  For proving the formula, we use Theorem 5.4.8, and property of cross product 

among ,i j  and k as mentioned at the end of the Theorem 5.4.8.
 

                          Now  
1 2 3 1 2 3( ) ( )a b a i a j a k b i b j b k× = + + × + +

 

                                                     

1 1 1 2 1 3

2 1 2 2 2 3

3 1 3 2 3 3

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

a b i i a b i j a b i k

a b j i a b j j a b j k

a b k i a b k j a b k k

 = × + × + × 

 + × + × + × 

 + × + × + ×   

                                                       

1 1 1 2 1 3

2 1 2 2 2 3

3 1 3 2 3 3

(0) ( ) ( )

( ) (0) ( )

( ) ( ) (0)

a b a b k a b j

a b k a b a b i

a b j a b i a b

 = + + − 

 + − + + 

 + + − + 

 

                                                      2 3 3 2 1 3 3 1 1 2 2 1( ) ( ) ( )i a b a b j a b a b k a b a b= − − − + −  

5.5.2 Notation:   

                             
Adopting the expansion of a 3 3× determinant of real matrix 

                               

  

1 2 3

2 3 1 3 1 2

1 2 3 1 2 3

2 3 1 3 1 2

1 2 3

a a a
b b b b b b

b b b a a a
c c c c c c

c c c

= − +
  

                         The above formula for a b× can now expressed as   

                                                    

1 2 3

1 2 3

i j k

a b a a a

b b b

× =

       

                                                             

2 3 1 3 1 2

2 3 1 3 1 2

a a a a a a
i j k

b b b b b b
= − +

 

                                                              2 3 3 2 1 3 3 1 1 2 2 1( ) ( ) ( )i a b a b j a b a b k a b a b= − − − + −  
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5.5.3 Corollary:   

               Let 
1 2 3 1 2 3,a a i a j a k b b i b j b k= + + = + +  and θ  is the angle between a  and ,b   

 then 
2 2 2

2 3 3 2 1 3 3 1 1 2 2 1

2 2 2 2 2 2

1 2 3 1 2 3

( ) ( ) ( )
sin .

 

a b a b a b a b a b a b

a a a b b b
θ

− + − + −
=

+ + + +
 

                                        

Proof:  By Theorem 5.5.1, we have 

                 
2 3 3 2 1 3 3 1 1 2 2 1( ) ( ) ( ) .a b a b a b i a b a b j a b a b k× = − − − + −

 

                     

2 3 3 2 1 3 3 1 1 2 2 1

2 2 2

2 3 3 2 1 3 3 1 1 2 2 1

( ) ( ) ( )

( ) ( ) ( )

a b a b a b i a b a b j a b a b k

a b a b a b a b a b a b

∴ × = − − − + −

= − + − + −
 

                        
and

   

2 2 2

1 2 3 1 2 3
a a i a j a k a a a= + + = + +

 

                    and
   

2 2 2

2 3 1 2 3
b bi b j b k b b b= + + = + +

 

                  
We have

 
sin ,a b a b θ× =  so that sin

a b

a b
θ

×
=

 

                        

2 2 2

2 3 3 2 1 3 3 1 1 2 2 1

2 2 2 2 2 2

1 2 3 1 2 3

( ) ( ) ( )
si

 
n .

a b a b a b a b a b a b

a a a b b b
θ

− + − + −
⇒ =

+ + + +
 

5.5.4 Notation:   

                 
To determine the angle between two vectors, we use the dot product of vectors 

rather than the cross product, as the cross product gives value of sinθ which is positive 

for (0, ).θ π∈  

5.5.5 Theorem:   

               For any two vectors a  and ,b  ( )( ) ( ) ( )
2 22 2 2

. . . . .a b a a b b a b a b a b× = − = −  

Proof:  We have sin ,a b a b θ× = whereθ  is the angle between vectors a  and .b
 

                Now 
2 2 2

2sina b a b θ× =
2 2

2(1 cos )a b θ= −
2 2 2 2

2cosa b a b θ= −
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( ) ( )( ) ( )

2 22 2

. . . . .a b a b a a b b a b= − = −
 

 

5.5.6 Note:   

                If a  and b  are non-collinear, then, unit vectors perpendicular to both a  and b   

     are .
a b

a b

×
±

×  
 

5.6 Vector Areas:  

.               In the following, we introduce the concept of vector area of a plane region 

bounded by a closed plane curve (a curve in which initial point and terminal point are the 

same) and find vector area of a triangle and parallelogram.                      

5.6.1 Definition (Vector area): 

.                 Let D  be a plane region bounded by closed curve .C  Let 
1 2 3, ,P P P  be three 

points on C (taken in this order). Let ɵn  be the unit vector perpendicular to the region  D  

such that, from the side of ɵ,n  the points 
1 2,P P  and 

3P are in anti clock sense. If A  is the 

area of the region ,D  then ɵAn  is called the vector area of .D  

 

 

 

 

 

 

              In the following theorems, we derive the vector area of a triangle and 

parallelogram as applications of cross (or vector) product of vectors. 

5.6.2 Theorem:   

               The vectors area of  ABC∆  is ( ) ( ) ( )
1 1 1

.
2 2 2

AB AC BC BA CA CB× = × = ×
 

Proof:  Let the vertices ,A B  and C of the triangle be described in anti clock wise sense 

so that the closed boundary of the plane region ABC∆  is .BC CA AB∪ ∪   

D

 

D

 

C 
C 

1P

1P
2

P

 

2P

 

3P

 

3P

 

ɵn

ɵn−  
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Let ∆  be the area of .ABC∆  

Let ɵn  be the unit vector in the direction of  .AB AC×
 

1
sin

2
AB AC A∆ = ɵ ɵ1

sin
2

n AB AC An⇒ ∆ =  

ɵ ɵ( ) ( )
1 1

sin .
2 2

n AB AC An AB AC⇒ ∆ = = ×  

Similarly we can get ɵ ( )
1

2
n BC BA∆ = × and ɵ ( )

1
.

2
n CA CB∆ = ×  

Hence the vectors area of  ABC∆  is ( ) ( ) ( )
1 1 1

.
2 2 2

AB AC BC BA CA CB× = × = ×
 

5.6.3 Corollary:   

               If , ,a b c are the position vectors of the vertices ,A B  and C (described in 

counter clock wise sense) of ,ABC∆  then the vectors area of  ABC∆  is 

( )
1

2
b c c a a b× + × + × and its area is   

1
.

2
b c c a a b× + × + ×

 

Proof:  By Theorem 5.6.2, the vector area of ABC∆  is  

                                     
( )

1

2
AB AC∆ = ×

 

                                   
( )

1
( ) ( )

2
b a c a∆ = − × − ( )

1
)

2
b c b a a c a a= × − × − × + ×

 

                                        
( )

1
0 0, ,

2
b c a b c a a a a b b a c a a c = × + × + × + × = × = − × × = − × ∵

 

                                       
( )

1

2
b c a b c a= × + × + ×

 

            Area of  ABC∆  is ɵn∆ = ∆ =
1

.
2

b c c a a b× + × + ×  

5.6.4 Note:   

                Since the vector area of a plane region D  is a vector quantity perpendicular to 

the plane of ,D  it follows that, the vector  ( )b c c a a b× + × + ×  is perpendicular to the 

plane of the ABC∆ where , ,a b c are the position vectors of , ,A B C respectively. 

 

A B 

C 
ɵn
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5.6.5 Theorem (Vector area of a parallelogram):   

               Let ABCD be a parallelogram with vertices , ,A B C  and D  described in anti 

clock wise sense. Then, vectors area of  ABCD  in terms of the diagonals AC  and BD is 

( )
1

.
2

AC BD×
 

Proof:  Given ABCD be a parallelogram with vertices , ,A B C  and D  described in anti 

clock wise sense. 

( )
1

2
AC BD× = ( ) ( )

1

2
AB BC BA AD + × +

 
 

       

1

2
AB BA AB AD BC BA BC AD = × + × + × + ×   

      

1
( )

2
AB AD CB BA = × + − ×   

     
( )

1
( )

2
AB AD CB CD BA CD = × + − × =  ∵  

      

1

2
AB AD CD CB = × + ×   

     
( ) ( )

1 1

2 2
AB AD CD CB= × + ×

 

    
=  vector area of  ABD∆ +  vector area of  CDB∆  

   
=  vector area of  ABCD   

5.6.6 Note:   

(i)    In fact, the vector area of any plane quadrilateral ABCD  in terms of the diagonals  

    AC         and BD is ( )
1

.
2

AC BD×
 

 (ii)   The area of quadrilateral ABCD is ( )
1

.
2

AC BD×
 

(iii)  The vector area of a parallelogram with a  and b  as adjacent sides is a b×  and the  

         area is .a b×  

             

A 

O 

B 

C 
D 
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5.6.7 Theorem:   

               Let ( , , )a b c be a non-coplanar vector triad, 
1 2 3l a l b l cα = + + and 

1 2 3 .m a m b m cβ = + +  Then 
1 2 3

1 2 3

.

a b b c c a

l l l

m m m

α β

× × ×

× =  

Proof:  Using the distributive law of cross product over vector addition 

(Theorem5.4.8)we have 
1 2 3 1 2 3( ) ( )l a l b l c m a m b m cα β× = + + × + +

 

                      

1 1 1 2 1 3

2 1 2 2 2 3

3 1 3 2 3 3

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

l m a a l m a b l m a c

l m b a l m b b l m b c

l m c a l m c b l m c c

 = × + × + × 

 + × + × + × 

 + × + × + × 

 

                     

1 1 1 2 1 3

2 1 2 2 2 3

3 1 3 2 3 3

(0) ( ) ( )

( ) (0) ( )

( ) ( ) (0)

l m l m a b l m a c

l m b a l m l m b c

l m c a l m c b l m

 = + × + × 

 + × + + × 

 + × + × + 

 

                   

1 2 1 3 2 1 2 3

3 1 3 2

( ) ( ) ( ) ( )

( ) ( )

l m a b l m a c l m b a l m b c

l m c a l m c b

   = × + × + × + ×   

 + × + × 
 

                 

( )

1 2 1 3 2 1 2 3

3 1 3 2

( ) ( ( )) ( ( )) ( )

( ) ( ( ))

( ), ( ), ( )

l m a b l m c a l m a b l m b c

l m c a l m b c

b a a b c b b c a c c a

   = × + − × + − × + ×   

 + × + − × 

× = − × × = − × × = − ×∵

 

                2 3 3 2 1 3 3 1 1 2 2 1( )( ) ( )( ) ( )( )b c l m l m c a l m l m a b l m l m= × − − × − + × −
 

                

1 2 3

1 2 3

.

a b b c c a

l l l

m m m

× × ×

=

 

5.6.8 Note:   

            In the above theorem, if we take ,a i b j= = and c k=  such that  ( , , )i j k  is a right 

handed system, then we obtain the formula for α β× as in 5.5.2.  
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5.7 Scalar and vector triple products:  

.               In this section we introduce the concept of scalar triple product and vector triple 

product of three vectors and discuss its properties and its geometrical interpretation.  

5.7.1 Definition: 

                Let  ,a b  and c be three vectors. We call ( ). ,a b c×  the scalar triple product of  

,a b  and c  and denote this by .a b c 
   

5.7.2 Note:  ( ). 0a b c× =  when 

(i)    one of , ,a b c  is  0 or  

(ii)   ,a b  or ,b c or ,c a are collinear vectors or   

(iii)   c is perpendicular to  ( ).a b×   

5.7.3 Theorem:   

               Let ,a b  and c be three non-coplanar vectors and ,OA a OB b= =  and .OC c=  

Let V be the volume of the paralleleopiped with ,OA OB  and OC  as coterminous edges. 

Then  

( ) ( ). ,i a b c V× = if ( , , )a b c is a right handed system.  

( ) ( ). ,ii a b c V× = − if ( , , )a b c is a left handed system. 

Proof:(i)  Consider the parallelepiped OADBFCGE having 

  ,OA OB  and OC  as coterminous edges . Assume that , ,a b c   

  is a right handed system. Draw CM  perpendicular to the  

 plane determined by OA  and OB  and N be the foot of  

the perpendicular to the support of ( ).a b×  Let ɵn be the unit 

vector in the direction of  a b× so that by definition of ,a b×   

we have ɵ( , , )a b n   is a right handed system. Let θ  be the angle between a b× and .c   

. .i e CONθ = ∠
 

A 

O 
B 

C 

D 

E 

F 

G 

N 

M 
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        V = Area of the base parallelogram OADB × length of the vertex C  from base 

               
( )a b CM= × ( )a b ON= ×

 

   But from , cosOCN ON OC θ∆ =
 

                     
cosV a b OC θ∴ = × cosa b c θ= × ( ).a b c= ×

 

Thus  ( ). .a b c a b c × =    

(ii)  Suppose ( , , )a b c   is a left handed system. 

    ( , , )a b c∴ −  is a right handed system. But the volume of the corresponding 

parallelepiped are same. 

( ) ( ).( ) .V a b c a b c∴ = × − = − ×  ( ).a b c V⇒ × = −
 

5.7.4 Theorem:   

               For any three vectors ,a b  and ,c   ( ) ( ) ( ). . .a b c b c a c a b× = × = ×   

                                               
. .i e a b c b c a c a b     = =       

Proof:  If one of ,a b  and c is 0  or any two are collinear then equality holds. 

Assume that ( , , ), ( , , )a b c b c a  and ( , , )c a b  forms the right handed systems. 

( ) ( ) ( ). . .a b c b c a c a b∴ × = × = × =  volume of the parallelepiped .V=   

If all the triads ( , , ), ( , , )a b c b c a  and ( , , )c a b  forms the left handed systems, then 

( ) ( ) ( ). . . .a b c b c a c a b V× = × = × = −
 

Thus ( ) ( ) ( ). . .a b c b c a c a b× = × = ×  

5.7.5 Theorem:   

               If  ,a b  and c  are any three vectors, then   ( ) ( ). .a b c a b c× = ×   

                     
.i e in a scalar triple product dot and cross are interchanged.
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Proof:  From Theorem 5.7.4, we have ( ) ( ). .a b c b c a× = ×
 

                                                                             ( ) ( ). dot product is commutativea b c= × ∵
 

5.7.6 Theorem:   

               If  ,a b  and c  are three vectors such that no two are collinear, then   

     
0a b c  =   

if and only if ,a b  and c  are coplanar. 
 

Proof:  Suppose ,a b  and c  are coplanar.  

                Since a b×   is perpendicular to the plane determined by a  and b it is also  

                perpendicular to .c  Hence ( ). 0a b c× =    

           0a b c ∴ =   

             Conversely assume that 0a b c  =  ( ). . 0i e a b c× =
 

              
∴ a b×   is perpendicular to .c  

          But a b×  is perpendicular to both a  and b it is also  

             
∴ a b×   is perpendicular to ,a b  and  .c  

            
∴  ,a b  and c  are coplanar. 

5.7.7 Corollary:   

               Four distinct points , ,A B C  and D  are coplanar if and only if  

0AB AC AD  =    

Proof:  , ,A B C  and D  are coplanar , ,AB AC AD⇔
 
are coplanar

       

                                                                         
0.AB AC AD ⇔ =   

5.7.8 Theorem:   

               Let ( , , )i j k  be orthogonal triad of unit vectors which is a right handed system. 

               Let  1 2 3 1 2 3
,a a i a j a k b b i b j b k= + + = + +  and 

1 2 3 .c c i c j c k= + +   
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                          Then,

 

1 2 3

1 2 3

1 2 3

.

a a a

a b c b b b

c c c

  =    

Proof:  It is known that 
2 3 3 2 1 3 3 1 1 2 2 1( ) ( ) ( ) .a b a b a b i a b a b j a b a b k× = − − − + −

  

                Now ( ) ( ) ( )2 3 3 2 1 3 3 1 1 2 2 1 1 2 3. ( ) ( ) ( ) .a b c a b a b i a b a b j a b a b k c i c j c k× = − − − + − + +
 

                                               
2 3 3 2 1 1 3 3 1 2 1 2 2 1 3( ) ( ) ( )a b a b c a b a b c a b a b c= − − − + −

 

                                               

1 2 3

1 2 3

1 2 3

.

a a a

b b b

c c c

=

 

5.7.9 Corollary:   

         Let  1 2 3 1 2 3,a a i a j a k b b i b j b k= + + = + +  and 
1 2 3c c i c j c k= + +  are coplanar if and 

only if  

1 2 3

1 2 3

1 2 3

0.

a a a

b b b

c c c

=

 

Proof:  It follows from Theorems 5.7.6 and 5.7.8.  

5.7.10 Corollary:   

         If , ,α β γ be three non-coplanar vectors and  

1 2 3 1 2 3,a a a a b b b bα β γ α β γ= + + = + +  and 
1 2 3 .c c c cα β γ= + +  Then ,a b  and c are 

coplanar if and only if  

1 2 3

1 2 3

1 2 3

0.

a a a

b b b

c c c

=

 

Proof:  From Theorems 5.6.7, 
1 2 3

1 2 3

a b a a a

b b b

β γ γ α α β× × ×

× =

 

                                    
( )2 3 3 2 1 3 3 1 1 2 2 1( )( ) ( )( ) ( )( )a b a b a b a b a b a bβ γ γ α α β= − × − − × + − ×

 

   
Now

 

( ) ( ) ( )2 3 3 2 1 3 3 1 1 2 2 1 1 2 3. ( )( ) ( )( ) ( )( ) .a b c a b a b a b a b a b a b c c cβ γ γ α α β α β γ× = − × − − × + − × + +
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( )2 3 3 2 1 1 3 3 1 2 1 2 2 1 3( ) ( ). ( ) ( ). ( ) ( ).a b a b c a b a b c a b a b cβ γ α γ α β α β γ= − × − − × + − ×

 

             
( )2 3 3 2 1 1 3 3 1 2 1 2 2 1 3
( ) ( ) ( )a b a b c a b a b c a b a b cβ γ α γ α β α β γ     = − − − + −       

            

( )

( )
2 3 3 2 1 1 3 3 1 2 1 2 2 1 3( ) ( ) ( )a b a b c a b a b c a b a b c α β γ

α β γ β γ α γ α β

 = − − − + −  

     = =     ∵  

                   

1 2 3

1 2 3

1 2 3

a a a

a b c b b b

c c c

α β γ   ∴ =   

 

Since , ,α β γ are non-coplanar vectors, 0α β γ  ≠ 

 

, ,a b c∴  are coplanar if and only if  

1 2 3

1 2 3

1 2 3

0.

a a a

b b b

c c c

=

 

5.7.11 Theorem:   

         The volume of a tetrahedron with ,a b  and c as coterminous edges is 
1

.
6

a b c 
   

Proof:  Let OABC  be a tetrahedron and , , .OA a OB b OC c= = =  

LetV  be the volume of a tetrahedron .OABC  

By definition, the volume V  is given by 

 
1

3
V =  (area of the base ) (OAB∆ ×  length of the perpendicular from C  to )OAB∆   

   CN  is the perpendicular from C  to OAB∆  and  CM  is the perpendicular from C  to 

the supporting line a b×  so that CN OM= = length of the projection of  c  onto a b×
 

                                                                            

( ).a b c a b c

a b a b

 ×  
= =

× ×

 

Area of OAB∆ =
1

2
a b×
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∴Volume of the tetrahedron 
1 1

.
3 2

a b c
OABC a b

a b

 
 

= ×
×

1
.

6
a b c =    

 

5.7.12 Corollary:   

               The volume of the tetrahedron whose vertices are , ,A B C  and D  is   

         
1

.
6

DA AB AC 
    

Proof:  Since , ,DA DB DC  are coterminous edges of the tetrahedron ,ABCD  from the 

above theorem it follows that its volume is 
1

.
6

DA AB AC 
    

5.7.13 Theorem:   

         The vector equation of a plane passing through the point ( )A a  and parallel to the 

non-collinear vectors  b  and c  is .r b c a b c   =     

Proof:  Let a  represent the point A and ( )P r be any point in the plane. We may assume 

that  .A P≠   

P lies in the plane. 

                  
⇒The vectors ,AP b  and  c  are coplanar 

                  
⇒  0AP b c  =   ( by Theorem 5.7.6) 

                  
⇒  ( ). 0AP b c× =   

              ⇒  ( ) ( ). 0r a b c− × =
 

                
⇒ ( ) ( ). .r b c a b c× = ×

 

                 
r b c a b c   ⇒ =     

Suppose ( )P r is any point in the space such that .r b c a b c   =   
 

In the above argument, if we replace the steps backwards, we will have 0AP b c  =    
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Thus the vectors ,AP b  and  c  are coplanar 

Hence P lies in the plane. 

5.7.14 Theorem:   

         The vector equation of a plane passing through the point ( ), ( )A a B b  and parallel to 

the vector  c  is .r b c r c a a b c     + =       

Proof:  Let ( )P r be any point in the plane. We may assume that  .A P≠   

P lies in the plane
 
⇔ The vector AP AB×  is perpendicular to the plane 

                                    
⇔ The vector AP AB×  is perpendicular to the vector  c  

                                    
⇔  ( ). 0AP AB c× =   

                                    
⇔  ( ). 0AP AB c× =  ( by Theorem 5.7.5) 

                                    
⇔  ( ) ( ). ( ) 0r a b a c− − × =   

                              ⇔  ( ) ( ). 0r a b c c a− × + × =
 

                                    
⇔ ( ) ( ) ( ) ( ). . . . 0r b c r c a a b c a c a× + × − × − × =

 

                                    
0r b c r c a a b c a c a       ⇔ + − − =         

                                    
( )0r b c r c a a b c a c a       ⇔ + = =       ∵

 

5.7.15 Theorem:   

         The vector equation of a plane passing through three non-collinear points is 

( ), ( )A a B b  and  ( )C c  is .r b c r c a r a b a b c       + + =         

Proof:  Let ( )P r be any point in the plane. The four points , ,A B C and P are coplanar.  

                                    
⇔ The vectors ,AP AB  and AC  are coplanar 

                                    
⇔  ,r a r b− −  and r c−  are coplanar 

                                    
⇔  0r a b a c a − − − =    
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                              ⇔  ( ) ( ). ( ) ( ) 0r a b a c a− − × − =
 

                                    
⇔ ( ) ( ). 0r a b c c a a b− × + × + × =

 

                                    
⇔ ( ) ( ). .r b c c a a b a b c c a a b× + × + × = × + × + ×

 

                                    
r b c r c a r a b a b c a c a a a b           ⇔ + + = + +             

                                    
( )0r b c r c a r a b a b c a c a a a b           ⇔ + + = = =           ∵

 

5.7.16 Definition (skew lines):   

                    In a space, there are pairs of lines which are neither intersecting nor parallel. 

Such a pair of lines is called a pair of skew lines. Thus, two lines are called skew lines, if 

there is no plane containing both the lines. 

5.7.17 Distance between two skew lines:   

                   Let 1L and 2L be two skew lines with equations 

 1 1r a bλ= +  and 2 2.r a bµ= +  Let S  be the point on 1L   

with position vector 1a and let T  be the point on 2L  with 

 position vector 2 .a Then the magnitude of the vector of  

shortest distance will be equal to that of the projection of  ST along the direction of the 

line of shortest distance. 

                   If PQ is the vector of shortest distance between 1L and 2 ,L  then it is 

perpendicular to both 1b  and 2.b
 

The unit vector ɵn  along PQ would therefore be  

ɵ 1 2

1 2

.
b b

n
b b

×
=

×    

Then ɵPQ d n=  where d  is the magnitude of the shortest distance vector.  

                     Let θ
 

be the angle between ST  and .PQ  

        Then cosPQ ST θ=
 

Q 

P S 

T 

1L  

2L  
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        But 
.

cos
PQ ST

PQ ST
θ =

ɵ
2 1.( )

,
d n a a

d ST

−
=  since 2 1.ST a a= −  

                                 

1 2 2 1

1 2

( ).( )
,

b b a a

ST b b

× −
=

×
 since ɵ 1 2

1 2

.
b b

n
b b

×
=

×
 

             Hence the required shortest distance is  

            cosd PQ ST θ= = = 1 2 2 1

1 2

( ).( )
.

b b a a

b b

× −
=

×
 

5.7.18 Cartesian form: 

                The shortest distance between the lines 1 1 1
1

1 1 1

:
x x y y z z

L
a b c

− − −
= = and 

2 2 2
2

2 2 2

:
x x y y z z

L
a b c

− − −
= = is 

2 1 2 1 2 1

1 1 1

2 2 2

2 2 2

1 2 2 1 1 2 2 1 1 2 2 1

.
( ) ( ) ( )

x x y y z z

a b c

a b c

b c b c c a c a a b a b

− − −

− + − + −

 

5.7.19 Definition (Vector triple product): 

                 Suppose , ,a b c are three vectors. Then ( )a b c× ×  or ( )a b c× ×  is called the 

vector triple product or vector product of three vectors.  

5.7.20 Theorem:   

         Let , ,a b c be three vectors. Then 

                     ( )( ) ( . ) ( . )i a b c a c b b c a× × = −
 

                         
( )( ) ( . ) ( . )ii a b c a c b a b c× × = −

 

Proof: (i) With out loss of generality, we may assume that a and b are non-collinear 

vectors and c  is not parallel to ,a b×  as otherwise ( ) 0 ( . ) ( . ) .a b c a c b b c a× × = = −   Fix 

the origin .O   Let , .OA a OB b= =  We consider the plane OAB  as XY −
 plane. Let i be 

the unit vector in the direction of OA  and j be unit vector perpendicular to i   in the XY
−

 

plane. Fix the unit vector k  in the XY
−

 plane such that ( , , )i j k  is an orthogonal triad of 
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unit vectors forming a right handed system. Then we can write  1 1 2
,a a i b b i b j= = +  and 

1 2 3 .c c i c j c k= + +  

( ) ( )1 2a b c a b k c× × = × ( ) ( )1 2 1 2 3a b k c i c j c k= × + +
 

                                                  1 2 1 1 2 2
a b c j a b c k= −

 

1 1 1 2 1 1 2 2 1 2 3
( . ) ( . ) ( ) ( )( )a c b b c a a c b i b j b c b c c i c j c k− = + − + + +

 

                             
1 2 1 1 2 2

a b c j a b c k= −
 

       
( ) ( . ) ( . )a b c a c b b c a∴ × × = −

 

(ii)
 

( ) ( )( ) ( . ) ( . ) )( . ) ( . )a b c b c a a c b b c a a c b a b c× × = − × × = − −
 

                            
( . ) ( . )b a c c a b = − −   

                             
( . ) ( . )a c b a b c= −

 

( ) ( . ) ( . )a b c a c b a b c∴ × × = −
 

5.7.21 Note:   

                In general, the vector product of three vectors is not associative. 

5.7.22 Theorem:   

               For any four vectors , ,a b c and d  
. .

( ).( )
. .

a c a d
a b c d

b c b d
× × =  and in particular  

2 2 2 2( ) ( ) ( ) ( . ) .a b a b a b× = −
 

Proof:  ( )( ).( ) . ( )a b c d a b c d× × = × ×
 

                                            
( ). ( . ) ( . )a b d c b c d= −

 

                                           
( . )( . ) ( . )( . )a c b d a d b c= −

. .

. .

a c a d

b c b d
=
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In the above formula if c a= and ,d b= then  
. .

( ).( )
. .

a a a b
a b a b

b a b b
× × =

                                                                                          

                                                      
( . )( . ) ( . )( . )a a b b a b b a= − 2 2 2( ) ( ) ( . ) .a b a b= −

                                          

5.7.23 Solved Problems:                           

1. Problem: If 6 2 3a i j k= + + and 2 9 6b i j k= − +  then find the angle between the     

                    vectors  a   and .b   

  Solution: Given 6 2 3a i j k= + + and 2 9 6b i j k= − +
 

                        We have .a b  (6 2 3 ).(2 9 6 )i j k i j k= + + − +  6.2 2( 9) 3.6= + − +
 

                                                                                                                   
12 18 18 12= − + =

 

                       Also a  6 2 3i j k= + +  2 2 26 2 3= + + 36 4 9= + + 49 7= =
 

                                      b  2 9 6i j k= − +  2 2 22 ( 9) 6= + − + 4 81 36= + + 121 11= =
 

                        Let  θ  be the angle between the vectors a and b then  
1 .

cos
a b

a b
θ −

 
 =
 
 

 

                                                              

1 12
cos

7.11
θ −  

⇒ =  
 

1 12
cos

77
θ −  

⇒ =  
 

 

2. Problem: If 11,a = 23b = and 30a b− =  then find the angle between the vectors 

                        a   and b  also find .a b+  

    Solution: Given 11,a = 23b = and 30a b− =
 

                        We have  
2 2 2

2( ) 2 .a b a b a b a b− = − = + −   

                                    
2 2 2

2 .a b a b a b⇒ = + − − 2 2 22 . 11 23 30a b⇒ = + −
 

                                           
2 . 121 529 900a b⇒ = + −

 
2 . 650 900a b⇒ = − 2 . 250a b⇒ = −

 

                                           
. 125a b⇒ = −
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                        Let  θ  be the angle between the vectors a and b then  
1 .

cos
a b

a b
θ −

 
 =
 
 

 

                                      

1 125
cos

11.23
θ − − 

⇒ =  
 

1 125
cos

253
θ − − 

⇒ =  
 

1 125
cos

253
θ π −  

⇒ = −  
   

                      Also 
2 2 2

2( ) 2 .a b a b a b a b+ = + = + +  
2

2 211 23 2( 125)a b⇒ + = + + −  

                         
2

121 529 250a b⇒ + = + −
2

650 250a b⇒ + = −
2

400a b⇒ + =
 

                                                      
20a b∴ + =

 

  3. Problem: If the vectors 3 5i j kλ − + and 2 i j kλ λ− −  are perpendicular to each other 

                             then find .λ  

       Solution: Let 3 5a i j kλ= − + and 2b i j kλ λ= − −
 

                            Given that a and b are perpendicular implies we have . 0a b =   

                ( 3 5 ).(2 ) 0i j k i j kλ λ λ⇒ − + − − =  .2 ( 3)( ) 5( 1) 0λ λ λ⇒ + − − + − =
 

                   

22 3 5 0λ λ⇒ + − =
 

(2 5)( 1) 0λ λ⇒ + − =
 

5
1,

2
λ λ

−
⇒ = =

  

  4. Problem: If 2,a = 3b = and 4c =  and each of the , ,a b c  is perpendicular to the     

                       sum of the other two then find the magnitude of .a b c+ +   

       Solution: Given 2,a = 3b = and 4c =
 

                           Also each of the , ,a b c  is perpendicular to the sum of the other two
 

                          . ( ),i e a b c⊥ + ( ),b c a⊥ + ( )c a b⊥ +
 

                               
.( ) 0,a b c⇒ + = .( ) 0,b c a+ = .( ) 0c a b+ =

  

                               
. . 0,a b a c⇒ + = . . 0,b c b a+ = . . 0a b a c+ =

              

                 We have
2 2 2 2

. . . . . .a b c a b c a b a c b c b a a b a c+ + = + + + + + + + +    
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2
2 2 22 3 4 0 0 0a b c⇒ + + = + + + + +  

2

4 9 16a b c⇒ + + = + +
 

                                   

2

29a b c⇒ + + =  29a b c⇒ + + =  

               ∴  The magnitude of a b c+ +  is 29.a b c+ + =
 

  5. Problem: Find the area of the parallelogram for which the vectors 2 3a i j= − and 

                              3b i k= −  are adjacent sides.  

      Solution: Given 2 3a i j= − and 3b i k= −
 

                           The vector area of the parallelogram for which the vectors a and b  

                            are adjacent sides is 2 3 0

3 0 1

i j k

a b× = −

−
 

                                           

3 0 2 0 2 3

0 1 3 1 3 0
a b i j k

− −
⇒ × = − +

− −
 

                                          
(( 3)( 1) 0.0) (2( 1) 0.3) (2.0 ( 3).3)a b i j k⇒ × = − − − − − − + − −

 

                                   3 2 9a b i j k⇒ × = + +
 

                            The area of the parallelogram is 3 2 9a b i j k× = + +
 

                                                              

2 2 23 2 9= + + 9 4 81= + + 94=
  

6. Problem: If the vector 
2

4
3

p
i j pk+ + is parallel to the vector 2 3i j k+ +  then find the              

                           value of .p  

   Solution: Let 
2

4
3

p
a i j pk= + + and 2 3b i j k= + +

 

                   Given that a and b are parallel implies we have 31 2

1 2 3

aa a

b b b
= =   

                
4 2 / 3

1 2 3

p p
⇒ = =  

4 2 / 3 4
,

1 2 1 3

p p
⇒ = = 12p⇒ =
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  7. Problem: If 13,a = 5b = and . 60a b =  then find .a b×       

        Solution: Given 13,a = 5b = and . 60a b =  

                     
        We have 

2 2 2 2

.a b a b a b+ × =  
2 2 2 2

.a b a b a b⇒ × = −  

                                    
2

2 2 2 2 213 .5 60 65 60 4225 3600 625a b⇒ × = − = − = − =
 

                      
∴  625 25a b× = =                            

8. Problem: If 7 2 3 ,a i j k= − + 2 8b i k= + and c i j k= + +  then compute ,a b× ,a c×   

                      and ( ).a b c× +
 

      Solution: Given 7 2 3 ,a i j k= − + 2 8b i k= + and c i j k= + +
 

                           Now  7 2 3

2 0 8

i j k

a b× = −
2 3 7 3 7 2

0 8 2 8 2 0
i j k

− −
= − +

 

                                                      
(( 2)(8) 3.0) (7(8) 2.3) (7.0 ( 2).2)i j k= − − − − + − −  

                                                      
16 50 4i j k= − − +

 

                           Now  7 2 3

1 1 1

i j k

a c× = −
2 3 7 3 7 2

1 1 1 1 1 1
i j k

− −
= − +

 

                                                      
(( 2)(1) 3.1) (7(1) 3.1) (7.1 ( 2).1)i j k= − − − − + − −  

                                                      
5 4 9i j k= − − +

 

                          We have ( )a b c a b a c× + = × + ×  16 50 4 5 4 9i j k i j k= − − + − − +
 

                                                                    
21 54 13i j k= − − +

 

9. Problem: If 3 2 ,a i j k= − + 3 2 ,b i j k= − + + 4 5 2c i j k= + − and 3 5d i j k= + +  then 

                           compute the following  ( ) ( )( )i a b c d× × × ( ) ( )( ) . .ii a b c a d b× − ×
 

    Solution: Given 3 2 ,a i j k= − + 3 2 ,b i j k= − + + 4 5 2c i j k= + − and 3 5d i j k= + +
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                           Now  3 1 2

1 3 2

i j k

a b× = −

−

1 2 3 2 3 1

3 2 1 2 1 3
i j k

− −
= − +

− −  

                                                      
(( 1)(2) 2.3) (3(2) 2( 1)) (3.3 ( 1)( 1))i j k= − − − − − + − − −  

                                                      
( 2 6) (6 2) (9 1)i j k= − − − + + − 8 8 8i j k= − − +

 

     Now  4 5 2

1 3 5

i j k

c d× = −
5 2 4 2 4 5

3 5 1 5 1 3
i j k

− −
= − +

 

                                                      
(5.5 ( 2)3) (4.5 ( 2)1) (4.3 1.5)i j k= − − − − − + −  

                                                      
(25 6) (20 2) (12 5)i j k= + − + + − = 31 22 7i j k− +   

     Now  3 1 2

1 3 5

i j k

a d× = −
1 2 3 2 3 1

3 5 1 5 1 3
i j k

− −
= − +

 

                                                      
(( 1)(5) 2.3) (3.5 2.1) (3.3 ( 1)1)i j k= − − − − + − −  

                                                      
( 5 6) (15 2) (9 1)i j k= − − − − + + 11 13 10i j k= − − +

 

    We have ( ).a b c× =  ( 8 8 8 ).(4 5 2 )i j k i j k− − + + −
 

                                       
( 8)4 ( 8)5 8( 2) 32 40 16 88= − + − + − = − − − = −

 

    We have ( ).a d b× =  ( 11 13 10 ).( 3 2 )i j k i j k− − + − + +
 

                                       
( 11)( 1) ( 13)3 10.2= − − + − + 11 39 20 8= − + = −

 

( ) ( )( )i a b c d× × × 8 8 8

31 22 7

i j k

= − −

−

8 8 8 8 8 8

22 7 31 7 31 22
i j k

− − − −
= − +

− −
 

                                    
(( 8)7 8( 22)) (( 8)7 8.31) (( 8)( 22) ( 8)31)i j k= − − − − − − + − − − −

 

                                    
( 56 176) ( 56 248) (176 248)i j k= − + − − − + +

 

                                    
120 304 428i j k= + +
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( ) ( )( ) . .ii a b c a d b× − × 88 8 80= − + = −

 

10. Problem: If 2 ,a i j k= − + 2 3b i j k= + − and 3 5c i p j k= + +  are coplanar then find   

                       p

 

   Solution: Given 2 ,a i j k= − + 2 3b i j k= + − and 3 5c i p j k= + +
 

                           Since ,a b and c  are coplanar then we have  0a b c  =   

                                       

2 1 1

1 2 3 0

3 5

i j k

p

−

 ⇒ − =  ( )
2 1 1

1 2 3 .1 0 1

3 5

i j k

p

−

 ⇒ − = = ∵
 

                                       

2 3 1 3 1 2
2 1 1 0

5 3 5 3p p

− −
⇒ + + =

 

                                        
2(2.5 ( 3) ) 1(1.5 ( 3)3) 1(1. 2.3) 0p p⇒ − − + − − + − =

 

                                        
2(10 3 ) 1(5 9) 1( 6) 0p p⇒ + + + + − = 20 6 14 6 0p p⇒ + + + − =

 

                                        
7 28 0p⇒ + = 7 28p⇒ = − 4p⇒ = −  

11. Problem: Simplify the following  

                         ( ) ( ) ( )( ) 2 3 2 .i i j k i j k j k− + × + − +
 
 
 

                             ( ) ( ) ( )( ) 2 3 . 2 2ii i j k i j k i j k− + − + × + +
 

Solution: (i) Let 2 3 ,a i j k= − + 2b i j k= + − and c j k= +
 

                   We have for any vectors ,a b and c     .a b c a b c × =    

                       ( ) ( ) ( )
1 2 3

2 3 2 . 2 1 1

0 1 1

i j k i j k j k i j k

−

 ⇒ − + × + − + = −    

                                         ( )
1 2 3

2 1 1 .1 1

0 1 1

i j k

−

 = − = ∵
1 1 2 1 2 1

1 2 3
1 1 0 1 0 1

− −
= + +

 

                                         
1(1.1 ( 1)1) 2(2.1 ( 1)0) 3(2.1 0.1)= − − + − − + − 2 4 6 12= + + =
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(ii)  Let 2 3 ,a i j k= − + 2b i j k= − + and 2c i j k= + +
 

        We have for any vectors ,a b and c     .a b c a b c × =    

                       ( ) ( ) ( )
2 3 1

2 3 . 2 2 1 1 2

2 1 1

i j k i j k i j k i j k

−

 ⇒ − + − + × + + = −    

                                         ( )
2 3 1

1 1 2 .1 1

2 1 1

i j k

−

 = − = ∵
1 2 1 2 1 1

2 3 1
1 1 2 1 2 1

− −
= + +

 

                                          
2(( 1)1 2.1) 3(1.1 2.2) 1(1.1 ( 1)2)= − − + − + − − 6 9 3 12= − − + = −

 

   12. Problem: Find λ in order that the four points (3, 2,1),A = (4, ,5),B λ=
  

                               
(4, 2, 2)C = −  and (6,5, 1)D = −  be coplanar.

 

          Solution: Given (3, 2,1),A = (4, ,5),B λ= (4, 2, 2)C = − and (6,5, 1)D = −
 

                               Let (0,0,0)O =  be the position vector of the origin. 

                                 OA∴ = 3 2 ,i j k+ + 4 5 ,OB i j kλ= + + 4 2 2 ,OC i j k= + −
 

                                      
6 5OD i j k= + −

 

                               We have AB OB OA= −   

                                    
(4 5 ) (3 2 )AB i j k i j kλ⇒ = + + − + + ( 2) 4AB i j kλ⇒ = + − +

 

                                    
We have AC OC OA= −   

                                    
(4 2 2 ) (3 2 )AC i j k i j k⇒ = + − − + + 3AC i k⇒ = −

 

                          We have AD OD OA= −   

                                    
(6 5 ) (3 2 )AD i j k i j k⇒ = + − − + + 3 3 2AD i j k⇒ = + −

 

                           Since ,A ,B C and D  are coplanar then we have  0AB AC AD  =   

                                       

1 2 4

1 0 3 0

3 3 2

i j k

λ −

 ⇒ − = 
−

( )
1 2 4

1 0 3 .1 0 1

3 3 2

i j k

λ −

 ⇒ − = = 
−

∵
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0 3 1 3 1 0
1 ( 2) 4 0

3 2 3 2 3 3
λ

− −
⇒ − − + =

− −  

                                        
1(0( 2) ( 3)3) ( 2)(1( 2) ( 3)3) 4(1.3 0.3) 0λ⇒ − − − − − − − − + − =

 

                                        
1(0 9) ( 2)( 2 9) 4(3 0) 0λ⇒ + − − − + + − = 9 ( 2)7 12 0λ⇒ − − + =

 

                                        
21 7 14 0λ⇒ − + = 7 35λ⇒ = 5λ⇒ =  

   13. Problem: Find the volume of the tetrahedron having the edges ,i j k i j+ + −   

                           
   

and 2i j k+ +
 

        Solution: Let ,a i j k= + + b i j= − and 2c i j k= + +
 

                   The volume of the tetrahedron having the edges ,a b and c  is 
1

6
V a b c =    

                                     

1 1 1
1

1 1 0
6

1 2 1

V i j k = −   ( )
1 1 1

1
1 1 0 .1 1

6
1 2 1

i j k = − = ∵
    

                                         

1 0 1 0 1 11
1 1 1

2 1 1 1 1 26

 − − 
= − + 

 
 

                                         ( )
1

1(( 1)1 0.2) 1(1.1 0.1) 1(1.2 ( 1)1)
6

= − − − − + − −
 

                                        ( )
1 1

1 1 3 .
6 6

cubicunits= − − + =
 

  14. Problem: Compute  i j j k k i − − −    

       Solution: Let ,a i j= − b j k= − and c k i= −
 

                   Now a b c  =  i j i k k i − − −   

                                     

1 1 0

0 1 1

1 0 1

i j k

−

 = −  
−

( )
1 1 0

0 1 1 .1 1

1 0 1

i j k

−

 = − = 
−

∵
    

                                         

1 1 0 1 0 1
1 1 0

0 1 1 1 1 0

− −
= + +

− −  
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                                         ( )1(1.1 ( 1)0) 1(0.1 ( 1)( 1)) 0(0.0 ( 1)1)= − − + − − − + − − 1 1 0= − =
 

                                         

  15. Problem: If (1, 2,1),a = − (2,1,1)b = and (1, 2, 1)c = − then find ( )a b c× ×  and 

                              ( )a b c× ×
 

      Solution: Given (1, 2,1),a = − (2,1,1)b = and (1, 2, 1)c = −
 

                                 
. 2 ,i e a i j k= − + 2b i j k= + + and 2c i j k= + −

 

      Now  1 2 1

2 1 1

i j k

a b× = −
2 1 1 1 1 2

1 1 2 1 2 1
i j k

− −
= − +

 

                                                      
(( 2)1 1.1) (1.1 2.1) (1.1 ( 2)2)i j k= − − − − + − −  

                                                      
( 2 1) (1 2) (1 4)i j k= − − − − + + 3 5i j k= − + +

 

    Now  2 1 1

1 2 1

i j k

b c× =

−

1 1 2 1 2 1

2 1 1 1 1 2
i j k= − +

− −  

                                                      
(1( 1) 2.1) (2( 1) 1.1) (2.2 1.1)i j k= − − − − − + −  

                                                      
( 1 2) ( 2 1) (4 1)i j k= − − − − − + − 3 3 3i j k= − + +  

 

  
Now  ( ) 1 2 1

3 3 3

i j k

a b c× × = −

−

2 1 1 1 1 2

3 3 3 3 3 3
i j k

− −
= − +

− −  

                                                      
(( 2)3 1.3) (1.3 ( 3)1) (1.3 ( 2)( 3))i j k= − − − − − + − − −  

                                                      
( 6 3) (3 3) (3 6)i j k= − − − + + − 9 6 3i j k= − − −

 

    Now  ( ) 3 1 5

1 2 1

i j k

a b c× × = −

−

1 5 3 5 3 1

2 1 1 1 1 2
i j k

− −
= − +

− −  

                                                      
(1( 1) 2.5) (( 3)( 1) 5.1) (( 3)2 1.1)i j k= − − − − − − + − −  
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( 1 10) (3 5) ( 6 1)i j k= − − − − + − − 11 2 7i j k= − + −

 

    We have ( ) 9 6 3a b c i j k× × = − − −  
2 2 2

( 9) ( 6) ( 3)= − + − + − 81 36 9 126= + + =
 

     
We have ( ) 11 2 7a b c i j k× × = − + −  

2 2 2
( 11) (2) ( 7)= − + + −

121 4 49 174= + + =
                                  

. 16. Problem: If 2 2 3 ,a i j k= + − 3 2b i j k= − +  then find the angle between (2 )a b+    

                         and ( 2 )a b+  

        Solution: Given 2 2 3 ,a i j k= + −  3 2b i j k= − +
 

                          
2 2(2 2 3 ) 3 2 4 4 6 3 2 7 3 4a b i j k i j k i j k i j k i j k+ = + − + − + = + − + − + = + −

 

                                
2 2 2 3 2(3 2 ) 2 2 3 6 2 4 8a b i j k i j k i j k i j k i k+ = + − + − + = + − + − + = +

 

                      Now  (2 ) ( 2 ) 7 3 4

8 0 1

i j k

a b a b+ × + = −
3 4 7 4 7 3

0 1 8 1 8 0
i j k

− −
= − +

 

                                                      
(3.1 ( 4)0) (7.1 ( 4)8) (7.0 8.3)i j k= − − − − − + −  

                                                      
(3 0) (7 32) (0 24)i j k= − − + + − 3 49 24i j k= − −

 

                          

(2 ) ( 2 ) 3 49 24a b a b i j k+ × + = − − = 2 2 2
(3) ( 49) ( 24)+ − + −

 

                                                                      

9 2401 576= + + 2986=

 
                          

2 7 3 4a b i j k+ = + − 2 2 2
(7) (3) ( 4)= + + − 49 9 16 74= + + =

 

                          
2 8a b i k+ = + = 2 2

(8) (1)+ 64 1 65= + =
 

          Let  θ  be the angle between the vectors (2 )a b+ and ( 2 )a b+ then 

                              1
(2 ) ( 2 )

sin
2 2

a b a b

a b a b
θ −

 + × +
 =
 + +
 

   
1 2986

sin
74 65

θ −
 

⇒ =   
 

 

  17. Problem: If ,a ,b c are non- coplanar vectors, then find the value of   
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( ) ( ) ( )2 .a b c a b a b c

a b c

 + − − × − −
 
 
 

 
 
 

       Solution: Given ,a ,b c are non- coplanar vectors 0a b c ⇒ ≠   

                   We have ( ) ( ) ( )2 . 2a b c a b a b c a b c a b a b c   + − − × − − = + − − − −  
 
 

                        

1 2 1

1 1 0

1 1 1

a b c

−

 = −  
− −

   

1 0 1 0 1 1
1 2 1

1 1 1 1 1 1
a b c

 − − 
 = − −   − − − − 

 

                         
( )1(( 1)( 1) ( 1)0) 2(1( 1) 0.1) 1(1( 1) ( 1)1) a b c = − − − − − − − − − − −     

                       
( )1(1 0) 2( 1 0) 1( 1 1) a b c = − − − − − − +   ( )1 2 0 a b c = + +   3 a b c =    

                     
Now

    

( ) ( ) ( )2 . 3
3

a b c a b a b c a b c

a b c a b c

   + − − × − −
   

= =
   
   

    
           

   
 

18. Problem: Find the equation of the plane passing through the points (2,3, 1),A = −
 

                                
(4,5, 2)B = and (3,6,5).C =   

Solution: Let O  be the origin. Let r xi y j zk= + +  be the position vector of any point 

P  in the plane of .ABC∆ Then , ,AP AB AC  are coplanar. 

                                           
0.AP AB AC ∴ =   

Now ( 2) ( 3) ( 1) , 2 2 3 , 3 6 .AP x i y j z k AB i j k AC i j k= − + − + + = + + = + +   

2 3 1

0 2 2 3 0

1 3 6

x y z

AP AB AC i j k

− − +

   ∴ = ⇒ =     

                                       ( )
2 3 1

. 2 2 3 0 1

1 3 6

x y z

i e i j k

− − +

 = = ∵
 

                                       

2 3 2 3 2 2
. ( 2) ( 3) ( 1) 0

3 6 1 6 1 3
i e x y z− − − + + =
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. ( 2)(12 9) ( 3)(12 3) ( 1)(6 2) 0i e x y z− − − − − + + − =

 

                                      

. 3( 2) 9( 3) 4( 1) 0i e x y z− − − + + =

 

                                      

. 3 9 4 25 0i e x y z− + + =
 

                                        Exercise 5 

1. Find the cosine angle between the vectors  2i j k− +  and 3 4 .i j k+ −  

2. If the vectors  2i j kλ+ −  and 4 2 2i j k− + are perpendicular to each other, find 

.λ   

3. If 0,a b c+ + =  3,a = 5b = and 7,c =  then find the cosine angle between the 

vectors  a  and .b  

4. If 2,a = 3b = and 
0( , ) 30 ,a b =  then find 

2

.a b×   

5. Find the unit vector perpendicular to both i j k+ +  and 2 3 .i j k+ +  

6. If is θ  the angle between i j+  and ,j k+  then find sin .θ  

7. Find the area of the parallelogram whose diagonals are 3 2i j k+ −  and 

3 4 .i j k− +  

8. Find the area of the triangle having 3 4i j+  and 5 7i j− +  as two of its edges.  

9. Find the equation of the plane passing through  (1,2,3), (2,3,1)A B  and (3,1, 2).C   

10. If 0,a b c+ + =   then prove that .a b b c c a× = × = ×   

11. If 2 ,a i j k= + − 2 4b i j k= − + − and ,c i j k= + +  then find ( ).( )a b b c× ×  

12. If 2 3 4 ,a i j k= + + b i j k= + − and ,c i j k= − +  then find ( ).a b c× ×  

13. Prove that the vectors  2 ,a i j k= − + 3 5b i j k= − − and 3 4 4c i j k= − −  are 

coplanar.  

14. If ,a b and c  are unit coplanar vectors, then find 2 2 2a b b c c a − − −   

15. Find the value of t  if the vectors  2 3 ,a i j k= − + 2 3b i j k= + − and c j tk= −  are 

coplanar. 

16.  Simplify the following ( ) ( ) ( )( ) 2 3 2i i j k i j k j k − + × + − × +
 

 

                                              
( ) ( ) ( )( ) 2 3 2 2ii i j k i j k i j k − + × − + × + +
 

 

17. Find  the shortest distance between the skew lines 

          
( ) ( )6 2 2 2 2r i j k t i j k= + + + − +

 
and ( ) ( )4 3 2 2r i k s i j k= − − + − −

 

                                        Key Concepts 

1.  Let a  and b  be two vectors. The scalar (or dot) product of  a  and b  written as . ,a b    
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         is defined by 
0 , 0

.
cos , 0 .

if one of a b is
a b

a b if a b and is the anglebetween a and bθ θ


= 

≠ ≠

 

2.   For any two vectors a  and ,b  .a b  is a scalar. 

3.   If ,a b  are non-zero vectors, then .a b  is positive or zero or negative according as  

     the angle ,θ  is acute or right or obtuse angle. 

           ( )i  If 00θ = then . .a b a b=  In particular
2

.a a a=
2( ) .or a

 

            
( )ii  If 0180θ = then . .a b a b= −  In particular 

2
0

. cos180 .a a a a a= = −       

4.     The projection vector of b on a  is 
2

.a b
a

a

 
 
  
 

 and its magnitude is  
.a b

a
 

5.     The component of  b perpendicular to a  is 2

( . )
.

a b
b a

a
−   

6.     Let a andb  be two non-zero vectors and is the angle between anda bθ  Then     

          . cos ,a b a b θ= . cosa b a b θ=
 

7.     Let ,a b and c  be three non-zero vectors. Then the projection b c+  of on a is equal 

to the sum of the projections of b  and c  on a  and hence 2 2 2

.( ) . .a b c a b a c
a a a

a a a

+
= +

 

 8.     Let ,a b and c  be three vectors. Then   

          
( ) .( ) . . ,i a b c a b a c+ = + ( ) ( ). . . ,ii b c a b a c a+ = +

2 2
2( )( ) 2 .iii a b a b a b+ = + +

 

9.     Let ,a b  be two vectors. Then 

             
( ) . . ( ),i a b b a commutative law= ( ) ( ). .( ) ( . ), ,ii la b a lb l a b l R= = ∈

 

         
( ) ( ).( ) ( . ), ,iii la mb lm a b l and m R= ∈

 
( ) ( ). .( ) ( . ),iv a b a b a b− = − = −

       

          
( ) ( ).( ) .v a b a b− − =
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10.    If , ,i j k are mutually perpendicular unit vectors, then . . . 1i i j j k k= = =  and 

. . . 0.i j j k k i= = =   

11.   Let ( , , )i j k be the orthogonal unit triad. Let 
1 2 3a a i a j a k= + + and 

1 2 3b b i b j b k= + + be the vectors Then 
1 1 2 2 3 3.a b a b a b a b= + +  

12.
  
If is theangle between two non-zero and ,a bθ  from the definition of . ,a b  we                 

have  1 .
cos

a b

a b
θ −

 
 =
 
 

  

13. If 1 2 3a a i a j a k= + +  and
1 2 3b b i b j b k= + +  then 

1 1 1 2 2 3 3

2 2 2 2 2 2

1 2 3 1 2 3

cos
a b a b a b

a a a b b b
θ −

 + +
 =
 + + + + 

 

14.  If ,a b  are perpendicular to each other 
1 1 2 2 3 3 0.a b a b a b⇔ + + =            

      
 

15. Angle in a semi circle is a right angle. 

16.  In a parallelogram, the sum of squares of lengths of the diagonals is equal to sum of 

squares of lengths of its ides.(Parallelogram law)  

17. ( )i If ( , , )a b c  is a Right (Left) handed system, then the triads ( , , )b c a  and ( , , )c a b
 

              
also form Right (Left) handed systems.        

    ( )ii If ( , , )a b c  is a Right handed system and , ,a b c are mutually perpendicular to each 

          other, then ( , , )a b c is called an orthogonal triad. Thus the vector triad ( , , )i j k  is  

          an orthogonal triad. 

   ( )iii If  any two vectors in a triad are interchanged, then the system will change. For 

            example ( , , )a b c  and ( , , )b a c  form opposite systems. 

18.    Let a  and b  be two non zero non collinear vectors. The cross (or vector) product of 

a  and ,b  is written as a b×  (read as a crossb ) ɵsina b nθ=  where θ  is the angle 

between the vectors a  and b  and ɵn  is the unit vector perpendicular to both a  and b   

such that ɵ( , , )a b n is a right handed system. If one of the vectors ,a b is the null vector or 

,a b  are collinear vectors then the cross product a b×  is defined as the null vector.  
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 19.  If ,a b
 
are non-zero and non-collinear vectors, then a b×  is a vector, perpendicular 

to the plane determined by a  and ,b whose magnitude is sina b θ defined as the null 

vector. 

 20.  Let ,a b  be two vectors. Then a b b a× = − ×
 

 21.  sin .a b b a a b θ× = × =  

  22.  Let ,a b  be two vectors and ,l m  be scalars. Then 

           
( ) ( ) ( ) ( ) ,i a b a b a b b a− × = × − = − × = × ( ) ( ) ( ) ,ii a b a b− × − = ×

 

          
( ) ( ) ( ) ( ),iii la b a lb l a b× = × = ×

   
( ) ( ) ( ) ( )iv la mb lm a b× = ×

                    

   23.   Let ,a b  and c  are vectors. Then 

                   
( ) ( ) ,i a b c a b a c× + = × + × ( ) ( ) .ii a b c a c b c+ × = × + ×

 

  24.  If ( , , )i j k  is an orthogonal triad, then from the definition of the cross product of 

vectors, it is easy to see that  ( ) 0,i i i j j k k× = × = × =  ( ) , , .ii i j k j k i k i j× = × = × =   

  25.  Let 
1 2 3a a i a j a k= + +  and 

1 2 3b b i b j b k= + + . Then 

                          
a b× =

2 3 3 2 1 3 3 1 1 2 2 1( ) ( ) ( ) .a b a b i a b a b j a b a b k− − − + −
 

  26.  The above formula for a b× can now expressed as   

             

2 3 1 3 1 2

1 2 3

2 3 1 3 1 2

1 2 3

i j k
a a a a a a

a b a a a i j k
b b b b b b

b b b

× = = − +

       

                       

2 3 3 2 1 3 3 1 1 2 2 1( ) ( ) ( )i a b a b j a b a b k a b a b= − − − + −

                                      

 

 
27.

   
Let 

1 2 3 1 2 3,a a i a j a k b b i b j b k= + + = + +  and θ  is the angle between a  and ,b
                                                          

                
then 

2 2 2

2 3 3 2 1 3 3 1 1 2 2 1

2 2 2 2 2 2

1 2 3 1 2 3

( ) ( ) ( )
sin .

 

a b a b a b a b a b a b

a a a b b b
θ

− + − + −
=

+ + + +
 

28.  For any two vectors a  and ,b  ( )( ) ( ) ( )
2 22 2 2

. . . . .a b a a b b a b a b a b× = − = −
                                        

29.   If a  and b  are non-collinear, then, unit vectors perpendicular to both a  and b   
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     are .
a b

a b

×
±

×   

30.  The vectors area of  ABC∆  is ( ) ( ) ( )
1 1 1

.
2 2 2

AB AC BC BA CA CB× = × = ×  

31.  If , ,a b c are the position vectors of the vertices ,A B  and C (described in counter 

clock wise sense) of ,ABC∆  then the vector area of  ABC∆  is          

               ( )1

2
b c c a a b× + × + × and its area is  

1
.

2
b c c a a b× + × + ×

 

  32.  Let ABCD be a parallelogram with vertices , ,A B C  and D  described in anti clock 

wise sense. Then, vectors area of  ABCD  in terms of the diagonals AC  and BD is 

( )
1

.
2

AC BD×
 

33. The area of quadrilateral ABCD is ( )
1

.
2

AC BD×
 

34. The vector area of a parallelogram with a  and b  as adjacent sides is a b×  and the  

         area is .a b×  

  35.  Let ( , , )a b c be a non-coplanar vector triad, 
1 2 3l a l b l cα = + + and    

1 2 3 .m a m b m cβ = + +  Then 
1 2 3

1 2 3

.

a b b c c a

l l l

m m m

α β

× × ×

× =  

36. ( ). 0a b c× =  when ( )i  one of , ,a b c  is  0 or ( )ii  ,a b  or ,b c or ,c a are collinear    

vectors or ( )iii c is perpendicular to  ( ).a b×  

  37.  Let ,a b  and c be three non-coplanar vectors and ,OA a OB b= =  and .OC c= Let 

V be the volume of the paralleleopiped with ,OA OB  and OC  as coterminous edges. Then 

               
( ) ( ). ,i a b c V× = if ( , , )a b c is a right handed system.  

              
( ) ( ). ,ii a b c V× = − if ( , , )a b c is a left handed system. 

  38.  For any three vectors ,a b  and ,c ( ) ( ) ( ). . .a b c b c a c a b× = × = ×   
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. .i e a b c b c a c a b     = =       

   39.     If  ,a b  and c  are any three vectors, then   ( ) ( ). .a b c a b c× = ×   

  40.  If  ,a b  and c  are three vectors such that no two are collinear, then   

     
0a b c  = ⇔   

,a b  and c  are coplanar. 
 

  41.  Four distinct points , ,A B C  and D  are coplanar 0AB AC AD ⇔ =    

   42.Let ( , , )i j k  be orthogonal triad of unit vectors which is a right handed system. 

               Let  1 2 3 1 2 3,a a i a j a k b b i b j b k= + + = + +  and 
1 2 3 .c c i c j c k= + +   

                          Then,

 

1 2 3

1 2 3

1 2 3

.

a a a

a b c b b b

c c c

  =    

42.Let  1 2 3 1 2 3,a a i a j a k b b i b j b k= + + = + +  and 
1 2 3c c i c j c k= + +  are coplanar if and 

only if  

1 2 3

1 2 3

1 2 3

0.

a a a

b b b

c c c

=

 

43.   If , ,α β γ be three non-coplanar vectors and  1 2 3 ,a a a aα β γ= + +
 

          1 2 3b b b bα β γ= + +  and 
1 2 3 .c c c cα β γ= + +  Then ,a b  and c are coplanar

 
1 2 3

1 2 3

1 2 3

0.

a a a

b b b

c c c

⇔ =

 

43.   The volume of a tetrahedron with ,a b  and c as coterminous edges is 
1

.
6

a b c 
   

44.  The volume of the tetrahedron whose vertices are , ,A B C and D  is 
1

6
DA AB AC 
    

 45.The vector equation of a plane passing through the point ( )A a  and parallel to the 

non-collinear vectors  b  and c  is .r b c a b c   =     
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46.  The vector equation of a plane passing through the point ( ), ( )A a B b  and parallel to 

the vector  c  is .r b c r c a a b c     + =       

 47.The vector equation of a plane passing through three non-collinear points is 

( ), ( )A a B b  and  ( )C c  is .r b c r c a r a b a b c       + + =         

 48.   Let 1L and 2L be two skew lines then  the of shortest distance d = 1 2 2 1

1 2

( ).( )
.

b b a a

b b

× −

×
          

49.  The Cartesian form of the shortest distance between the lines 

           1 1 1
1

1 1 1

:
x x y y z z

L
a b c

− − −
= = and 2 2 2

2

2 2 2

:
x x y y z z

L
a b c

− − −
= = is     

                                  

2 1 2 1 2 1

1 1 1

2 2 2

2 2 2

1 2 2 1 1 2 2 1 1 2 2 1

.
( ) ( ) ( )

x x y y z z

a b c

a b c

b c b c c a c a a b a b

− − −

− + − + −

 

    50.   Let , ,a b c are three vectors. Then ( )a b c× ×  or ( )a b c× ×  is called the vector 

triple product or vector product of three vectors.  

   51.   Let , ,a b c be three vectors. Then 

                ( )( ) ( . ) ( . ) ,i a b c a c b b c a× × = − ( )( ) ( . ) ( . )ii a b c a c b a b c× × = −
 

    52.  For any four vectors , ,a b c and d  
. .

( ).( )
. .

a c a d
a b c d

b c b d
× × =   

     53.
2 2 2 2( ) ( ) ( ) ( . ) .a b a b a b× = −

    

                                            Answers 
                      Exercise 5 

1 1
(1) cos

156
θ −  

=  
 

   (2) 3λ =    
0(3) 60

   

(4)9

   

1
(5) (2 )

6
i j k± − −

 

              
3

(6)
2

(7) 5 3
41

(8)
2

     (9) 6x y z+ + =     (11) 54−         (12)2 4 4i j k+ −  

             (14) 0 (15) 1 (16) ( ) 2 8 6 ( ) 4 7i r i j k ii r i j k= + − = − + +
   

(17) 9  
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       6. TRIGONOMETRIC RATIOS UPTO   

                                    TRANSFORMATIONS 

 

6.1 Trigonometric ratios-variation  

Introduction: 

                The word ‘trigonon’ means a triangle and  the word ‘metron’ means a measure. 

Thus trigonometry is the science that deals with measurement of triangles. Trigonometry 

has great use in measurement of areas, heights, distances etc. 

                 It has many applications in almost all branches of science in general and  in 

Physics and Engineering in particular. 

                 An angle is the union of two rays having a common end point in a plane. The 

amount of rotation in the plane that is necessary to bring one ray into the position of the 

other ray is called magnitude of the angle, An angle is actually denoted by ,θ α etc.  

 

 

 

 

         

                 The acute angle, straight angle and the right angles are shown in the above 

figures. We have learnt, in previous classes, that there are three systems for the 

measurement of angles.  

1. Sexagesimal system or British system 

2. Centisimal system or French system 

3. Circular measurement 

      In the Sexagesimal system 

                   1 right angle = 90 degrees 0(90 )  

                   1 degree = 60 minutes (60 )′  

                   1 minute = 60 seconds (60 )′′  

A O 

B 

θ  B 

θ
A 

A 

B 

O 

θ

O 
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    In the Centisimal system 

                   1 right angle = 100 grades (100 )g

 

                   1 grade = 100 minutes (100 )′  

                   1 minute = 100 seconds (100 )′′  

   In the Circular measurement system, one radian is defined as the amount of the angle 

subtended by an arc of length r  units of a circle of radius r  units at the centre of that 

circle. This angle is independent of the size of the circle ( i.e., the radius of the circle ). 

One radian is denoted by 1 .c  In this measurement 2 right angles .cπ=  

       1 minute in the Sexagesimal system 
1

90 60
th=

×
 of a right angle where as    

      1 minute in the Centisimal system 
1

100 100
th=

×
 of a right angle.  

      The conversion from one system to the other can be easily done using the equation :  

                                           
180 200

.
D G R

π
= =

 

      where D,G, R  respectively denote degrees, grades and radians. 

       For example, to convert 030  into grades and radians, put  0D 30=  in the above 

equation 

 and G, R  as follows :  

               

180 200
.

30 G R

π
= =  Hence  

100 30
G , R .

3 180 6

π π
= = =

 

 Thus  0 100
30 .

3 6

g cπ
= =

 

6.1 Trigonometric ratios- variation: 

                  A ratio is 
a

b
 where ,a b are two  real numbers and b  is non-zero. If we take a 

right angled triangle with θ  as one of its acute angle, using the lengths , ,a b c  of the three 

sides of the triangle we can form six ratios, namely , , , , , .
b a b c c a

c c a b a b  

               These six ratios are called the trigonometric ratios of the angle θ . 

 



 

155 

 

  

 

 

 

                                             

        

              For example,
 

b

c
 is called sine ,θ

a

c
 is called cosine ,θ

b

a
 is called tangent ,θ

a

b
 

is called cotangent ,θ
c

a
 is called secant ,θ  and

c

b
 is called cosecant .θ

 

6.1.1 Definition: Let θ
 
be a real number and 0 2θ π≤ ≤  and 0.r >  Consider a 

rectangular co-ordinate system with ,OX OY  as axes. Draw a circle with centre O  and 

radius .r  Choose a point on the circle such that the line OP  makes an angle θ
 
radians 

with OX
����

 (positive X − axis) measured in anti-clock wise direction (positive direction).
 
θ  

 

 

 

      

 

 

 

We define the six trigonometric ratios of θ  as follows: 

                                  Sine of 
y

r
θ =

 

                                 Cosine of 
x

r
θ =

 

                               Tangent of 
y

x
θ =

 

                                 Cotangent of 
x

y
θ =

 

c 

b 

a 

 

θ

Y 

X 
 

P(x,y) 

O M 

y

y

 

x  

θ
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                                 Secant of 
r

x
θ =

 

                                 Cosecant of 
r

y
θ =

 

       The six trigonometric ratios of θ  defined above are briefly written as sin ,θ  cos ,θ

tan ,θ cot ,θ sec ,θ cos ecθ respectively. From these definitions we can observe the 

following: 

6.1.2 Note: 

           1. 
sin

tan
cos

θ
θ

θ
=  and 

1
sec .

cos
θ

θ
=   

          2. 
cos

cot
sin

θ
θ

θ
=  and 

1
cosec .

sin
θ

θ
=

 

          3. 2 2cos sin 1.θ θ+ =   

          4. 2 2sec tan 1.θ θ− =
 

          5. 2 2cosec cot 1.θ θ− =
 

          6. From the definitions of the six trigonometric ratios we can make the following  

              observations. 

                    If  P( , )x y  is in the first quadrant, that is, if  0 ,
2

π
θ< <  then 0x >  and 

0.y > Hence all the six trigonometric ratios are positive. If  P( , )x y  is in the second 

quadrant, that is, if ,
2

π
θ π< <  then 0x <  and 0.y >  Hence sin ,θ cos ecθ  are positive 

and the other trigonometric ratios are negative. If  P( , )x y  is in the third quadrant, that is, 

if  
3

,
2

π
π θ< <  then 0x <  and 0.y <  Hence tan ,θ cotθ  are positive and the other 

trigonometric ratios are negative. If  P( , )x y  is in the fourth quadrant, that is, if  

3
2 ,

2

π
θ π< <  then 0x >  and 

0.y <  Hence cos ,θ secθ  are positive and the other trigonometric ratios are negative.  

               The six trigonometric ratios which are positive in various quadrants can also be 

  remembered as follows.  
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                        I             II         III         IV   

                      All       Silver     Tea       Cups 

                      (all        sine       tan          cos ) 

 

 

     

 

 

 

 

 

 

Now we can write the properties of the six trigonometric functions as follows:   
 

0sin(90 ) cosθ θ− =
 0

cos(90 ) sinθ θ− =
 0

tan(90 ) cotθ θ− =
 0cot(90 ) tanθ θ− =
 0

sec(90 ) cos ecθ θ− =
 0cos ec(90 ) secθ θ− =  

0sin(90 ) cosθ θ+ =
 0

cos(90 ) sinθ θ+ = −
 0

tan(90 ) cotθ θ+ = −
 0cot(90 ) tanθ θ+ = −
 0

sec(90 ) cos ecθ θ+ = −
 0cos ec(90 ) secθ θ+ =  

0sin(180 ) sinθ θ− =
 0

cos(180 ) cosθ θ− = −
 0

tan(180 ) tanθ θ− = −
 0cot(180 ) cotθ θ− = −
 0

sec(180 ) secθ θ− = −
 0cos ec(180 ) cos ecθ θ− =  

0sin(180 ) sinθ θ+ = −
 0

cos(180 ) cosθ θ+ = −
 0

tan(180 ) tanθ θ+ =
 0cot(180 ) cotθ θ+ =
 0

sec(180 ) secθ θ+ = −
 0

cos ec(180 ) cos ecθ θ+ = −  

0sin(270 ) cosθ θ− = −
 0

cos(270 ) sinθ θ− = −
 0

tan(270 ) cotθ θ− =
 0cot(270 ) tanθ θ− =
 0

sec(270 ) cos ecθ θ− = −
 0

cos ec(270 ) secθ θ− = −  

0sin(270 ) cosθ θ+ = −
 0

cos(270 ) sinθ θ+ =
 0

tan(270 ) cotθ θ+ = −
 0cot(270 ) tanθ θ+ = −
 0

sec(270 ) cos ecθ θ+ =
 0

cos ec(270 ) secθ θ+ = −  
0sin(360 ) sinθ θ− = −

 0
cos(360 ) cosθ θ− =

 0
tan(360 ) tanθ θ− = −

 0cot(360 ) cotθ θ− = −
 0

sec(360 ) secθ θ− =
 0

cos ec(360 ) cos ecθ θ− = −  

0sin(360 ) sinθ θ+ =
 0

cos(360 ) cosθ θ+ =
 0

tan(360 ) tanθ θ+ =
 0cot(360 ) cotθ θ+ =
 0

sec(360 ) secθ θ+ =
 0

cos ec(360 ) cos ecθ θ+ =  

0sin( .360 ) sinn θ θ+ =
 0

cos( .360 ) cosn θ θ+ =
 0

tan( .360 ) tann θ θ+ =
 0cot( .360 ) cotn θ θ+ =
 0

sec( .360 ) secn θ θ+ =
 0

cos ec( .360 ) cos ecn θ θ+ =  

 

I    
090 θ−

0360 θ+  

ALL > 0 (All) 

IV 
0270 θ+

0360 θ−
cosine > 0 

secant>0 

(Cups) 

III  
0180 θ+

0270 θ−
tangent > 0 

cotangent > 

0 (Tea) 

II    
090 θ+      

0180 θ−  

sine>0 cosec>0 

(Silver) 

O
X 

Y 
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6.1.3 Definition: The angles 
3

0, , , , 2
2 2

π π
π π

 
have their terminal side along either X

− axis 

or Y − axis. Hence these angles are called Quadrant angles  

             We have learnt the values of the trigonometric ratios of the angles 0, , , ,
6 4 3 2

π π π π
 

in earlier classes. The values of the trigonometric ratios and the quadrant angles are given 

in the following table.  

    θ      0  
    

6

π
    

4

π
    

3

π
    

2

π
    π  

  
3

2

π
   2π  

sinθ       0  
    

1

2
    

1

2
    

3

2
   1    0    1−    0  

cosθ  
    1 

  
3

2
   

1

2
     

1

2
   0    1−      0    1 

tanθ      0  
  

1

3
     1    3    ∞      0      ∞     0  

cotθ  
   ∞     3      1 

  
1

3
    0       ∞      0      ∞  

secθ      1 
  

2

3
   2     2    ∞      1−     ∞      1 

cos ecθ  
    ∞      2    2  

  
2

3
    1     ∞     1−       ∞  

 

6.1.4 Definition: If θ is any angle then 
2

π
θ−   is called its complement angle and π θ−

 
is its supplement angle. In other words, two angles ,θ φ are said to be complementary 

angles if  
2

π
θ φ+ = and supplementary angles if .θ φ π+ =   

             For example, the angles ,
6 3

π π
  are complementary angles and 

5
,

6 6

π π
  are 

supplementary angles. 

6.1.5 Solved Problems:  

1. Problem: Find the value of  0 0 0 0cos 225 sin 225 tan 495 cot 495 .− + −  

 Solution: We have 0 0 0 0cos 225 sin 225 tan 495 cot 495− + −

 

             
        0 0 0 0 0 0 0 0cos(180 45 ) sin(180 45 ) tan(360 135 ) cot(360 135 )= + − + + + − +   
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0 0 0 0

0 0

0 0

cos 45 sin 45 tan135 cot135

cos(180 ) cos ,sin(180 ) sin

tan(360 ) tan ,cot(360 ) cot

θ θ θ θ

θ θ θ θ

= − + + −

 + = − + = −
 

+ = + = 

∵  

                     0 0 0 01 1
tan(90 45 ) cot(90 45 )

2 2
= − + + + − +  

                 

0 0

0 0

cot 45 tan 45

tan(90 ) cot ,cot(90 ) tanθ θ θ θ

= − +

 + = − + = − ∵
 

                1 1 0= − + =  

2. Problem: Find the value of  2 2 2 24 6 9
sin sin sin sin

10 10 10 10

π π π π
+ + +  

 Solution:  We have 2 2 2 24 6 9
sin sin sin sin

10 10 10 10

π π π π
+ + +

 

             
          

2 0 2 0 2 0 2 0sin 18 sin 72 sin 108 sin 162= + + +

 

             
        2 0 2 0 2 0 0 2 0 0sin 18 sin 72 sin (180 72 ) sin (180 18 )= + + − + −   

                       

2 0 2 0 2 0 2 0

0

sin 18 sin 72 sin 72 sin 18

sin(180 ) sinθ θ

= + + +

 − = ∵

 

                     2 0 2 02(sin 18 sin 72 )= + 2 0 2 0 02(sin 18 sin (90 18 )= + −  

                  

2 0 2 0

0

2(sin 18 cos 18 )

sin(90 ) cosθ θ

= +

 − = ∵

 

                 

2(1) 2= =  

3. Problem: Find the value of  2 0 2 0 2 0 2 0cos 45 cos 135 cos 225 cos 315+ + +  

 Solution:  We have 2 0 2 0 2 0 2 0cos 45 cos 135 cos 225 cos 315+ + +

 

             
          

2 0 2 0 0 2 0 0 2 0 0cos 45 cos (180 45 ) cos (180 45 ) cos (360 45 )= + − + + + −

 

             
        

2 0 2 0 2 0 2 0

0 0 0

cos 45 cos 45 cos 45 cos 45

cos(180 ) cos ,cos(180 ) cos , cos(360 ) cosθ θ θ θ θ θ

= + + +

 − = − + = − − = ∵
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                       2 04(cos 45 )= 21 1
4( ) 4( ) 2

22
= = =  

4. Problem: Find the value of  2 2 22 5 3
sin cos tan

3 6 4

π π π
+ −  

 Solution:  We have 2 2 22 5 3
sin cos tan

3 6 4

π π π
+ −

 

             
          

2 0 2 0 2 0sin 120 cos 150 tan 135= + −

 

             
         2 0 0 2 0 0 2 0 0sin (90 30 ) cos (180 30 ) tan (180 45 )= + + − − −   

                         

2 0 2 0 2 0

0 0 0

cos 30 cos 30 tan 45

cos(180 ) cos , tan(180 ) tan ,sin(90 ) cosθ θ θ θ θ θ

= + −

 − = − − = − + = − ∵

 

                        2 2 23 3
( ) ( ) (1)

2 2
= + −

3 3
1

4 4
= + −

1

2
=  

5. Problem: Show that  
3 5 7 9

cot cot cot cot cot 1
20 20 20 20 20

π π π π π
=  

 Solution: 
3 5 7 9

L.H.S cot cot cot cot cot
20 20 20 20 20

π π π π π
=

 

             
       

0 0 0 0 0cot 9 cot 27 cot 45 cot 63 cot 81=

 

             
                0 0 0 0 0 0 0cot 9 cot 27 cot 45 cot(90 27 )cot(90 9 )= − −   

                                0 0 0 0 0 0cot 9 cot 27 cot 45 tan 27 tan 9 cot(90 ) tanθ θ = − = ∵  

                            ( )( )0 0 0 0 0 01
cot 9 tan 9 cot 27 tan 27 cot 45 tan ,cot 45 1

cot
θ

θ

 
= = =  

∵

      

                            

1 R.H.S= =  

6. Problem: If 0tan 20 p=  then prove that 
0 0 2

0 0 2

tan 610 tan 700 1

tan 560 tan 470 1

p

p

+ −
=

− +
 

 Solution:  
0 0

0 0

tan 610 tan 700
L.H.S=

tan 560 tan 470

+

−
 

                                
0 0 0 0

0 0 0 0

tan(360 250 ) tan(360 340 )
=

tan(360 200 ) tan(360 110 )

+ + +

+ − +  
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0 0
0

0 0

tan 250 tan 340
= tan(360 ) tan

tan 200 tan110
θ θ

+
 + = −
∵

 

                           

0 0 0 0

0 0 0 0

tan(270 20 ) tan(360 20 )
=

tan(180 20 ) tan(90 20 )

− + −

+ − +   

                           
0 00 0

0 0 0 0

tan(360 ) tan , tan(180 ) tan ,cot 20 tan 20
=

tan 20 cot 20 tan(90 ) cot , tan(270 ) cot

θ θ θ θ

θ θ θ θ

 − = − + =−
 

− + + = − − = 

∵

  

                           
0 0

1

1
= tan 20 ,cot 20

1

p
p

p
p

p
p

−
 

= = 
 −

∵

 

                          

2

2

2 2

1

1
= R.H.S

1 1

p

pp

p p

p

−

−
= =

+ +  

7. Problem: If 0tan 20 λ=  then prove that 
0 0 2

0 0

tan160 tan110 1

1 tan160 tan110 2

λ

λ

− −
=

+
 

 Solution:  
0 0

0 0

tan160 tan110
L.H.S=

1 tan160 tan110

−

+
 

                                
0 0 0 0

0 0 0 0

tan(180 20 ) tan(90 20 )
=

1 tan(180 20 ) tan(90 20 )

− − +

+ − +  

                            
0 0

0 0

0 0

tan 20 cot 20
= tan(180 ) tan , tan(90 ) cot

1 tan 20 cot 20
θ θ θ θ

− +
 − = − + = − +
∵

 

                           

0 0

1
1

= tan 20 ,cot 20
1

1

λ
λ λ

λλ
λ

− +
 

= =  +

∵  

                           

21

=
1 1

λ

λ

−

+

21
=

2

λ

λ

−
R.H.S=

                         

8. Problem: Prove that 2 2 2 2(sin cos ec ) (cos sec ) (tan cot ) 7θ θ θ θ θ θ+ + + − + =  

 Solution:  2 2 2 2L.H.S=(sin cos ec ) (cos sec ) (tan cot )θ θ θ θ θ θ+ + + − +  
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2 2 2 2

2 2

=(sin cos ec 2sin cos ec ) (cos sec 2cos sec )

(tan cot )

θ θ θ θ θ θ θ θ

θ θ

+ + + + +

− +  

                     

2 2 2 2 2 2
=(sin cos ) (sec tan ) (cos ec cot )

1 1
(2sin . ) (2cos . )

sin cos

θ θ θ θ θ θ

θ θ
θ θ

+ + − + −

+ +     

                    

2 2 2 2

2 2

=(1) (1) (1) (2) (2)

sin cos 1,sec tan 1,

1 1
cos ec cot 1,sin . 1, cos . 1

sin cos

θ θ θ θ

θ θ θ θ
θ θ

+ + + +

 + = − =
 
 − = = =
  

∵

 

                  

=7 R.H.S=
                         

9. Problem: Prove that 
2

2

(1 sin cos ) 1 cos

(1 sin cos ) 1 cos

θ θ θ

θ θ θ

+ − −
=

+ + +
 

Solution:  
2

2

(1 sin cos )
L.H.S=

(1 sin cos )

θ θ

θ θ

+ −

+ +
 

                                
2 2

2 2

1 sin cos 2sin 2cos 2sin cos
=

1 sin cos 2sin 2cos 2sin cos

θ θ θ θ θ θ

θ θ θ θ θ θ

+ + + − −

+ + + + +  

                            

2 21 1 2sin 2 cos 2sin cos
= sin cos 1

1 1 2sin 2 cos 2sin cos

θ θ θ θ
θ θ

θ θ θ θ

+ + − −
 + = + + + +
∵

 

                           

2 2sin 2cos 2sin cos 2(1 sin cos sin cos )
= =

2 2sin 2cos 2sin cos 2(1 sin cos sin cos )

θ θ θ θ θ θ θ θ

θ θ θ θ θ θ θ θ

+ − − + − −

+ + + + + +  

                           
(1 sin )(1 cos ) 1 cos

=
(1 sin )(1 cos ) 1 cos

θ θ θ

θ θ θ

+ − −
=

+ + +
  

R.H.S=

   

  10. Problem: Prove that 6 6 4 42(sin cos ) 3(sin cos ) 1 0θ θ θ θ+ − + + =  

 Solution:  6 6 4 4L.H.S=2(sin cos ) 3(sin cos ) 1θ θ θ θ+ − + +  

                                ( ) ( )2 3 2 3 2 2 2 2
=2 (sin ) (cos ) 3 (sin ) (cos ) 1θ θ θ θ+ − + +

 

                 

( )

( )

2 2 3 2 2 2 2

2 2 2 2 2

2 2 2 3 3 3

=2 (sin cos ) 3sin cos (sin cos )

3 (sin cos ) 2sin cos 1

( ) 2 , ( ) 3 ( )a b a b ab a b a b ab a b

θ θ θ θ θ θ

θ θ θ θ

+ − +

− + − +

 + = + − + = + − + ∵
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( ) ( )3 2 2 2 2 2

2 2

=2 (1) 3sin cos (1) 3 (1) 2sin cos 1

sin cos 1

θ θ θ θ

θ θ

− − − +

 + = ∵
 

                           
2 2 2 2=2 6sin cos 3 6sin cos 1 0θ θ θ θ− − + + = R.H.S=

   

 11. Problem: If 2 2tan 1 eθ = − then prove that  
3

3 2 2sec tan cos ec (2 ) .eθ θ θ+ = −  

      Solution:  Given 2 2tan 1 eθ = −

 
                           3L.H.S= sec tan cos ecθ θ θ+  

                            
2 21 1 1 sin 1

= tan tan tan
cos sin cos cos sin

θ
θ θ θ

θ θ θ θ θ
+ = +  

                                21
(1 tan )

cos
θ

θ
= +

2sec (1 tan )θ θ= +
 

                           

3
2 2 2 2(1 tan )(1 tan ) (1 tan )θ θ θ= + + = +

 

                           

3 3
2 22 2(1 1 ) (2 )e e= + − = − R.H.S=  

  12. Problem: Prove that 4 2 4

2

1
cos 2cos 1 1 sin

sec
α α α

α

 
+ − = − 

 
 

       Solution:  4 2

2

1
L.H.S= cos 2 cos 1

sec
α α

α

 
+ − 

 
 

                                
2

4 2

2

sec 1
= cos 2cos

sec

α
α α

α

 −
+  

 

2
4 2

2

tan
= cos 2cos

sec

α
α α

α

 
+  

   

                            

4 2 2= cos 2cos sinα α α+ 2 2 2= cos (cos 2sin )α α α+
 

                           

2 2 2 2= cos (cos sin sin )α α α α+ +  

                           
2 2 2 2 2 2= (1 sin )(1 sin ) sin cos 1,cos 1 sinα α θ θ θ θ − + + = = − ∵

  

                           

4=1 sin α− R.H.S=

   

  13. Problem: If 
2sin

1 cos sin
x

θ

θ θ
=

+ +
then prove that  

1 cos sin

1 sin
x

θ θ

θ

− +
=

+
 

       Solution:  Given 
2sin

1 cos sin
x

θ

θ θ
=

+ +  
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2sin (1 cos sin )

(1 cos sin ) (1 cos sin )
x

θ θ θ

θ θ θ θ

− +
⇒ =

+ + − + 2 2

2sin (1 cos sin )

(1 sin ) cos
x

θ θ θ

θ θ

− +
⇒ =

+ −  

               
2 2

2sin (1 cos sin )

1 sin 2sin cos
x

θ θ θ

θ θ θ

− +
⇒ =

+ + −
2 2

2sin (1 cos sin )

1 cos sin 2sin
x

θ θ θ

θ θ θ

− +
⇒ =

− + +  

           
2 2

2sin (1 cos sin )

sin sin 2sin
x

θ θ θ

θ θ θ

− +
⇒ =

+ + 2

2sin (1 cos sin )

2sin 2sin
x

θ θ θ

θ θ

− +
⇒ =

+  

           

2sin (1 cos sin )

2sin (1 sin )
x

θ θ θ

θ θ

− +
⇒ =

+

1 cos sin

1 sin
x

θ θ

θ

− +
⇒ =

+
 

 14. Problem: Prove that 2 2 2 2 2(tan cot ) sec cos ec sec cos ecθ θ θ θ θ θ+ = + =  

        Solution:  2 2 2L.H.S= (tan cot ) tan cot 2 tan cotθ θ θ θ θ θ+ = + +  

                                [ ]2 2= tan cot 2(1) tan cot 1θ θ θ θ+ + =∵

  

                            
2 2 2 2 2 2

=sec 1 cosec 1 2 tan sec 1,cot cosec 1θ θ θ θ θ θ − + − + = − = − ∵

 

                            

2 2= sec cos ecθ θ+

2 2

1 1 1 1
= sec ,cosec

cos sin cos sin
θ θ

θ θ θ θ

 
+ = =  

∵

  

                           

2 2

2 2

sin cos
=

cos sin

θ θ

θ θ

+ 2 2

2 2

1
= sin cos 1

cos sin
θ θ

θ θ
 + = ∵

 

                           

2 2 1 1
= sec cosec sec ,cos ec

cos sin
θ θ θ θ

θ θ

 
= =  

∵  

                           

R.H.S=

   
  15. Problem: If 3sin 4 cos 5θ θ+ = then find the value of  4sin 3cosθ θ−  

        Solution:  Given 3sin 4 cos 5θ θ+ =  

                              Take 4sin 3cos xθ θ− =  

                Squaring and adding the above two equations we get  

                   2 2 2 2(3sin 4 cos ) (4sin 3cos ) 5 xθ θ θ θ+ + − = +    

                

2 2 2

2 2

9sin 16cos 24sin cos 16sin

9cos 24sin cos 25 x

θ θ θ θ θ

θ θ θ

⇒ + + +

+ − = +  
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                  2 2 225sin 25cos 25 xθ θ⇒ + = +   

                  2 2 225(sin cos ) 25 xθ θ⇒ + = +
 

               

2 2 225(1) 25 ( sin cos 1)x θ θ⇒ = + + =∵  

               
2 225 25 0x x⇒ = + ⇒ =  

                    0x∴ =  

 16. Problem: If cos sina b cθ θ+ = then prove that 2 2 2sin cosa b a b cθ θ− = ± + −  

Solution:  Given cos sina b cθ θ+ =  

                      Take sin cosa b xθ θ− =  

          Squaring and adding the above two equations we get  

                   2 2 2 2( cos sin ) ( sin cos )a b a b c xθ θ θ θ+ + − = +    

                

2 2 2 2 2 2

2 2 2 2

cos sin 2 cos sin sin

cos 2 sin cos

a b ab a

b ab c x

θ θ θ θ θ

θ θ θ

⇒ + + +

+ − = +  

                  2 2 2 2 2 2 2 2(cos sin ) (cos sin )a b c xθ θ θ θ⇒ + + + = +   

                  2 2 2 2 2 2(1) (1) cos sin 1a b c x θ θ ⇒ + = + + = ∵

 

               

2 2 2 2
a b c x⇒ + = + 2 2 2 2

a b c x⇒ + − = 2 2 2
x a b c⇒ = ± + −  

17. Problem: If cos , sinx a y bθ θ= =  then eliminate θ  

       Solution:  Given cos , sinx a y bθ θ= =  

                               cos , sin
x y

a b
θ θ⇒ = =  

          Squaring and adding the above two equations we get  

                   

2 2

2 2(cos ) (sin )
x y

a b
θ θ

   
⇒ + = +   
   

2 2
2 2

2 2
cos sin

x y

a b
θ θ⇒ + = +

 

                

2 2
2 2

2 2
1 cos sin 1

x y

a b
θ θ ⇒ + = + = ∵
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18. Problem: If 3 3cos , sinx a y bθ θ= =  then eliminate θ  

Solution:  Given 3 3cos , sinx a y bθ θ= =
 

                 

3 3cos , sin
x y

a b
θ θ⇒ = =                  

                 
( ) ( )

2 2
3 32 2

3 33 3cos , sin
x y

a b
θ θ

   
⇒ = =   

     

                

2 2
3 3

2 2cos , sin
x y

a b
θ θ

   
⇒ = =   

     

          Now adding the above two equations we get  

              

2 2
3 3x y

a b

   
⇒ +   

   

2 2cos sinθ θ= +

2 2
3 3

2 21 cos sin 1
x y

a b
θ θ

   
 ⇒ + = + =     

   
∵

        

                                        Exercise 6(a) 

     
1. Find the values of the following

 
  

5
sin

3
)i

π

 

13
sec

3
)ii

π

 

7
cos

2
)iii

π 
− 
   

0tan 855)iv
 

0sec 2100)v
 

0cot( 315 ))vi −  

2. Prove the following   
4 2 6 63(sin cos ) 6(sin cos ) 4(sin cos ) 13)i θ θ θ θ θ θ− + + + + =

(tan sec 1) 1 sin

(tan sec 1) cos
)ii

θ θ θ

θ θ θ

+ − +
=

− +      

cos( ) cot( ) cos( )
2 cos

3
tan( ) tan( ) sin(2 )

2

)iii

π
π θ θ θ

θ
π

π θ θ π θ

− + −
=

+ + −
 

4

3
sin(3 ) cos( ) tan( )

2 2 cos
13

sec(3 ) cos ec( ) cot( )
2 2

)iv

π π
π θ θ θ

θ
π π

π θ θ θ

− − −

=

+ + −

2 3 7
cot cot cot ...cot 1

16 16 16 16
)v

π π π π
=

 

3. Simplify the following   
0 0 0 0

sin 780 sin 480 cos 240 cos 300)i +     
0 0 0 0sin 330 cos120 cos 210 sin 300)ii +  

0 0 0 0
cos 225 sin 225 tan 495 cot 495)iii − + −  

2 0 2 0 2 0 2 0
cos 45 cos 135 cos 225 cos 315)iv + + +  

4. If 3sin 5cos 5A A+ = then prove that 5sin 3cos 3A A− = ±  
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5. If cos sin 2 cosθ θ θ+ =  then prove that cos sin 2 sinθ θ θ− =              

6. Eliminate θ  from the following 
4 4

cos , sin)x a y ai θ θ= =    
(sec tan ), (sec tan ))x a y bii θ θ θ θ= + = −  

cot tan , sec cos)x yiii θ θ θ θ= + = −    
 

7.  (i)  If 
1

sin
3

α
−

= and α  does not lie in the third quadrant then find  

     the values of  cotα  and cosα . 

           (ii)  If 
4

sin
5

θ = and θ  does not lie in the first quadrant then find  

      the value of cosθ .                                       

6.2. Trigonometric ratios of compound angles: 

                  In this section, we define a compound angle and give formulae to find the 

trigonometric ratios of compound angles.  

6.2.1 Definition: 

 The algebraic sum of two or more angles is called a compound angle.    

                  If , ,A B C are three angles then . , , , ...A B B C C A A C A B C+ + + − + −  are 

compound angles.  

6.2.2 Theorem: 

                         If ,A B are two real numbers then cos( ) cos cos sin sinA B A B A B+ = −    

      Proof: Consider a unit circle with centre at the origin O   Let the terminal sides of the 

angles , ,A A B B+ −  in the standard position cuts the circle at , ,Q R S respectively. Let  

OX cut the circle at .P  

 

B 

A 

-B O P 

S 

R 

Q 

X X
’ 
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( ) ( )

( )

( ) ( )

1,0 , cos ,sin ,

cos( ),sin( ) ,

cos( ), sin( ) cos , sin .

P Q A A

R A B A B

S B B B B

∴ = =

= + +

= − − = −
 

 We have POR A B QOS= + =  ( ) ( )
2 2

PR QS⇒ =  

( ) ( ) ( ) ( )
2 2 2 2

cos( ) 1 sin( ) 0 cos cos sin sinA B A B A B A B+ − + + − = − + +
 

2 2

2 2 2 2

cos ( ) 2cos( ) 1 sin ( )

cos cos 2cos cos sin sin 2sin sin

A B A B A B

A B A B A B A B

⇒ + − + + + +

= + − + + +  

2 2

2 2 2 2

cos ( ) sin ( ) 2cos( ) 1

cos sin cos sin 2cos cos 2sin sin

A B A B A B

A A B B A B A B

⇒ + + + − + +

= + + + − +  

2 21 2cos( ) 1 1 1 2cos cos 2sin sin cos sin 1A B A B A B θ θ ⇒ − + + = + − + + = ∵

 

2cos( ) 2cos cos 2sin sinA B A B A B⇒ − + = − +
 

cos( ) cos cos sin sinA B A B A B⇒ + = −  

6.2.3 Corollary: 

              If ,A B are two real numbers then  

                                 ( ) cos( ) cos cos sin sini A B A B A B− = +    

                            ( ) sin( ) sin cos cos sinii A B A B A B+ = +  

                            ( ) sin( ) sin cos cos siniii A B A B A B− = −  

             Proof: (i) We have from theorem  6.2.2   cos( ) cos cos sin sinA B A B A B+ = −
 

                 Now cos( ) cos( ( )) cos cos( ) sin sin( )A B A B A B A B− = + − = − − −   

                     
[ ]cos cos sin sin cos( ) cos ,sin( ) sinA B A B B B B B= + − = − = −∵  

                       (ii) sin( ) cos ( ) cos
2 2

A B A B A B
π π    

+ = − + = − −    
      

                                        
cos cos sin sin

2 2
A B A B

π π   
= − + −   
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sin cos cos sin

cos sin , sin cos
2 2

A B A B

A A A A
π π

= +

    
− = − =    

    
∵  

                       (iii) ( )sin( ) sin ( ) sin cos( ) cos sin( )A B A B A B A B− = + − = − + −
 

                                    
[ ]sin cos cos sin cos( ) cos ,sin( ) sinA B A B B B B B= − − = − = −∵

 

6.2.4 Theorem: 

                 (i)  If none of , ( )A B and A B+ is an odd multiple of ,
2

π
 then 

                                       
tan tan

tan( )
1 tan tan

A B
A B

A B

+
+ =

−
   

                 (ii)  If none of , ( )A B and A B+ is an integral multiple of ,π  then 

                                       
cot cot 1

cot( )
cot cot

A B
A B

B A

−
+ =

+
   

             Proof: (i) Since none of , ( )A B and A B+ is an odd multiple of ,
2

π
  none of  

                        cos , cos cos( )A B and A B+ is zero. 

                    Now  
sin( ) sin cos cos sin

tan( )
cos( ) cos cos sin sin

A B A B A B
A B

A B A B A B

+ +
+ = =

+ −  

                   Dividing the numerator and denominator in R.H.S by cos cos ,A B  we get   

                       

sin cos cos sin

cos costan( )
cos cos sin sin

cos cos

A B A B

A BA B
A B A B

A B

+

+ =
−

sin cos cos sin

cos cos cos cos
cos cos sin sin

cos cos cos cos

A B A B

A B A B
A B A B

A B A B

+

=

−
 

                                     

sin sin

tan tancos cos
sin sin 1 tan tan

1
cos cos

A B

A BA B
A B A B

A B

+
+

= =
−

−

 

(ii) Since none of , ( )A B and A B+ is an integral multiple of ,π   none of  

                        sin ,sin sin( )A B and A B+ is zero. 

                    Now  
cos( ) cos cos sin sin

cot( )
sin( ) sin cos cos sin

A B A B A B
A B

A B A B A B

+ −
+ = =

+ +  
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                   Dividing the numerator and denominator in R.H.S by sin sin ,A B  we get   

                       

cos cos sin sin cos cos sin sin

sin sin sin sin sin sincot( )
sin cos cos sin sin cos cos sin

sin sin sin sin sin sin

A B A B A B A B

A B A B A BA B
A B A B A B A B

A B A B A B

−
−

+ = =
+

+
 

                                     

cos cos
1

cot cot 1sin sin
cos cos cot cot

sin sin

A B

A BA B
B A B A

B A

−
−

= =
+

+

 

6.2.5 Corollary: 

                 (i)  If none of , ( )A B and A B− is an odd multiple of ,
2

π
 then 

                                       
tan tan

tan( )
1 tan tan

A B
A B

A B

−
− =

+
   

                 (ii)  If none of , ( )A B and A B− is an integral multiple of ,π  then 

                                       
cot cot 1

cot( )
cot cot

A B
A B

B A

+
− =

−
   

             Proof: (i) Since none of , ( )A B and A B− is an odd multiple of ,
2

π
  none of  

                        cos , cos cos( )A B and A B− is zero. 

                    Now  
sin( ) sin cos cos sin

tan( )
cos( ) cos cos sin sin

A B A B A B
A B

A B A B A B

− −
− = =

− +  

                   Dividing the numerator and denominator in R.H.S by cos cos ,A B  we get   

                       

sin cos cos sin

cos costan( )
cos cos sin sin

cos cos

A B A B

A BA B
A B A B

A B

−

− =
+

sin cos cos sin

cos cos cos cos
cos cos sin sin

cos cos cos cos

A B A B

A B A B
A B A B

A B A B

−

=

+
 

                                     

sin sin

tan tancos cos
sin sin 1 tan tan

1
cos cos

A B

A BA B
A B A B

A B

−
−

= =
+

+

 

(ii) Since none of , ( )A B and A B− is an integral multiple of ,π   none of  

                        sin ,sin sin( )A B and A B− is zero. 
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                    Now  
cos( ) cos cos sin sin

cot( )
sin( ) sin cos cos sin

A B A B A B
A B

A B A B A B

− +
− = =

− −  

                   Dividing the numerator and denominator in R.H.S by sin sin ,A B  we get   

                       

cos cos sin sin cos cos sin sin

sin sin sin sin sin sincot( )
sin cos cos sin sin cos cos sin

sin sin sin sin sin sin

A B A B A B A B

A B A B A BA B
A B A B A B A B

A B A B A B

+
+

− = =
−

−
 

                                     

cos cos
1

cot cot 1sin sin
cos cos cot cot

sin sin

A B

A BA B
B A B A

B A

+
+

= =
−

−

 

   
6.2.6 Theorem: 

              If ,A B are two real numbers then  

                                 2 2 2 2( ) sin( )sin( ) sin sin cos cosi A B A B A B B A+ − = − = −    

                            
2 2 2 2( )cos( ) cos( ) cos sin cos sinii A B A B A B B A+ − = − = −  

             Proof: (i) We have sin( ) sin cos cos sinA B A B A B+ = +  and 

                                             sin( ) sin cos cos sinA B A B A B− = −
 

          Now ( )( )sin( ) sin( ) sin cos cos sin sin cos cos sinA B A B A B A B A B A B+ − = + −   

                     
( ) ( )

2 2sin cos cos sinA B A B= − ( ) ( )2 2 2 2sin cos cos sinA B A B= −  

                     ( ) ( )2 2 2 2sin 1 sin 1 sin sinA B A B= − − −   

                     
2 2 2 2 2 2sin sin sin sin sin sinA A B B A B= − − + 2 2sin sinA B= −  

                     ( ) ( )2 21 cos 1 cosA B= − − − =
2 2cos cosB A−                     

                      (ii) We have cos( ) cos cos sin sinA B A B A B+ = −  and 

                                             cos( ) cos cos sin sinA B A B A B− = +
 

           Now ( )( )cos( ) cos( ) cos cos sin sin cos cos sin sinA B A B A B A B A B A B+ − = − +   

                     
( ) ( )

2 2
cos cos sin sinA B A B= − ( ) ( )2 2 2 2cos cos sin sinA B A B= −  

                     ( ) ( )2 2 2 2cos 1 sin 1 cos sinA B A B= − − −   
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2 2 2 2 2 2cos cos sin sin cos sinA A B B A B= − − + 2 2cos sinA B= −  

                     ( ) ( )2 21 sin 1 cosA B= − − − =
2 2cos sinB A−                     

               Now we derive the formulae for 

( ) ( ) ( )sin , cos , tanA B C A B C A B C+ + + + + +  and ( )cot A B C+ +  as follows.  

   
6.2.7 Theorem: 

              If , ,A B C are three real numbers then  

                    
( ) sin( ) sin cos cos cos sin cos

cos cos sin sin sin sin

i A B C A B C A B C

A B C A B C

+ + = +

+ −
   

                

( ) cos( ) cos cos cos sin sin cos

sin cos sin cos sin cos

ii A B C A B C A B C

A B C A B C

+ + = −

− −  

               (iii)  If none of , , ( )A B C and A B C+ + is an odd multiple of ,
2

π
 and at least 

one  

                          of , ,A B B C C A+ + + is not an odd multiple of ,
2

π
then 

                                       
tan tan tan tan tan tan

tan( )
1 tan tan tan tan tan tan

A B C A B C
A B C

A B B C C A

+ + −
+ + =

− − −
   

                 (iv) If none of , , ( )A B C and A B C+ + is an integral multiple of ,π  then 

                                       
cot cot cot cot cot cot

cot( )
1 cot cot cot cot cot cot

A B C A B C
A B C

A B B C C A

+ + −
+ + =

− − −
   

       Proof: (i) ( )sin( ) sin ( ) sin( ) cos cos( ) sinA B C A B C A B C A B C+ + = + + = + + +  

                                     

( ) ( )sin cos cos sin cos cos cos sin sin sinA B A B C A B A B C= + + −  

                
sin cos cos cos sin cos

cos cos sin sin sin sin

A B C A B C

A B C A B C

= +

+ −  

                  (ii) ( )cos( ) cos ( ) cos( ) cos sin( ) sinA B C A B C A B C A B C+ + = + + = + − +  

                                     ( ) ( )cos cos sin sin cos sin cos cos sin cosA B A B C A B A B C= − − +  
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cos cos cos sin sin cos

sin cos sin cos sin cos

A B C A B C

A B C A B C

= −

− −
             

                 (iii) Since none of , , ( )A B C and A B C+ + is an odd multiple of ,
2

π
 and at 

                         least one of , ,A B B C C A+ + + is not an odd multiple of ,
2

π
then 

                      ( )
tan( ) tan

tan( ) tan ( )
1 tan( ) tan

A B C
A B C A B C

A B C

+ +
+ + = + + =

− +  

tan tan tan tan tan (1 tan tan )
tan

1 tan tan 1 tan tan
tan tan 1(1 tan tan ) (tan tan ) tan

1 tan
1 tan tan 1 tan tan

A B A B C A B
C

A B A B
A B A B A B C

C
A B A B

+ + + −
+

− −= =
+ − − +

−
− −

 

tan tan tan (1 tan tan )

1(1 tan tan ) (tan tan ) tan

tan tan tan tan tan tan

1 tan tan tan tan tan tan

A B C A B

A B A B C

A B C A B C

A B B C C A

+ + −
=

− − +

+ + −
=

− − −

 

                       

tan tan tan tan tan tan
tan( )

1 tan tan tan tan tan tan

A B C A B C
A B C

A B B C C A

+ + −
∴ + + =

− − −
 

                 (iv) Since none of , , ( )A B C and A B C+ + is an integral multiple of π  then 

                      ( )
cot( ) tan 1

cot( ) cot ( )
cot( ) cot

A B C
A B C A B C

A B C

+ −
+ + = + + =

+ +  

cot cot 1 (cot cot 1) cot 1(cot cot )
cot 1

cot cot cot cot
cot cot 1 cot cot 1 cot (cot cot )

cot
cot cot cot cot

A B A B C B A
C

B A B A
A B A B C B A

C
B A B A

− − − +
−

+ += =
− − + +

+
+ +

 

(cot cot 1) cot 1(cot cot )

cot cot 1 cot (cot cot )

A B C B A

A B C B A

− − +
=

− + +  

cot cot cot cot cot cot

cot cot 1 cot cot cot cot

A B C C B A

A B C B C A

− − −
=

− + +  

                       

cot cot cot cot cot cot
cot( )

1 cot cot cot cot cot cot

A B C A B C
A B C

A B B C C A

+ + −
∴ + + =

− − −
 

6.2.8 Solved Problems:  

1. Problem: Find the values of  0 0 0sin 75 ,cos 75 , tan 75 . 
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 Solution: (i) We have sin( ) sin cos cos sinA B A B A B+ = +

 

             
Take 0 045 , 30A B= =  

             0 0 0 0 0 0sin(45 30 ) sin 45 cos30 cos 45 sin 30+ = +   

                  
0 1 3 1 1

sin 75 . .
2 22 2

⇒ = + 0 3 1
sin 75

2 2

+
⇒ =                 

       (ii) We have cos( ) cos cos sin sinA B A B A B+ = −

 

             
Take 0 045 , 30A B= =  

             0 0 0 0 0 0cos(45 30 ) cos 45 cos30 sin 45 sin 30+ = −   

                  
0 1 3 1 1

cos75 . .
2 22 2

⇒ = −  

                  
0 3 1

cos75
2 2

−
⇒ =  

       (iii) We have 
tan tan

tan( )
1 tan tan

A B
A B

A B

+
+ =

−  

             
Take 0 045 , 30A B= =  

             
0 0

0 0

0 0

tan 45 tan 30
tan(45 30 )

1 tan 45 tan 30

+
+ =

−   

                  0

1
1

3
tan 75

1
1 1.

3

+

⇒ =

−

0

1
1

3
tan 75

1
1

3

+

⇒ =

−

0

3 1

3
tan 75

3 1

3

+

⇒ =
−

 

                  
0 3 1

tan 75
3 1

+
⇒ =

−
 

2. Problem: Find the values of  0 0 0sin15 ,cos15 , tan15 .  

 Solution: (i) We have sin( ) sin cos cos sinA B A B A B− = −

 

             
Take 0 045 , 30A B= =  

             0 0 0 0 0 0sin(45 30 ) sin 45 cos30 cos 45 sin 30− = −   
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0 1 3 1 1

sin15 . .
2 22 2

⇒ = −  

                  
0 3 1

sin15
2 2

−
⇒ =  

       (ii) We have cos( ) cos cos sin sinA B A B A B− = +

 

             
Take 0 045 , 30A B= =  

             0 0 0 0 0 0cos(45 30 ) cos 45 cos30 sin 45 sin 30− = +   

                  
0 1 3 1 1

cos15 . .
2 22 2

⇒ = +  

                  
0 3 1

cos15
2 2

+
⇒ =  

       (iii) We have 
tan tan

tan( )
1 tan tan

A B
A B

A B

−
− =

+  

             
Take 0 045 , 30A B= =  

             
0 0

0 0

0 0

tan 45 tan 30
tan(45 30 )

1 tan 45 tan 30

−
− =

+   

                  0

1
1

3
tan15

1
1 1.

3

−

⇒ =

+

0

1
1

3
tan15

1
1

3

−

⇒ =

+

0

3 1

3
tan15

3 1

3

−

⇒ =
+

 

                  
0 3 1

tan15
3 1

−
⇒ =

+
 

3. Problem: Find the values of  0 0 0sin105 ,cos105 , tan105 .  

 Solution: (i) We have 0sin(180 ) sinθ θ− =

 

             
Take 075θ =  

             0 0 0 0sin105 sin(180 75 ) sin 75= − =   

                  
0 3 1

sin105
2 2

+
⇒ =  
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       (ii) We have 0cos(180 ) cosθ θ− = −

 

             
Take 075θ =  

             0 0 0 0cos105 cos(180 75 ) cos75= − = −   

                  
0 3 1

cos105
2 2

−
⇒ = −

 

               

0 1 3
cos105

2 2

−
⇒ =  

     (iii) We have 0tan(180 ) tanθ θ− = −

 

             
Take 075θ =  

             0 0 0 0tan105 tan(180 75 ) tan 75= − = −   

                  
0 3 1

tan105
3 1

+
⇒ = −

−  

              

0 1 3
tan105

1 3

+
⇒ =

−
 

4. Problem: Prove that 0 0tan 75 cot 75 4+ =  

 Solution: We have 
0 3 1

tan 75
3 1

+
=

−  

     
0 3 1 3 1

tan 75
3 1 3 1

  + +
⇒ =     − +  

0 3 1 3 1
tan 75

3 1 3 1

  + +
⇒ =     − +         

    

( )
( )( )

2

0
3 1

tan 75
3 1 3 1

+
⇒ =

+ −

2 2
0

2 2

( 3) 2. 3.1 1
tan 75

( 3) 1

+ +
⇒ =

−  

    0 4 2 3
tan 75

2

+
⇒ = 1 1 1

tanh log 3
2 2

−⇒ =  

      0
tan 75 2 3∴ = +

 

We have 
0

0

1 1 1 2 3
cot 75

tan 75 2 3 2 3 2 3

−
= = = ×

+ + −  
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        2 2

2 3 2 3
2 3

1(2) ( 3)

− −
= = = −

−
      

    

0 0
tan 75 cot 75 2 3 2 3 4∴ + = + + − =  

        Hence  0 0tan 75 cot 75 4+ =  

5. Problem: Show that 0 0 0 0 1
cos100 cos 40 sin100 sin 40

2
+ =  

 Solution:  We have cos cos sin sin cos( )A B A B A B+ = −

 

             
Take 0 0100 , 40A B= =  

             0 0 0 0 0 0 0 1
cos100 cos 40 sin100 sin 40 cos(100 40 ) cos 60

2
+ = − = =   

6. Problem: Show that 0 0 0cos 42 cos 78 cos162 0+ + =  

 Solution:  0 0 0L.H.S= cos 42 cos 78 cos162+ +  

                                0 0 0 0 0 0cos(60 18 ) cos(60 18 ) cos(180 18 )= − + + + −
 

                            

0 0 0 0

0 0 0 0 0

cos 60 cos18 sin 60 sin18

cos 60 cos18 sin 60 sin18 cos18

= +

+ − −  

                           

0 0 02 cos 60 cos18 cos18= − 0 01
2. .cos18 cos18

2
= −

 

                          

0 0cos18 cos18 0 R.H.S= − = =  

      0 0 0cos 42 cos78 cos162 0∴ + + =  

7. Problem: Find the value of  0 0 0 0tan 20 tan 40 3 tan 20 tan 40+ +  

 Solution:  We have 
tan tan

tan( )
1 tan tan

A B
A B

A B

+
+ =

−  

             
Take 0 020 , 40A B= =  

             
0 0

0 0

0 0

tan 20 tan 40
tan(20 40 )

1 tan 20 tan 40

+
+ =

−   

                  
0 0

0

0 0

tan 20 tan 40
tan 60

1 tan 20 tan 40

+
⇒ =

−

0 0

0 0

tan 20 tan 40
3

1 tan 20 tan 40

+
⇒ =

−
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                  ( )0 0 0 0tan 20 tan 40 3 1 tan 20 tan 40⇒ + = −

 

               

0 0 0 0tan 20 tan 40 3 3 tan 20 tan 40⇒ + = −

 

               

0 0 0 0tan 20 tan 40 3 tan 20 tan 40 3⇒ + + =  

      0 0 0 0tan 20 tan 40 3 tan 20 tan 40 3∴ + + =  

8. Problem: Find the value of  0 0 0 0tan 56 tan11 tan 56 tan11− −  

 Solution:  We have 
tan tan

tan( )
1 tan tan

A B
A B

A B

−
− =

+  

             
Take 0 056 , 11A B= =  

             
0 0

0 0

0 0

tan 56 tan11
tan(56 11 )

1 tan 56 tan11

−
− =

+   

                  
0 0

0

0 0

tan 56 tan11
tan 45

1 tan 56 tan11

−
⇒ =

+

0 0

0 0

tan 56 tan11
1

1 tan 56 tan11

−
⇒ =

+
 

                  ( )0 0 0 0tan 56 tan11 1 1 tan 56 tan11⇒ − = +

 

               

0 0 0 0tan 56 tan11 1 tan 56 tan11⇒ − = +

 

               

0 0 0 0tan 56 tan11 tan 56 tan11 1⇒ − − =  

      0 0 0 0tan 56 tan11 tan 56 tan11 1∴ − − =  

9. Problem: Find the value of  
0 0

2 21 1
sin 82 sin 22

2 2
−  

 Solution:  We have 2 2sin sin sin( )sin( )A B A B A B− = + −

 

             
Take 

0 0
1 1

82 , 22
2 2

A B= =  

             

0 0 0 0 0 0

2 21 1 1 1 1 1
sin 82 sin 22 sin(82 22 )sin(82 22 )

2 2 2 2 2 2
− = + −   

                  0 0sin105 .sin 60=
3 1 3

.
22 2

+
=

3 3

4 2

+
=  

  10. Problem: Find the value of  
0 0

2 21 1
cos 112 sin 52

2 2
−  
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 Solution:  We have 2 2cos sin cos( )cos( )A B A B A B− = + −

 

             
Take 

0 0
1 1

112 , 52
2 2

A B= =  

             
0 0 0 0 0 0

2 21 1 1 1 1 1
cos 112 sin 52 cos(112 52 ) cos(112 52 )

2 2 2 2 2 2
− = + −   

                  0 0cos165 .cos 60=
3 1 1

.
22 2

+
= −

3 1

4 2

+
= −  

 11. Problem: If 045A B+ = then prove that  (1 tan )(1 tan ) 2.A B+ + =  

        Solution:  We have 
tan tan

tan( )
1 tan tan

A B
A B

A B

+
+ =

−  

             0 tan tan
tan 45

1 tan tan

A B

A B

+
⇒ =

−  
tan tan

1
1 tan tan

A B

A B

+
⇒ =

−  

             1 tan tan tan tanA B A B⇒ − = + 1 tan tan tan tanA B A B⇒ = + +
 

           
1 1 1 tan tan tan tanA B A B⇒ + = + + + (1 tan )(1 tan ) 2A B⇒ + + =  

  12. Problem: If 0135A B− = then prove that  (1 tan )(1 tan ) 2.A B− + =  

       Solution:  We have 
tan tan

tan( )
1 tan tan

A B
A B

A B

−
− =

+  

             0 tan tan
tan135

1 tan tan

A B

A B

−
⇒ =

+  
tan tan

1
1 tan tan

A B

A B

−
⇒ − =

+  

             1 tan tan tan tanA B A B⇒ − + = − 1 tan tan tan tanA B A B⇒ − = − −
 

           
1 tan tan tan tan 1 1A B A B⇒ − + − = + (1 tan )(1 tan ) 2A B⇒ − + =  

  13. Problem: If 0225A B+ = then prove that  
cot cot 1

(1 cot )(1 cot ) 2

A B

A B
=

+ +
 

       Solution:  We have 
cot cot 1

cot( )
cot cot

A B
A B

B A

−
+ =

+  

             0 cot cot 1
cot 225

cot cot

A B

B A

−
⇒ =

+  
cot cot 1

1
cot cot

A B

B A

−
⇒ =

+  

             cot cot cot cot 1B A A B⇒ + = − 1 cot cot cot cot 2 cot cotB A A B A B⇒ + + + =
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(1 cot )(1 cot ) 2 cot cotA B A B⇒ + + =

cot cot 1
.

(1 cot )(1 cot ) 2

A B

A B
⇒ =

+ +
 

 14. Problem: If 0180A B C+ + = then prove that 

                          tan tan tan tan tan tan .A B C A B C+ + =  

        Solution:  Given 0180A B C+ + =  

                               
0180A B C⇔ + = −  

                        Apply   tan  on both sides we get  

                   0tan( ) tan(180 )A B C⇔ + = −
tan tan

tan
1 tan tan

A B
C

A B

+
⇔ = −

−  

                  ( )tan tan tan 1 tan tanA B C A B⇔ + = − −   

                  tan tan tan tan tan tanA B C A B C⇔ + = − +
 

               
tan tan tan tan tan tanA B C A B C⇔ + + =  

  15. Problem: If 0180A B C+ + = then prove that 

                          cot cot cot cot cot cot 1.A B B C C A+ + =  

        Solution:  Given 0180A B C+ + =  

                               
0180A B C⇔ + = −  

                        Apply   cot  on both sides we get  

                   0cot( ) cot(180 )A B C⇔ + = −
cot cot 1

cot
cot cot

A B
C

B A

−
⇔ = −

+  

                  ( )cot cot 1 cot cot cotA B C B A⇔ − = − +   

                  cot cot 1 cot cot cot cotA B B C C A⇔ − = − −
 

               
cot cot cot cot cot cot 1A B B C C A⇔ + + =  

 16. Problem: If 090A B C+ + = then prove that 

                          tan tan tan tan tan tan 1.A B B C C A+ + =  

        Solution:  Given 090A B C+ + =  

                               
090A B C⇔ + = −  
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                        Apply   tan  on both sides we get  

                   0tan( ) tan(90 )A B C⇔ + = −
tan tan

cot
1 tan tan

A B
C

A B

+
⇔ =

−  

                

tan tan 1

1 tan tan tan

A B

A B C

+
⇔ =

−  

                  ( )tan tan tan 1 tan tanA B C A B⇔ + = −   

                  tan tan tan tan 1 tan tanC A B C A B⇔ + = −
 

               
tan tan tan tan tan tan 1A B B C C A⇔ + + =  

17. Problem: If 090A B C+ + = then prove that 

                          cot cot cot cot cot cotA B C A B C+ + =  

        Solution:  Given 090A B C+ + =  

                               
090A B C⇔ + = −  

                        Apply   cot  on both sides we get  

                   0cot( ) cot(90 )A B C⇔ + = −
cot cot 1

tan
cot cot

A B
C

A B

−
⇔ =

+  

                

cot cot 1 1

cot cot cot

A B

A B C

−
⇔ =

+  

                  ( )cot cot 1 cot cot cotA B C A B⇔ − = +   

                  cot cot cot cot cot cotA B C C A B⇔ − = +
 

               
cot cot cot cot cot cotA B C A B C⇔ + + =  

18. Problem: If 
24

sin( )
25

A B+ = and 
4

cos( )
5

A B− =  where 0
4

A B
π

< < <  then 

                      find tan 2A                    

        Solution:  Given 
24

sin( )
25

A B+ =
7 24

cos( ) , tan( )
25 7

A B A B⇒ + = + =  

                          Also  
4

cos( )
5

A B− = [ ]
3 3

sin( ) , tan( ) 0
5 4

A B A B A B⇒ − = − − = − − <∵  
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                          We have ( )
tan( ) tan( )

tan 2 tan
1 tan( ) tan( )

A B A B
A A B A B

A B A B

+ + −
= + + − =

− + −  

                 
            

24 3

7 4tan 2
24 3

1
7 4

A

−

⇒ =
−  

−   
  

96 21

28tan 2
28 72

28

A

−

⇒ =
+  

                           

75 28 3
tan 2

28 100 4
A⇒ = × =

 

19. Problem: If 
1

sin
10

α = and 
1

sin
5

β =  and 0 ,
2

π
α β< <  then 

                      show that 
4

π
α β+ =                        

        Solution:  Given 
1

sin
10

α =
1

tan
3

α⇒ =  

                          Also  
1

sin
5

β =
1

tan
2

β⇒ =  

                          We have ( )
tan tan

tan
1 tan tan

α β
α β

α β

+
+ =

−  

                 
            

1 1

3 2tan( )
1 1

1 .
3 2

α β
+

⇒ + =

−

2 3

6tan( )
6 1

6

α β

+

⇒ + =
−

5

6tan( )
5

6

α β⇒ + =
 

                           
tan( ) 1α β⇒ + =

 

                      4

π
α β∴ + =

 

                                        Exercise 6(b) 

   
1. Find the values of the following

 

  
0 0

2 21 1
cos 52 sin 22

2 2
)i −

0 0

2 21 1
cos 22 cos 82

2 2
)ii −  

tan( ) tan( )
4 4

)iii
π π

θ θ+ −
0 0

0 0

cot 55 cot 35 1

cot 55 cot 35
)iv

−

+  

0 0 0 0sin1140 cos 390 cos 780 sin 750)v −  

2. Prove that   
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0 0 0cos 35 cos 85 cos155 0)i + + = 0 0 0 0 1
sin 750 cos 480 cos120 cos 60

2
)ii + = −  

4 4
cos cos( ) cos( ) 0

3 3
)iii

π π
θ θ θ+ + + − =

2 2 22 2 3
cos cos ( ) cos ( )

3 3 2
)iv

π π
θ θ θ+ + + − =  

2 2 2 3
sin sin ( ) cos ( )

3 3 2
)v

π π
θ θ θ+ + + − =  

3. If 
12

sin
13

α = and 
3

cos
5

β =  and neither  α  nor β  lie in the first quadrant then 

find the quadrant in which α β+  lies. 

                

4. (i)  If 
3

cos
5

α
−

= and 
7

sin
25

β =  where  
2

π
α π< <  and 0

2

π
β< <  then find  

 

    the values of  tan( )α β+  and sin( )α β+ . 

         (ii)  If  sin( ) cos( )θ α θ α+ = +   then find tan θ  in terms of tanα   

5.  (i)  If 
3

4
A B

π
− =  then prove that  (1 tan )(1 tan ) 2A B− + =  

           (ii)  If 
2

A B C
π

+ + =  then prove that  tan tan tan tan tan tan 1A B B C C A+ + =   

(iii)  If 
2

A B C
π

+ + =  then prove that  cot cot cot cot cot cotA B C A B C+ + =
 

(iv) If A B C π+ + =  then prove that  tan tan tan tan tan tanA B C A B C+ + =  
(v)  If A B C π+ + =  then prove that  cot cot cot cot cot cot 1A B B C C A+ + =

 

(vi) Prove that  
0 0

0

0 0

cos9 sin 9
cot 36

cos9 sin 9

+
=

−                             
                 

6.3 Trigonometric ratios of multiple and sub-multiple angles: 

                  In this section we derive formulae for the trigonometric ratios of multiple 

angles 2 ,3 ,...A A in terms of those of .A  Also we discuss about the trigonometric ratios of 

sub-multiple angles , ,...
2 3

A A
 of .A   

6.3.1 Definition: 
                If  A   is an angle, then its integral multiples 2 ,3 ,...A A are called Multiple 

angles of A  and  , ,...
2 3

A A
 are called Sub-multiple angles of .A   
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6.3.2 Theorem: 

                    If A  is any real number, then  

                           2 2 2 2

) sin 2 2sin cos ,

) cos 2 cos sin 2cos 1 1 2sin .

i A A A

ii A A A A A

=

= − = − = −
  

Proof: (i) We know that  ( )sin sin cos cos sinA B A B A B+ = +  

                          ( )sin sin cos cos sinA A A A A A⇒ + = +   

                          sin 2 2sin cosA A A⇒ =  

              sin 2 2sin cosA A A∴ =  

          (ii) We know that  ( )cos cos cos sin sinA B A B A B+ = −  

                          ( )cos cos cos sin sinA A A A A A⇒ + = −   

                                                   2 2cos sinA A= −
 

                                            
2 2 2cos (1 cos ) 2 cos 1A A A= − − = −

 

                                            
2 2

2(1 sin ) 1 1 2sinA A− − = −  

              2 2 2 2
cos 2 cos sin 2 cos 1 1 2sin .A A A A A∴ = − = − = −  

6.3.3 Theorem:
  

                  If A  is any real number, which is not an odd multiple of 
2

π
then  

                             

2

2 2

2 tan 1 tan
) sin 2 , )cos 2 ,

1 tan 1 tan

A A
i A ii A

A A

−
= =

+ +
  

                           

2

2

2 tan
) tan 2 ( 2 )

1 tan 2

cot 1
)cot 2 ( 2 )

2cot

A
iii A Aand Aare not odd multipleof

A

A
iv A Ais not an integral multipleof

A

π

π

=
−

−
=

 

Proof: (i) We have from Theorem 6.3.2   

                               sin 2 2 sin cosA A A=
2 2

2 sin cos

cos sin

A A

A A
=

+
 



 

185 

 

                                                                  
2

2 2 2

2

2sin cos

2 tancos

cos sin 1 tan

cos

A A

AA

A A A

A

= =
+ +  

                     
2

2 tan
sin 2

1 tan

A
A

A
∴ =

+  

          (ii) We have from Theorem 6.3.2   

                               2 2cos 2 cos sinA A A= −
2 2

2 2

cos sin

cos sin

A A

A A

−
=

+
 

                                                                  

2 2

22

2 2 2

2

cos sin

1 tancos

cos sin 1 tan

cos

A A

AA

A A A

A

−

−
= =

+ +  

                     
2

2

1 tan
cos 2

1 tan

A
A

A

−
∴ =

+  

       (iii) We know that  ( )
tan tan

tan
1 tan tan

A B
A B

A B

+
+ =

−  

                          ( )
tan tan

tan
1 tan tan

A A
A A

A A

+
⇒ + =

−   

                          
2

2 tan
tan 2

1 tan

A
A

A
⇒ =

−
 

              
2

2 tan
tan 2

1 tan

A
A

A
∴ =

−  

          (iv) We know that  ( )
cot cot 1

cot
cot cot

A B
A B

A B

−
+ =

+  

                          ( )
cot cot 1

cot
cot cot

A A
A A

A A

−
⇒ + =

+   

                          
2cot 1

cot 2
2 cot

A
A

A

−
⇒ =  

              
2cot 1

cot 2
2cot

A
A

A

−
∴ =  
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  6.3.4 Corollary:
  

  If 
2

A
 is not an odd multiple of 

2

π
then  

                               ( ) sin 2sin cos
2 2

A A
i A =

2

2 tan
2

1 tan
2

A

A
=

+

 

                               2 2
( ) cos cos sin

2 2

A A
ii A = −

2

2

1 tan
2

1 tan
2

A

A

−

=

+

 

                               
2

2 tan
2( ) tan

1 tan
2

A

iii A
A

=

−
 

                              

2cot 1
2( ) cot

2 cot
2

A

iv A
A

−

=  

                      Now we derive the formulae for  sin 3 ,cos 3 , tan 3A A A  and cot 3 .A  

6.3.5 Theorem:
  

                  If  A  is any real number, then  

                             

3 3

3

2

3

2

) sin 3 3sin 4sin , )cos3 4cos 3cos ,

3 tan tan
) tan 3 (3 )

1 3tan 2

3cot cot
) cot 3 (3 )

1 3cot

i A A A ii A A A

A A
iii A Ais not odd multipleof

A

A A
iv A Ais not an integral multipleof

A

π

π

= − = −

−
=

−

−
=

−

  

Proof: (i)            sin 3 sin(2 ) sin 2 cos cos 2 sinA A A A A A A= + = +  

                                   ( ) ( )22sin cos cos 1 2sin sinA A A A A= + −
 

                                   

2 32sin cos sin 2sinA A A A= + −  

                                         ( )2 32sin 1 sin sin 2sinA A A A= − + −
33sin 4sinA A= −  

                     3
sin 3 3sin 4sinA A A∴ = −  
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          (ii) cos3 cos(2 ) cos 2 cos sin 2 sinA A A A A A A= + = −  

                                   ( ) ( )22 cos 1 cos 2sin cos sinA A A A A= − −
 

                                   

3 22cos cos 2sin cosA A A A= − −  

                                         ( )3 22 cos cos 2 1 cos cosA A A A= − − −
34cos 3cosA A= −  

                     3
cos 3 4 cos 3cosA A A∴ = −  

       (iii) ( )
tan 2 tan

tan 3 tan 2
1 tan 2 tan

A A
A A A

A A

+
= + =

−  

                            
2

2

2 tan
tan

1 tan
2 tan

1 . tan
1 tan

A
A

A
A

A
A

+
−=

−
−

 

( )

( )

2

2

2 2

2

2 tan tan 1 tan

1 tan

1 tan 2 tan

1 tan

A A A

A

A A

A

+ −

−=
− −

−

 

                          
( )

( )

2

2 2

2 tan tan 1 tan

1 tan 2 tan

A A A

A A

+ −
=

− −

3

2

3 tan tan

1 3 tan

A A

A

−
=

−
 

              
3

2

3 tan tan
tan 3

1 3tan

A A
A

A

−
∴ =

−  

          (iv) ( )
cot 2 cot 1

cot 2
cot cot

A A
A A

A A

−
+ =

+  

                          

2

2

cot 1
.cot 1

2 cot

cot 1
cot

2 cot

A
A

A

A
A

A

−
−

=
−

+
 

3

2 2

cot cot 2 cot

2 cot

cot 1 2 cot

2 cot

A A A

A

A A

A

− −

=
− +  

                          
3

2 2

cot cot 2cot

cot 1 2cot

A A A

A A

− −
=

− +

3

2

3cot cot

1 3cot

A A

A

−
=

−
 

              
3

2

3cot cot
cot 3

1 3cot

A A
A

A

−
∴ =

−   

6.3.6 Corollary:
  

                  If  A  is any real number, then  
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3 3

3 3

2 2

) sin 3sin 4sin , ) cos 4cos 3cos ,
3 3 3 3

3tan tan 3cot cot
3 3 3 3) tan , ) cot .

1 3 tan 1 3cot
3 3

A A A A
i A ii A

A A A A

iii A iv A
A A

= − = −

− −

= =

− −

  

6.3.7 Theorem:
  

                  If  A  is any real number, then  

                             

1 cos 2 1 cos 2
)sin , ) cos ,

2 2

1 cos 2
) tan ( )

1 cos 2 2

1 cos 2
)cot ( )

1 cos 2

A A
i A ii A

A
iii A Ais not odd multipleof

A

A
iv A Ais not an integral multiple of

A

π

π

− +
= ± = ±

−
= ±

+

+
= ±

−

  

Proof: (i)    We know that      2cos 2 1 2 sinA A= −  

                                   
22 sin 1 cos 2A A⇒ = − 2 1 cos 2

sin
2

A
A

−
⇒ =

 

                      Hence  
1 cos 2

sin
2

A
A

−
= ±                                          

  

          (ii) We know that      2cos 2 2 cos 1A A= −  

                                   
22 cos 1 cos 2A A⇒ = + 2 1 cos 2

cos
2

A
A

+
⇒ =

 

                      Hence  
1 cos 2

cos
2

A
A

+
= ±                                          

  

       (iii)   Assume that  A  is not an odd multiple of 
2

π
 

                         
2

2

2

2sin
tan

2cos

A
A

A
=

1 cos 2

1 cos 2

A

A

−
=

+  

                     Hence  
1 cos 2

tan
1 cos 2

A
A

A

−
= ±

+
         

       (iv)  Assume that  A  is not an integer multiple of π  

                         
2

2

2

2cos
cot

2sin

A
A

A
=

1 cos 2

1 cos 2

A

A

+
=

−  
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                     Hence  
1 cos 2

cot
1 cos 2

A
A

A

+
= ±

−
         

  6.3.8 Corollary:
  

                  If  A  is any real number, then  

                 

1 cos 1 cos
)sin , ) cos ,

2 2 2 2

1 cos
) tan ( )

2 1 cos

1 cos
)cot ( 2 )

2 1 cos

A A A A
i ii

A A
iii Ais not odd multipleof

A

A A
iv Ais not an integer multipleof

A

π

π

− +
= ± = ±

−
= ±

+

+
= ±

−

  

  6.3.9 Example: 

              Prove that   0 5 1
( ) sin18 ,

4
i

−
=

         

0 5 1
( ) cos36 ,

4
ii

+
=

  

                                 

0 10 2 5
( ) sin 36 ,

4
iii

−
=

 

0 10 2 5
( ) cos18 .

4
iii

+
=  

        Solution:  (i)  If  018A =  then   05 90A = 02 90 3A A⇒ = −  

                             

0sin 2 sin(90 3 ) cos3A A A⇒ = − =
 

                             

32sin cos 4cos 3cosA A A A⇒ = −
 

                         

22sin 4cos 3A A⇒ = − 22sin 4(1 sin ) 3A A⇒ = − −
 

                         

24 4sin 2sin 3 0A A⇒ − − − = 24sin 2sin 1 0A A⇒ + − =  

               Which is a quadratic equation in sin A

 

   
             sin A  

 4 1

8

6 2 +− ±
=

1 5

4

− ±
=            

                Since A  lies in first quadrant so that sin A
5 1

4

−
=

 

   
              

0 5 1
sin18

4

−
∴ =            

       (ii) We have 2cos 2 1 2sinA A= −
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             0 2 0cos36 1 2sin 18= −  

2

5 1
1 2

4

 −
= −   

 

6 2 5
1

8

 −
= −   

 

5 1

4

+
=  

       (iii) We have 0 2 0sin 36 1 cos 36= −

 

             
 

2

5 1 6 2 5 10 2 5 10 2 5
1 1

4 16 16 4

 + + − −
= − = − = =  

 
 

       (iv) We have 0 2 0cos18 1 sin 18= −

 

             
 

2

5 1 6 2 5 10 2 5 10 2 5
1 1

4 16 16 4

 − − + +
= − = − = =  

   

6.3.10 Solved Problems:  

1. Problem: Find the values of  
0 0 0 0

1 1 1 1
( )sin 22 , ( ) cos 22 , ( ) tan 22 , ( ) cot 22 .

2 2 2 2
i ii iii iv  

 Solution:  If  
0

1
22

2
A =  then   02 45A =  

         (i) We have 
1 cos 2

sin
2

A
A

−
=

 

   
             

0 01 1 cos 45
sin 22

2 2

−
=  

1
1

2

2

−

=
2 1

2 2

−
=            

       (ii) We have 
1 cos 2

cos
2

A
A

+
=

 

   
             

0 0
1 1 cos 45

cos 22
2 2

+
=  

1
1

2

2

+

=
2 1

2 2

+
=  

       (iii) We have 

0

0

0

2 11
sin 22

1 2 12 22tan 22
2 1 2 12 1cos 22

2 2 2

−

−
= = =

++  
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( ) ( )
2 2

2 2

2 1 2 12 1 2 1
2 1

12 1 2 1 ( 2) 1

− −− −
= × = = = −

+ − −  

       (iv) We have 

0

0

0

2 11
cos 22

1 2 12 22cot 22
2 1 2 12 1sin 22

2 2 2

+

+
= = =

−−  

             
 

( ) ( )
2 2

2 2

2 1 2 12 1 2 1
2 1

12 1 2 1 ( 2) 1

+ ++ +
= × = = = +

− + −  

2. Problem: Find the values of  
0 0 0 0

1 1 1 1
( )sin 67 , ( ) cos67 , ( ) tan 67 , ( ) cot 67 .

2 2 2 2
i ii iii iv  

 Solution:  We have   
0 0

01 1
67 90 22

2 2
= −   

         (i) We have 

0 0 0

01 1 1
sin 67 sin 90 22 cos 22

2 2 2

 
= − = = 

 

2 1

2 2

+

 

        (ii) We have 
0 0 0

01 1 1
cos67 cos 90 22 sin 22

2 2 2

 
= − = = 

 

2 1

2 2

−

 

        (iii) We have 
0 0 0

01 1 1
tan 67 tan 90 22 cot 22

2 2 2

 
= − = = 

 

2 1

2 2

−
 2 1= +  

       (iv) We have 
0 0 0

01 1 1
cot 67 cot 90 22 tan 22

2 2 2

 
= − = = 

 

2 1

2 2

−
 2 1= −  

3. Problem: Prove that   
sin 2

tan .
1 cos 2

θ
θ

θ
=

+  

 Solution:  
2

sin 2 2sin cos
L.H.S=

1 cos 2 1 2cos 1

θ θ θ

θ θ
=

+ + −
 

                                
2

2sin cos

2 cos

θ θ

θ
=

sin
tan

cos

θ
θ

θ
= = R.H.S=

 

                            

sin 2
tan

1 cos 2

θ
θ

θ
∴ =

+  
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4. Problem: Prove that   
1 cos 2

tan .
sin 2

θ
θ

θ

−
=  

 Solution:  
( )21 1 2sin1 cos 2

L.H.S=
sin 2 2sin cos

θθ

θ θ θ

− −−
=  

                                
22sin

2sin cos

θ

θ θ
=

sin
tan

cos

θ
θ

θ
= = R.H.S=

 

                            

1 cos 2
tan

sin 2

θ
θ

θ

−
∴ =

 

5. Problem: Prove that 
cos 3 sin 3

1 2sin 2 .
cos sin

A A
A

A A

+
= +

−
 

Solution:  
( ) ( )3 34 cos 3cos 3sin 4sincos 3 sin 3

L.H.S=
cos sin cos sin

A A A AA A

A A A A

− − −+
=

− −
 

                                
( ) ( )3 3

4 cos sin 3 cos sin

cos sin

A A A A

A A

− − −
=

−
    

                           
( ) ( )2 2
cos sin 4 cos sin cos sin 3

cos sin

A A A A A A

A A

 − + + − =
−

 

                           4 4 cos sin 3A A= + − 1 2sin 2A= + R.H.S=  

                            

cos3 sin 3
1 2sin 2 .

cos sin

A A
A

A A

+
∴ = +

−  

6. Problem: Prove that 33cos cos3
cot .

3sin sin 3

θ θ
θ

θ θ

+
=

−
 

Solution:  
( )
( )

3

3

3cos 4 cos 3cos
L.H.S=

3sin 3sin 4sin

θ θ θ

θ θ θ

+ −

− −
 

                                
3

3

4 cos

4sin

θ

θ
=   

3cot θ=  R.H.S=  

                
  

33cos cos3
cot .

3sin sin 3

θ θ
θ

θ θ

+
∴ =

−   

7. Problem: Prove that   
sin 2 1 cos

. tan
1 cos 2 cos 2

A A A

A A

−
=

−  
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 Solution:  
( )2

sin 2 1 cos 2sin cos 1 cos
L.H.S= . .

1 cos 2 cos cos1 1 2sin

A A A A A

A A AA

− −
=

− − −
 

                                
2

2sin cos 1 cos
.

2sin cos

A A A

A A

−
=

1 cos

sin

A

A

−
=

21 1 2sin
2

2sin cos
2 2

A

A A

 
− − 
 

=
 

                                

22sin
2

2sin cos
2 2

A

A A
=

sin
2 tan

2
cos

2

A

A

A
= =

 

                            

sin 2 1 cos
. tan

1 cos 2 cos 2

A A A

A A

−
∴ =

−  

8. Problem: Prove that 
3 3cos cos3 sin sin 3

3.
cos sin

θ θ θ θ

θ θ

− +
+ =  

Solution:  
3 3cos cos3 sin sin 3

L.H.S=
cos sin

θ θ θ θ

θ θ

− +
+

 

                          

( ) ( )3 3 3 3cos 4 cos 3cos sin 3sin 4sin

cos sin

θ θ θ θ θ θ

θ θ

− − + −
= +  

                              
3 33cos 3cos 3sin 3sin

cos sin

θ θ θ θ

θ θ

− −
= +     

                         
( ) ( )2 23cos 1 cos 3sin 1 sin

cos sin

θ θ θ θ

θ θ

− −
= +

 

                         

( ) ( )2 23 1 cos 3 1 sinθ θ= − + − 2 23sin 3cosθ θ= + 3 R.H.S= =

 

                
  

3 3cos cos3 sin sin 3
3.

cos sin

θ θ θ θ

θ θ

− +
∴ + =   

9. Problem: Prove that 0 0 1
sin sin(60 )sin(60 ) sin 3 .

4
θ θ θ θ− + =  

Solution:  0 0L.H.S= sin sin(60 )sin(60 )θ θ θ− +

 

                          

( )2 0 2 2 2sin sin 60 sin sin( )sin( ) sin sinA B A B A Bθ θ  = − + − = − ∵  

                              

2

2 03 3
sin sin sin 60

2 2
θ θ
    
 = − =         

∵     
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23

sin sin
4

θ θ
 

= − 
 

33sin 4sin

4

θ θ−
=

 

                         

sin 3

4

θ
= R.H.S=

 

                
  

0 0 1
sin sin(60 )sin(60 ) sin 3 .

4
θ θ θ θ∴ − + =

 

10. Problem: Prove that 0 0 1
cos cos(60 ) cos(60 ) cos3 .

4
θ θ θ θ− + =  

Solution:  0 0L.H.S= cos cos(60 )cos(60 )θ θ θ− +

 

                          

( )2 2 0 2 2cos cos sin 60 cos( ) cos( ) cos sinA B A B B Aθ θ  = − + − = − ∵  

                              

2

2 03 3
cos cos sin 60

2 2
θ θ
    
 = − =         

∵     

                         
2 3

cos cos
4

θ θ
 

= − 
 

34cos 3cos

4

θ θ−
=

 

                         

cos3

4

θ
= R.H.S=

 

                
  

0 0 1
cos cos(60 ) cos(60 ) cos 3

4
θ θ θ θ∴ − + =

 

11. Problem: Prove that 
3 7 9 1

1 cos 1 cos 1 cos 1 cos .
10 10 10 10 16

π π π π    
+ + + + =    

    
 

Solution:  
3 7 9

L.H.S= 1 cos 1 cos 1 cos 1 cos
10 10 10 10

π π π π    
+ + + +    

    
 

                          

3 3
= 1 cos 1 cos 1 cos( ) 1 cos( )

10 10 10 10

π π π π
π π

    
+ + + − + −    

    
 

                              

[ ]

3 3
= 1 cos 1 cos 1 cos 1 cos

10 10 10 10

cos( ) cos

π π π π

π θ θ

    
+ + − −    

    

− = −∵

    

                         
2 23

= 1 cos 1 cos
10 10

π π  
− −  

  

2 2 3
= sin sin

10 10

π π 2 0 2 0= sin 18 sin 54
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2 2

5 1 5 1

4 4

   − +
=       
   

( )
2

( 5 1)( 5 1) 16 1

256 256 16

− +
= = = R.H.S=

 

                
  

3 7 9 1
1 cos 1 cos 1 cos 1 cos

10 10 10 10 16

π π π π    
∴ + + + + =    
      

12. Problem: Prove that 2 2 2 22 3 9
cos cos cos cos 2.

10 5 5 10

π π π π
+ + + =  

Solution:  2 2 2 22 3 9
L.H.S= cos cos cos cos

10 5 5 10

π π π π
+ + +

 

                          

2 0 2 0 2 0 2 0= cos 18 cos 72 cos 108 cos 162+ + +  

                              2 0 2 0 0 2 0 0 2 0 0= cos 18 cos (90 18 ) cos (90 18 ) cos (180 18 )+ − + + + −     

                        
2 0 2 0 2 0 2 0

0 0 0

= cos 18 sin 18 sin 18 cos 18

cos(90 ) sin , cos(90 ) sin , cos(180 ) cosθ θ θ θ θ θ

+ + +

 − = + = − − = − ∵
 

                        

2 0 2 0=2 cos 18 2sin 18+ ( )2 0 2 0=2 cos 18 sin 18+

 

                        

( )=2 1 2= R.H.S=

 

                
  

2 2 2 22 3 9
cos cos cos cos 2

10 5 5 10

π π π π
∴ + + + =

 

13. Problem: Prove that 4 4 4 43 5 7 3
cos cos cos cos .

8 8 8 8 2

π π π π
+ + + =  

Solution:  4 4 4 43 5 7
L.H.S= cos cos cos cos

8 8 8 8

π π π π
+ + +

 

                          

4 4 4 4= cos cos cos cos
8 2 8 2 8 8

π π π π π π
π

     
+ − + + + −     

     
    

                        

4 4 4 4= cos sin sin cos
8 8 8 8

cos( ) sin , cos( ) sin , cos( ) cos
2 2

π π π π

π π
θ θ θ θ π θ θ

+ + +

 
− = + = − − = −  

∵  

                        

4 4=2cos 2sin
8 8

π π
+ 4 4=2 cos sin

8 8

π π 
+ 
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                        ( )

2

2 2 2 2

2
4 4 2 2 2 2

=2 cos sin 2 cos sin
8 8 8 8

2a b a b a b

π π π π  
+ −  

   

 + = + −  
∵  

                        

( )
2 2 2=2 1 2cos sin

8 8

π π 
−  

2 2=2 4cos sin
8 8

π π
−

 

                       

2

=2 2sin cos
8 8

π π 
−  
 

2

=2 sin
4

π 
−  
 

2
1 1 3

=2 2
2 22

 
− = − = 
 

R.H.S=

 

                
  

4 4 4 43 5 7 3
cos cos cos cos

8 8 8 8 2

π π π π
∴ + + + =

 

 14. Problem: Prove that 
2 4 6 1

cos cos cos .
7 7 7 8

π π π
=  

Solution:  
2 4 6

L.H.S= cos cos cos
7 7 7

π π π

 

                          

1 2 2 4 6
= 2sin cos cos cos

2 7 7 7 7
2sin

7

π π π π

π
 
 
 

    

                        
1 4 4 6 1 4 4 6

= sin cos cos = 2sin cos cos
2 27 7 7 7 7 7

2sin 4sin
7 7

π π π π π π

π π
 
 
 

 

                        

1 8 6
= sin cos

2 7 7
4sin

7

π π

π

1 8 6
= 2sin cos

2 7 7
8sin

7

π π

π
 
 
 

 

                        

1 8 6 6
= 2sin cos sin sin ,cos cos

2 7 7 7 7 7 7
8sin

7

π π π π π π

π
   

= − = −      
∵

 

                        

1 2
= sin

2 7
8sin

7

π

π
 
 
 

1
=

8
R.H.S=  

             

2 4 6 1
cos cos cos

7 7 7 8

π π π
∴ =

 

15. Problem: Prove that 6 6 23
cos sin 1 sin 2

4
A A A+ = −  
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Solution:  6 6L.H.S= cos sinA A+ ( ) ( )
3 3

2 2= cos sinA A+

 

                          

( ) ( )

( ) ( )

3
2 2 2 2 2 2

33 3

= cos sin 3cos sin cos sin

3

A A A A A A

a b a b ab a b

 + − +  

 + = + − +
 
∵

    

                        ( ) ( )
3 2 2= 1 3cos sin 1A A −

 
 

                        

( )
23

=1 2sin cos
4

A A− ( )
23

=1 sin 2
4

A−

 

                        

23
=1 sin 2

4
A− R.H.S=  

               

6 6 23
cos sin 1 sin 2

4
A A A∴ + = −

 

16. Problem: Prove that 
1 cos sin

tan
1 cos sin 2

A A A

A A

− +
=

+ +
 

Solution:  
1 cos sin

L.H.S=
1 cos sin

A A

A A

− +

+ +

2

2

2sin 2sin cos
2 2 2=

2 cos 2sin cos
2 2 2

A A A

A A A

+

+  

                          

2sin cos sin
2 2 2

=

2cos cos sin
2 2 2

A A A

A A A

 
+ 

 
 

+ 
 

   

sin
2=

cos
2

A

A
= tan

2

A
R.H.S=  

               

1 cos sin
tan

1 cos sin 2

A A A

A A

− +
∴ =

+ +
                     

17. Problem: If    
sin cos

a b

α α
=   then prove that sin 2 cos 2a b bα α+ =  

Solution:  Given  
sin cos

a b

α α
=

sin

cos

a

b

α

α
⇒ = tan

a

b
α⇒ =  

                  

2

2 2

2 tan 1 tan
L.H.S= sin 2 cos 2

1 tan 1 tan
a b a b

α α
α α

α α

 − 
+ = +   

+ +     
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2

2 2

12

1 1

aa

bba b
a a

b b

    
−    
    = +

      
+ +      
      

   
2 2 2

2 2 2 2

2a b b a
b

b a b a

 −
= +  

+ +   

                          

2 2 2

2 2

2 ( )a b b b a

b a

+ −
=

+

2 3

2 2

a b b

b a

+
=

+
b= R.H.S=  

               

sin 2 cos 2a b bα α∴ + =

                     
                                        Exercise 6(c ) 

1. Prove the following   

  0 0 0 0 3
cos10 cos 30 cos 50 cos 70

16
)i = 0 0 0 0 1

cos 24 cos 48 cos 96 cos192
16

)ii =  

0 0 0 0tan 6 tan 42 tan 66 tan 78 1)iii = 0 0 0 0 3
sin 20 sin 40 sin 60 sin 80

16
)iv =  

2. Prove the following   
0 0tan tan(60 ) tan(60 ) tan 3 .)i θ θ θ θ− + =

2 2 0 2 0 3
sin sin (60 ) sin (60 )

2
)ii θ θ θ+ + + − =  

2 2 0 2 0 3
cos cos (120 ) cos (120 )

2
)iii θ θ θ+ + + − =

3 5 7 1
1 cos 1 cos 1 cos 1 cos

8 8 8 8 8
)iv

π π π π       
+ + + + =       

       
 

4 4 4 43 5 7 3
sin sin sin sin

8 8 8 8 2
)v

π π π π
+ + + =

2 3 4 1
cos cos cos cos

9 9 9 9 16
)vi

π π π π
=

 

2 3 4 5 1
cos cos cos cos cos

11 11 11 11 11 32
)vii

π π π π π
=  

     3     Prove the following 

                 
sin 3

) sin
1 2cos 2

A
i A

A
=

+
 

cos3
) cos

2cos 2 1

A
ii A

A
=

−

3sin 4
) 8cos 4cos

sin
iii

θ
θ θ

θ
= −                  

6.4 Sum and product transformations:  

                 In this section we give the sum and difference of trigonometric functions can 

be transformed into their product vice-versa.  

6.4.1 Theorem:
  

         For ,A B R∈  we have 
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( ) sin( ) sin( ) 2sin cos

( ) sin( ) sin( ) 2cos sin

( )cos( ) cos( ) 2cos cos

( ) cos( ) cos( ) 2sin sin

i A B A B A B

ii A B A B A B

iii A B A B A B

iv A B A B A B

+ + − =

+ − − =

+ + − =

+ − − = −

  

Proof: (i) We have sin( ) sin cos cos sinA B A B A B+ = + and 

                             sin( ) sin cos cos sinA B A B A B− = −  

                         By adding we get sin( ) sin( )A B A B+ + −  

                                                
sin cos cos sin sin cos cos sin

2sin cos

A B A B A B A B

A B

= + + −

=
 

          (ii) By subtracting we get sin( ) sin( )A B A B+ − −  

                                                

( ) ( )sin cos cos sin sin cos cos sin

2cos sin

A B A B A B A B

A B

= + − −

=
 

       (iii) We have cos( ) cos cos sin sinA B A B A B+ = − and 

                             cos( ) cos cos sin sinA B A B A B− = +  

                  By adding we get cos( ) cos( )A B A B+ + −  

                                                
cos cos sin sin cos cos sin sin

2cos cos

A B A B A B A B

A B

= − + +

=
 

          (iv) By subtracting we get cos( ) cos( )A B A B+ + −  

                                               
( ) ( )cos cos sin sin cos cos sin sin

2sin sin

A B A B A B A B

A B

= − − +

= −
                                              

6.4.2 Note:
  

         The above four identities can be rewrite as follows 

       

( ) sin( ) sin( ) 2sin cos

( ) sin( ) sin( ) 2cos sin

( ) cos( ) cos( ) 2cos cos

( ) cos( ) cos( ) 2sin sin

i sum difference A B

ii sum difference A B

iii sum difference A B

iv sum difference A B

+ =

− =

+ =

− = −

  

6.4.3 Theorem:
  

                For any  ,C D R∈  we have 
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( ) sin sin 2sin cos
2 2

( ) sin sin 2cos sin
2 2

( ) cos cos 2cos cos
2 2

( ) cos cos 2sin sin
2 2

C D C D
i C D

C D C D
ii C D

C D C D
iii C D

C D C D
iv C D

+ −   
+ =    

   

+ −   
− =    

   

+ −   
+ =    

   

+ −   
− = −    

   

   

Proof:  Take ,A B C A B D+ = − = in theorem 6.4.1 we get the above 4 transformations. 

6.4.4 Solved Problems:  

1. Problem: Express sin 6 sin 4θ θ+  as product.  

 Solution: We have sin sin 2sin cos
2 2

C D C D
C D

+ −   
+ =    

      

         now 
6 4 6 4

sin 6 sin 4 2sin cos
2 2

θ θ θ θ
θ θ

+ −   
+ =    

   
 

        sin 6 sin 4 2sin 5 cos .θ θ θ θ⇒ + =  

2. Problem: Express 0 02cos 48 cos12  into sum.  

 Solution: We have 2cos cos cos( ) cos( )A B A B A B= + + −   

         Take 0 048 , 12A B= =  we get 0 0 0 0 0 02cos 48 cos12 cos(48 12 ) cos(48 12 )= + + −  

        
0 0 0 02cos 48 cos12 cos 60 cos36⇒ = +

 

      

0 0 1 5 1
2cos 48 cos12

2 4

+
⇒ = + 0 0 5 3

2cos 48 cos12
4

+
⇒ =  

3. Problem:  Prove that 0 0 0cos 40 cos80 cos160 0+ + = .  

 Solution: 0 0 0L.H.S cos 40 cos80 cos160= + +   

         0 0 0cos160 cos 40 cos80= + +  

          

0 0 0 0
0160 40 160 40

2cos cos cos80
2 2

cos cos 2cos cos
2 2

C D C D
C D

   + −
= +   

   

 + −    
+ =     

    
∵
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0 0 02cos100 cos 60 cos80= +

 

     
( )0 0 01 1

2 cos100 cos80 cos 60
2 2

 
= + =  

∵

 

     

0 0 0 1
cos100 cos80 cos 60

2

 
= + =  

∵

 

    
( )0 0 0 0 0 0

cos80 cos80 cos100 cos 180 80 cos80 = − + = − = − ∵

 

    
0 R.H.S= =  

0 0 0cos 40 cos80 cos160 0∴ + + =  

4. Problem:  Prove that 0 0 0sin 34 cos 64 cos 4 0+ − = .  

 Solution: 0 0 0L.H.S sin 34 cos 64 cos 4= + −   

          

0 0 0 0
0 64 4 64 4

sin 34 2sin sin
2 2

cos cos 2sin sin
2 2

C D C D
C D

   + −
= −    

   

 + −    
− = −     

    
∵

 

      

0 0 0sin 34 2sin 34 sin 30= −

 

     
( )0 0 01 1

sin 34 2 sin 34 sin 30
2 2

 
= − =  

∵

 

     

0 0sin 34 sin 34= −

 

    
0 R.H.S= =  

0 0 0sin 34 cos64 cos 4 0∴ + − =  

5. Problem: Prove that 0 0 5 1

4
sin 78 cos132

−
+ = . 

Solution: 0 0L.H.S sin 78 cos132= +   

    
( )0 0 0sin 78 cos 90 42= + +

 

    
( )0 0 0sin 78 sin 42 cos 90 sinθ θ = − + = −

 
∵  



 

202 

 

      

0 0 0 0

2cos sin
2 2

sin sin 2cos sin
2 2

78 42 78 42

C D C D
C D

   + −
=    

   

 + −    
− =     

    
∵

 

      

0 02cos sin60 18=

 

     

0 01 5 1 1 5 1
2 cos ,sin

2 4 2 4
60 18

   − − 
= = =         

∵

 

     

5 1
R.H.S

4

−
= =

 
 

0 0 5 1

4
sin 78 cos132

−
∴ + =  

6. Problem:  Prove that
2 20 0 0 0 3

cos 76 cos 16 cos76 cos16
4

=+ − .  

 Solution: 
2 20 0 0 0L.H.S cos 76 cos 16 cos76 cos16= + −   

         ( )2 2 2 20 0 0 0
1cos 76 1 sin 16 cos76 cos16 cos sinθ θ = = − + − − ∵  

        
( ) ( )

( ) ( )2 2

0 0 0 0 0 01 cos 76 16 cos 76 16 cos76 cos16

cos sin cos cosA B A B A B

= + −

 − = + − 

+ −

∵

 

          ( )0 0 0 01

2
1 cos92 cos60 2cos76 cos16= + −

 

      

( ) ( )( )
[ ]

0 0 0 0 0 01

2

2cos cos cos( ) cos( )

1 cos92 cos60 cos 76 16 cos 76 16

A B A B A B

= +

= + + −

+ − + −

∵  

     
( )0 0 0 01

2
1 cos92 cos60 cos92 cos60= ++ −

 

     
( ) 00 01 1 1 1

cos 60
2 2 2 2

1 cos92 cos92
   

= + =      
+ − ∵

 

    
( ) ( )0 01 1 1

2 2 4
1 cos92 cos92= −+ −
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1

4
1= −

 

    
R.H.S

3

4
= =  

2 20 0 0 0 3
cos 76 cos 16 cos76 cos16

4
∴ =+ −  

7. Problem:  Prove that 2 2 22 2

3 3

3
cos cos cos

2

π π
θ θ θ   

+ − =   
   

+ + .  

 Solution: 2 2 22 2
L.H.S

3 3
cos cos cos

π π
θ θ θ   

= + −   
   

+ +   

                

2

2 2
1 cos 1 cos

1 cos 1 cos 23 3
cos

2 2 2 2

2 2
2

π π
θ θ

θ θ
θ

   
+ + + −   + +    = = 

 
+ + ∵  

        
2 2

cos cos cos
3 3

3 1
2 2 2

2 2

π π
θ θ θ

    
= + + −    

    
+ +  

          
4 4

cos cos 2 cos 2
3 3

3 1
2

2 2

π π
θ θ θ

    
= + + −    

    
+ +

 

      [ ]

4
cos cos cos

3

cos( ) cos( ) 2cos cos

3 1
2 2 2

2 2

A B A B A B

π
θ θ

  
= +   

  

+ + − =

+

∵
 

     

1 4 1
cos cos cos

2 3 2

3 1
2 2 2

2 2

π
θ θ

    
= + − = −        

+ ∵

 

     
( )cos cos

3 1
2 2

2 2
θ θ= + −

 

    
( )0

3 1

2 2
= +

 

     
0

3

2
= +

 

  
R.H.S

3

2
= =  
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2 2 22 2

3 3

3
cos cos cos

2

π π
θ θ θ   

∴ + − =   
   

+ +  

8. Problem:  Prove that
( ) ( )

( ) ( )
tan

2 cos

sin 1 sin 1

cos 1 cos 1 2n

n n

n n

α α

α α α

α−
=

+ +

+ −

+ −
.  

 Solution: 
( ) ( )

( ) ( )
L.H.S

2 cos

sin 1 sin 1

cos 1 cos 1n

n n

n n

α α

α α α

−
=

+ +

+ −

+ −
  

                
( ) ( )

( ) ( )cos 2

sin sin

cos cos n

n n

n n

α α α α

α α α α α

−
=

+ +

+ −

+ −  

        
sin( ) sin( ) 2cos sin ,2

cos( ) cos( ) 2cos cos2 2

cos sin

cos cos cos

A B A B A Bn

A B A B A Bn n

α α

α α α

+ − − = 
=  

+ + − =+  

∵

 

          
( )

2

2 1

cos sin

cos cos

n

n

α α

α α
=

+   

   

sin

1 cos

α

α
=

+  

  

2

2

2sin cos
2 2 1 cos 2cos ,sin 2sin cos

2 2 2
2cos

2

α α
θ θ θ

θ θ
α

 
= + = =  

∵

 

     

sin
2

cos
2

α

α
=

 

            
tan

2

α
= R.H.S=

 

( ) ( )
( ) ( )

tan
2 cos

sin 1 sin 1

cos 1 cos 1 2n

n n

n n

α α

α α α

α−
∴ =

+ +

+ −

+ −  

9. Problem:  If 
( )
( )

sin

sin

a b

a b

α β

α β
=

+ +

− −
 then prove that  tan tana bβ α=  

 Solution:  Given
( )
( )

sin

sin

a b

a b

α β

α β
=

+ +

− −
  



 

205 

 

                

( ) ( )
( ) ( )

( ) ( )
( ) ( )

[ ]
sin sin

sin sin
bycomponendoanddividendo

a b a b

a b a b

α β α β

α β α β

++
⇒ =

−

+ −+ −

+ − − + −
∵  

             
sin( ) sin( ) 2cos sin ,2sin 2

sin( ) sin( ) 2sin cos2 sin 2

cos

cos

A B A B A Ba

A B A B A Bb

α β

α β

+ − − = 
⇒ =  

+ + − = 

∵

 

                  
tan

tan

a

b

α

β
⇒ =

  

              
tan tana bβ α=∴

 

9. Problem:  If 
4 2

,
5 7

cos cos cos cosx y x y+ = − =  then prove that    

         0
2 2

14 tan 5cot
x y x y   

+ =   
   

+ −
 

 Solution:  Given
4 2

,
5 7

cos cos cos cosx y x y+ = − =   

                
4 4

2 (1)
5 2 2 5

cos cos cos cos
x y x y

x y
   

⇒    
   

+ −
+ = =  

             
2 2

2 (2)
7 2 2 7

cos cos sin sin
x y x y

x y
   

⇒ −    
   

+ −
− = =  

                  

2 4
(1) 2 2 5

2(2)
2 7

2 2

cos cos

sin sin

x y x y

x y x y

   
   
   ⇒
   

−    
   

+ −

=
+ −   

           

4 72

5 2

2

cot

tan

x y

x y

 
 
 ⇒ ×
 

−  
 

+

=
−

 

        

14
2 2

5cot tan
x y x y   

⇒    
   

+ −
= −

 

              
0

2 2
14 tan 5cot

x y x y   
+ =   

   

+ −
∴

 

9. Problem:  If 
4 2

,
5 7

cos cos cos cosx y x y+ = − =  then prove that    
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         0
2 2

14 tan 5cot
x y x y   

+ =   
   

+ −
 

 Solution:  Given
4 2

,
5 7

cos cos cos cosx y x y+ = − =   

                
4 4

2 (1)
5 2 2 5

cos cos cos cos
x y x y

x y
   

⇒    
   

+ −
+ = =  

             
2 2

2 (2)
7 2 2 7

cos cos sin sin
x y x y

x y
   

⇒ −    
   

+ −
− = =  

                  

2 4
(1) 2 2 5

2(2)
2 7

2 2

cos cos

sin sin

x y x y

x y x y

   
   
   ⇒
   

−    
   

+ −

=
+ −   

           

4 72

5 2

2

cot

tan

x y

x y

 
 
 ⇒ ×
 

−  
 

+

=
−

14
2 2

5cot tan
x y x y   

⇒    
   

+ −
= −

 

        

              
0

2 2
14 tan 5cot

x y x y   
+ =   

   

+ −
∴

 

                                      Exercise 6(d) 

1. Prove that
0 0 0cos55 cos65 cos175 0+ + = . 

2. Prove that 0 0 0cos35 cos85 cos155 0+ + = . 

3. Prove that ( )0 0
15 134 sin 78 cos6 ++ = . 

4. Prove that 0 0 0sin 50 sin 70 sin10 0− + = . 

5. Prove that
0 0 0 0 0 0sin10 sin 20 sin 40 sin50 sin70 sin80+ + + = + . 

6. Prove that ( ) ( ) ( )2 0 2 0 2 0 1
sin 45 sin 15 sin 15

2
α α α =− + + − − . 

7. Prove that ( ) ( ) ( )2 0 2 0 2 0 1
sin 45 sin 15 sin 15

2
α α α =− + + − − . 

8. If ( )sin sin 2m B n A B= +  then prove that  ( ) tan ( ) tanA Bm n m n=+ −  

9. If ( ) ( )tan tanA B A Bλ=+ −  then prove that  ( 1)sin 2 ( 1)sin 2B Aλ λ+ = −  

10. If ,sin sin cos cosa bx y x y+ = + =  then prove that   

       
2

tan
a

b

x y 
= 

 

+
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6.4.5 Solved Problems:  

1. Problem:  If 0180 ,A B C+ + =   

     Prove that .sin 2 sin 2 sin 2 4sin sin sinA B C A B C+ + =  

 Solution: L.H.S sin 2 sin 2 sin 2A B C= + +   

         

sin sin 2sin cos
2 2

2 2 2 2
2sin cos sin 2

2 2

C D C D
C D

A B A B
C

   
=    

   

 + −    
+ =     

    

+ −
+

∵

 

          ( ) ( ) [ ]sin 2 2sin cos2sin cos 2sin cos C C CA B A B C C= =+ − + ∵

 

      
( ) ( )0 02sin 180 cos 2sin cos 180C CA B C C A B = − = − − + +∵

 

     
( ) ( )0

sin2sin cos 2sin cos sin 180 C CC A B C C  = − = − + ∵

 

     
( )2sin cos cosC A B C =  − +

 

    
( ) ( )( ) ( )0 02sin cos cos 180 180CC A B A B A B   = − = −  − + + +∵  

    ( ) ( ) ( )02sin cos cos cos 180 cosC A B A B θ θ  = − = −   − − + ∵  

   ( ) ( )2sin 2sin sin cos cos 2sin sinC A B A B A B A B = =    − − +∵

 

    
R.H.S4sin sin sinA B C= =  

.sin 2 sin 2 sin 2 4sin sin sinA B C A B C∴ + + =  

2. Problem:  If 0180 ,A B C+ + =   

     Prove that .sin 2 sin 2 sin 2 4cos cos sinA B C A B C+ − =  

 Solution: L.H.S sin 2 sin 2 sin 2A B C= + −   

         

sin sin 2sin cos
2 2

2 2 2 2
2sin cos sin 2

2 2

C D C D
C D

A B A B
C

   
=    

   

 + −    
+ =     

    

+ −
−

∵

 

          ( ) ( ) [ ]sin 2 2sin cos2sin cos 2sin cos C C CA B A B C C= =+ − − ∵
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( ) ( )0 02sin 180 cos 2sin cos 180C CA B C C A B = − = − − − +∵

 

     
( ) ( )0

sin2sin cos 2sin cos sin 180 C CC A B C C  = − = − − ∵

 

     
( )2sin cos cosC A B C =  − −

 

    
( ) ( )( ) ( )0 02sin cos cos 180 180CC A B A B A B   = − = −  − − + +∵  

    ( ) ( ) ( )02sin cos cos cos 180 cosC A B A B θ θ  = − = −   − + + ∵  

   ( ) ( )2sin 2cos cos cos cos 2cos cosC A B A B A B A B = =    − + +∵

 

    
R.H.S4cos cos sinA B C= =  

.sin 2 sin 2 sin 2 4cos cos sinA B C A B C∴ + − =  

3. Problem:  If 0180 ,A B C+ + =   

     Prove that .cos2 cos2 cos2 1 4cos cos cosA B C A B C+ + + = −  

 Solution: L.H.S cos2 cos2 cos2 1A B C= + + +   

         

cos cos 2cos cos
2 2

2 2 2 2
2cos cos cos2 1

2 2

C D C D
C D

A B A B
C

   
=    

   

 + −    
+ =     

    

+ −
+ +

∵

 

          ( ) ( ) 2 21 cos 2 2cos2cos cos 2cos C CA B A B C  = + = + − + ∵

 

      
( ) ( )0 2 02cos 180 cos 2cos 180C CA B C A B = − = − − + +∵

 

     
( ) ( )2 0

cos2cos cos 2cos cos 180 C CC A B C  = − − = − − + ∵

 

     
( )2cos cos cosC A B C = −  − −

 

    
( ) ( )( ) ( )0 02cos cos cos 180 180CC A B A B A B   = − − = −  − − + +∵  

    ( ) ( ) ( )02cos cos cos cos 180 cosC A B A B θ θ  = − − = −   − + + ∵  

   ( ) ( )2cos 2cos cos cos cos 2cos cosC A B A B A B A B = − =    − + +∵  
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R.H.S4cos cos cosA B C= − =

 
.cos2 cos2 cos2 1 4cos cos cosA B C A B C∴ + + + = −  

4. Problem:  If 0180 ,A B C+ + =   

     Prove that .cos2 cos2 cos2 1 4sin sin cosA B C A B C+ − − = −  

 Solution: L.H.S cos2 cos2 cos2 1A B C= + − −   

         

cos cos 2cos cos
2 2

2 2 2 2
2cos cos cos2 1

2 2

C D C D
C D

A B A B
C

   
=    

   

 + −    
+ =     

    

+ −
− −

∵

 

          ( ) ( ) 2 21 cos 2 2 cos2cos cos 2cos C CA B A B C  = + = + − − ∵

 

      
( ) ( )0 2 02cos 180 cos 2cos 180C CA B C A B = − = − − − +∵

 

     
( ) ( )2 0

cos2cos cos 2cos cos 180 C CC A B C  = − − = − − − ∵

 

     
( )2cos cos cosC A B C = −  − +

 

    
( ) ( )( ) ( )0 02cos cos cos 180 180CC A B A B A B   = − − = −  − + + +∵  

    ( ) ( ) ( )02cos cos cos cos 180 cosC A B A B θ θ  = − − = −   − − + ∵  

   ( ) ( )2cos 2sin sin cos cos 2sin sinC A B A B A B A B = − =    − − +∵  

        
R.H.S4sin sin cosA B C= − =

 
.cos2 cos2 cos2 1 4sin sin cosA B C A B C∴ + − − = −  

5. Problem:  If 0180 ,A B C+ + =   

     Prove that .
2 2 2

sin sin sin 4cos cos cos
A B C

A B C+ + =  

 Solution: L.H.S sin sin sinA B C= + +   
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sin sin 2sin cos
2 2

2sin cos sin
2 2

C D C D
C D

A B A B
C

   
=    

   

 + −    
+ =     

    

+ −
+

∵

 

          sin 2sin cos
2 2 2 2 2 2

2sin cos 2sin cos
A B A B C C θ θ

θ
     

= =         

+ −
+ ∵

 

      

0
0

2 2 2 2

180
2sin cos 2sin cos 180

C
C

A B C C
A B

 −  
 = = −     

  

−
+ +∵

 

     

0

2 2 2 2
2sin 90 cos 2sin cos

C C CA B  
= −   

   

−
+

 

    
0

cos
2 2 2 2 2 2

2cos cos 2sin cos sin 90
C C C C CA B     

= − =    
    

−
+ ∵

 

     2 2 2
2cos cos sin

C CA B  
=   

  

−
+

 

    

( )
( )

0

0

2 2 2

180
2cos cos sin 180

C
C

A BA B
A B

  − 
 = = −          

+−
+ +∵

 

    

( )090
2 2 2

2cos cos sin
C A BA B   

= −         

+−
+  

    
( )

( )0

2 2 2
2cos cos cos sin 90 cos

C A BA B
θ θ

     = − =          

+−
+ ∵  

   ( ) ( )
2 2 2

2cos 2cos cos cos cos 2cos cos
C A B

A B A B A B
 

 = =   
 

− + +∵

 

    
R.H.S

2 2 2
4cos cos cos

A B C
= =  

.
2 2 2

sin sin sin 4cos cos cos
A B C

A B C∴ + + =  

6. Problem:  If 0180 ,A B C+ + =   

     Prove that .
2 2 2

cos cos cos 1 4sin sin sin
A B C

A B C+ + = +  
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 Solution: L.H.S cos cos cosA B C= + +   

         

cos cos 2cos cos
2 2

2cos cos sin
2 2

C D C D
C D

A B A B
C

   
=    

   

 + −    
+ =     

    

+ −
+

∵

 

          
2 2cos

2 2 2 2
2cos cos 1 2sin 1 2sin

A B A B C θ
θ

     
= =         

+ −
+ − −∵

 

      

0
2 0

2 2 2

180
2cos cos 1 2sin 180

C
C

A B C
A B

 −  
 = = −     

  

−
+ − +∵

 

     

0 2

2 2 2
2cos 90 cos 1 2sin

C A B C  
= −   

   

−
+ −

 

    
( )2 0

sin
2 2 2

2sin cos 1 2sin cos 90
C A B C

θ θ
   = − =    

−
+ − ∵

 

     
1

2 2 2
2sin cos sin

C CA B  
= +   

  

−
−

 

    

( )
( )

0

01
2 2 2

180
2sin cos sin 180

C
C

A BA B
A B

  − 
 = + = −          

+−
− +∵

 

    

( )01 90
2 2 2

2sin cos sin
C A BA B   

= + −         

+−
−  

    
( )

( )01
2 2 2

2sin cos cos sin 90 cos
C A BA B

θ θ
     = + − =          

+−
− ∵  

   ( ) ( )1
2 2 2

2sin 2sin sin cos cos 2sin sin
C A B

A B A B A B
 

 = + =   
 

− − +∵

 

    
R.H.S

2 2 2
1 4sin sin sin

A B C
= =+  

.
2 2 2

cos cos cos 1 4sin sin sin
A B C

A B C∴ + + = +  

7. Problem:  If 0180 ,A B C+ + =   
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     Prove that 2 2 2 2 2cos cos cossin sin sinA B C A B C++ + =  

 Solution: 2 2 2L.H.S sin sin sinA B C= + +   

                 
21 cos 2 1 cos 2 1 cos 2 1 cos 2

sin
2 2 2 2

A B C
θ

θ− − − − 
= = 

 
+ +  

                 
3 1

cos 2 cos 2 cos 2
2 2

A B C= −   + +  

         

3 1
1 4cos cos cos

2 2

cos 2 cos 2 cos 2 1 4cos cos cos

A B C

A B C A B C

= − − −  

= − −  + +∵

 

          
3 1

2cos cos cos R.H.S
2 2

A B C= + + =

 
 

2 2 2 2 2cos cos cossin sin sinA B C A B C∴ ++ + =  

8. Problem:  If 0180 ,A B C+ + =   

     Prove that 2 2 2cos 1 2sin sin coscos cosA B C A B C−+ − =  

 Solution: 2 2 2L.H.S cos cos cosA B C= + −   

                 
21 cos 2 1 cos 2 1 cos 2 1 cos 2

cos
2 2 2 2

A B C
θ

θ+ + + + 
= = 

 
+ −  

                 
1 1

cos 2 cos 2 cos 2
2 2

A B C= +   + −  

         

1 1
1 4sin sin cos

2 2

cos 2 cos 2 cos 2 1 4sin sin cos

A B C

A B C A B C

= + −  

= −  + −∵

 

          1 2sin sin cos R.H.SA B C= − =

 
 

2 2 2cos 1 2sin sin coscos cosA B C A B C∴ −+ − =  

9. Problem:  If , ,A B C  are the angles of a triangle ,  

     Prove that
2 2 2 1 2

2 2 2 2 2 2
sin sin sin sin sin sin

A B C A B C
−+ + =  

 Solution: 2 2 2L.H.S
2 2 2

sin sin sin
A B C

= + +   
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21 cos 1 cos 1 cos 1 cos 2

sin
2 2 2 2

A B C
θ

θ− − − − 
= = 

 
+ +  

                 
3 1

cos cos cos
2 2

A B C= −   + +  

         

3 1
1 4

2 2 2 2 2

cos cos cos 1 4
2 2 2

sin sin sin

sin sin sin

A B C

A B C
A B C

 
= − + 

 

 
= + 

 
+ +∵

 

          
3 1

2
2 2 2 2 2

sin sin sin
A B C

= − −

  

      
1 2 R.H.S

2 2 2
sin sin sin

A B C
= − =  

2 2 2 1 2
2 2 2 2 2 2

sin sin sin sin sin sin
A B C A B C

∴ −+ + =  

10. Problem:  If 090 ,A B C+ + =   

     Prove that .cos2 cos2 cos2 1 4sin sin sinA B C A B C+ + = +  

 Solution: L.H.S cos2 cos2 cos2A B C= + +   

         

cos cos 2cos cos
2 2

2 2 2 2
2cos cos cos2

2 2

C D C D
C D

A B A B
C

   
=    

   

 + −    
+ =     

    

+ −
+

∵

 

          ( ) ( ) 22cos cos cosA B A B C= + − +
 

      
( ) ( )0 02cos 90 cos cos 2 90C CA B C A B = − = − − + +∵

 
( ) ( )2 0 2

sin ,cos 2 1 2sin2sin cos 1 2sin cos 90 C C C CC A B C  = − = = − − + − ∵

     
( )1 2sin cos sinC A B C = +  − −

 

    
( ) ( )( ) ( )0 0

1 2sin cos sin 90 90CC A B A B A B   = + − = −  − − + +∵  

    ( ) ( ) ( )01 2sin cos cos sin 90 cosC A B A B θ θ  = − =   + − − + ∵  

   ( ) ( )1 2sin 2sin sin cos cos 2sin sinC A B A B A B A B = =    + − − +∵  
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R.H.S1 4sin sin sinA B C= =+

 
.cos2 cos2 cos2 1 4sin sin sinA B C A B C∴ + + = +  

11. Problem:  If 00 ,A B C+ + =   

     Prove that .sin 2 sin 2 sin 2 4sin sin sinA B C A B C+ + = −  

 Solution: L.H.S sin 2 sin 2 sin 2A B C= + +   

         

sin sin 2sin cos
2 2

2 2 2 2
2sin cos sin 2

2 2

C D C D
C D

A B A B
C

   
=    

   

 + −    
+ =     

    

+ −
+

∵

 

          ( ) ( ) [ ]sin 2 2sin cos2sin cos 2sin cos C C CA B A B C C= =+ − + ∵

 

      
( ) ( )2sin cos 2sin cosC CA B C C A B= − = −  − + +∵

 

     
( ) ( ) sin2sin cos 2sin cos sin C CC A B C C= − − = −  − + ∵

 

     
( )2sin cos cosC A B C = −  − −

 

    
( ) ( )( ) ( )2sin cos cos CC A B A B A B   = − − = −  − − + +∵  

    ( ) ( ) ( )2sin cos cos cos cosC A B A B θ θ = − − =   − − + ∵  

   ( ) ( )2sin 2sin sin cos cos 2sin sinC A B A B A B A B = − =    − − +∵

 

    
R.H.S4sin sin sinA B C= − =  

.sin 2 sin 2 sin 2 4sin sin sinA B C A B C∴ + + = −  

12. Problem:  If 
3

,
2

A B C
π

+ + =   

     Prove that .cos2 cos2 cos2 1 4sin sin sinA B C A B C+ + = −  

 Solution: L.H.S cos2 cos2 cos2A B C= + +   
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cos cos 2cos cos
2 2

2 2 2 2
2cos cos cos2

2 2

C D C D
C D

A B A B
C

   
=    

   

 + −    
+ =     

    

+ −
+

∵

 

          ( ) ( ) 22cos cos cosA B A B C= + − +
 

      
( )

3 3

2 2
2cos cos cos 2C CA B C A B

π π   
= − = −      

− + +∵

 

     

( ) 2

23
sin ,cos 2 1 2sin

2

2sin cos 1 2sin

cos C C C C

C A B C

π

= −

  
− = − = −  

  

− + −

∵  

     
( )1 2sin cos sinC A B C = −  − +

 

    
( ) ( ) ( )

3 3
1

2 2
2sin cos sin CC A B A B A B

π π    
= − − = −        

− + + +∵  

    ( ) ( )
3

2
1 2sin cos cos sin cosC A B A B

π
θ θ

  
 = − = −   

  
− − − + ∵  

   ( ) ( )1 2sin 2sin sin cos cos 2sin sinC A B A B A B A B = =    − − − +∵  

        
R.H.S1 4sin sin sinA B C= =−

 
.cos2 cos2 cos2 1 4sin sin sinA B C A B C∴ + + = −  

13. Problem:  If 2 ,A B C S+ + =   

     Prove that ( ) ( ) ( ) cos .
2 2 2

cos cos cos 4cos cos cosS
A B C

S A S B S C +− + − + − =  

 Solution: ( ) ( ) ( )L.H.S coscos cos cos SS A S B S C= +− + − + −   

         

cos cos 2cos cos
2 2

2 2
2cos cos 2cos cos

2 2 2 2

C D C D
C D

S A B B A S C C       
=        

       

 + −    
+ =     

    

− − − − −
+

∵
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2cos cos
2 2 2

cos
2

2cos cos
2

2 ,2 ,cos
2

C

C

C B A A B

C
S A B C S C A B

     
=      

     

  
=  

  

− +
+

−
− − = − = +∵

 

    ( )
2 2 2

2cos cos cos cos cos
C A B A B

θ θ
    

= − =       
    

− +
+ ∵  

   ( ) ( )
2 2 2

2cos 2cos cos cos cos 2cos cos
C A B

A B A B A B
 

 = =   
 

− + +∵

 

    
R.H.S

2 2 2
4cos cos cos

A B C
= =  

( ) ( ) ( ) cos .
2 2 2

cos cos cos 4cos cos cosS
A B C

S A S B S C∴ +− + − + − =  

                                     Exercise 6(e) 

1. If 0180 ,A B C+ + =  Prove that 

         ( ) .sin 2 sin 2 sin 2 4cos sin cosi A B C A B C− + =  

              ( ) .sin 2 sin 2 sin 2 4sin cos cosii A B C A B C− − = −  

              ( )cos2 cos2 cos2 1 4sin cos siniii A B C A B C− + = −  

    ( )cos2 cos2 cos2 1 4cos sin siniv A B C A B C− − = − −  
2. If 0180 ,A B C+ + =  Prove that 

  ( )
2 2 2

sin sin sin 4sin sin cosi
A B C

A B C+ − =  

 ( ) .
2 2 2

sin sin sin 4cos sin sinii
A B C

A B C− − = −   

( ) .
2 2 2

cos cos cos 1 4cos cos siniii
A B C

A B C+ − = − +  

( ) .
2 2 2

cos cos cos 1 4sin cos cosiv
A B C

A B C− − = −  

3. If 0180 ,A B C+ + =  Prove that 

  
2 2 2( ) 2sin sin cossin sin sini A B C A B C+ − =  

 
2 2 2( ) 2sin cos sinsin sin sinii A B C A B C− + =   
2 2 2( ) 2cos sin sinsin sin siniii A B C A B C− − = −  
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2 2 2( ) cos 1 2cos cos coscos cosiv A B C A B C−+ + =
 2 2 2( ) cos 1 2sin cos sincos cosv A B C A B C−− + =

 

              

2 2 2( ) cos 1 2cos sin sincos cosvi A B C A B C+− − = −  

         4.    If 0180 ,A B C+ + =   Prove that 

             
2 2 2( ) 1 2

2 2 2 2 2 2
sin sin sin cos cos sini

A B C A B C
−+ − =  

 
2 2 2( ) 1 2

2 2 2 2 2 2
sin sin sin cos sin cosii

A B C A B C
−− + =   

2 2 2( ) 1 2
2 2 2 2 2 2

sin sin sin sin cos cosiii
A B C A B C

+− − = −  

2 2 2( ) 2 2
2 2 2 2 2 2

cos cos cos sin sin siniv
A B C A B C

++ + =
 

 

5.   If 090 ,A B C+ + =  Prove that 

2 2 2( ) sin sin sinsin sin sin 1 2i A B C A B C+ + = −
 

( ) .sin 2 sin 2 sin 2 4cos cos cosii A B C A B C+ + =  

6.  If 00 ,A B C+ + =   Prove that 

( )
2 2 2

sin sin sin 4cos cos sini
A B C

A B C+ − = −
 

2 2 2( ) cos 1 2cos cos coscos cosii A B C A B C++ + =  

7. If 
3

,
2

A B C
π

+ + =  Prove that 

2 2 2( )cos 2cos cos sincos cosi A B C A B C−+ − =
 

( ) .sin 2 sin 2 sin 2 4sin sin cosii A B C A B C+ − = −  

8. If 2 ,A B C S+ + =  Prove that 

( ) ( )( )
2 2 2

sin sin sin 4cos cos sini C
S A S B C

S A S B
− −

− + − + =
 

( ) ( )( ) ( )
2 2 2

cos cos cos 4cos cos cosii i C
S A S B C

S A S B
− −

− + − + =
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                                               Key Concepts 

      1. In the Sexagesimal system1 right angle = 090 ,  1 degree = 60 ,′ 1 minute = 60 .′′  

      2. In the Centisimal system1 right angle = 100 ,g  1 grade = 100 ,′ 1 minute = 100 .′′  

      3. The conversion from one system to the other can be easily done using the equation:  

         
180 200

,
D G R

π
= =  where D,G, R  respectively denote degrees, grades and radians. 

     4.
sin

tan &
cos

θ
θ

θ
=

1
sec ,

cos
θ

θ
=

cos
cot &

sin

θ
θ

θ
=

1
cosec .,

sin
θ

θ
=

 

           

2 2cos sin 1,θ θ+ = 2 2sec tan 1,θ θ− = 2 2cosec cot 1.θ θ− =
 

      5.   If ,A B are two real numbers then 

             ( ) sin( ) sin cos cos sin ,i A B A B A B+ = + ( ) sin( ) sin cos cos sin ,ii A B A B A B− = −  

        ( ) cos( ) cos cos sin sin ,iii A B A B A B+ = − ( ) cos( ) cos cos sin sin .iv A B A B A B− = +  

                
tan tan

( ) tan( ) ,
1 tan tan

A B
v A B

A B

+
+ =

−

tan tan
( ) tan( ) ,

1 tan tan

A B
vi A B

A B

−
− =

+
 

                   
cot cot 1

( ) cot( ) ,
cot cot

A B
vii A B

B A

−
+ =

+

cot cot 1
( ) cot( ) ,

cot cot

A B
viii A B

B A

+
− =

−  

              2 2 2 2( )sin( )sin( ) sin sin cos cos ,ix A B A B A B B A+ − = − = −    

             
2 2 2 2( ) cos( ) cos( ) cos sin cos sinx A B A B A B B A+ − = − = −

 

       6.  If , ,A B C are three real numbers then  

                    
( ) sin( ) sin cos cos cos sin cos

cos cos sin sin sin sin ,

i A B C A B C A B C

A B C A B C

+ + = +

+ −
   

                
( ) cos( ) cos cos cos sin sin cos

sin cos sin cos sin cos ,

ii A B C A B C A B C

A B C A B C

+ + = −

− −  

                     
tan tan tan tan tan tan

( ) tan( ) ,
1 tan tan tan tan tan tan

A B C A B C
iii A B C

A B B C C A

+ + −
+ + =

− − −
   

                      
cot cot cot cot cot cot

( ) cot( ) .
1 cot cot cot cot cot cot

A B C A B C
iv A B C

A B B C C A

+ + −
+ + =

− − −
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7.
0 3 1

sin 75 ,
2 2

+
= 0 3 1

cos75 ,
2 2

−
= 0 3 1

tan 75 2 3
3 1

+
= = +

−
 

8.
0 3 1

sin15 ,
2 2

−
= 0 3 1

cos15 ,
2 2

+
= 0 3 1

tan15 2 3
3 1

−
= = −

+
 

9.
0 3 1

sin105 ,
2 2

+
= 0 3 1

cos105 ,
2 2

−
= 0 3 1

tan105 2 3
3 1

+
= = +

−
 

10.  If A  is any real number, then 

                  2 2 2 2

) sin 2 2sin cos ,

) cos 2 cos sin 2cos 1 1 2sin .

i A A A

ii A A A A A

=

= − = − = −
  

 11.  If A  is any real number, which is not an odd multiple of 
2

π
then             

                      

2

2 2

2 tan 1 tan
)sin 2 , ) cos 2 ,

1 tan 1 tan

A A
i A ii A

A A

−
= =

+ +   

                       

2

2

2 tan cot 1
) tan 2 , ) cot 2 .

1 tan 2cot

A A
iii A iv A

A A

−
= =

−
  

  12. If 
2

A
 is not an odd multiple of 

2

π
then  

           ( ) sin 2sin cos
2 2

A A
i A =

2

2 tan
2 ,

1 tan
2

A

A
=

+

2 2
( ) cos cos sin

2 2

A A
ii A = −

2

2

1 tan
2 ,

1 tan
2

A

A

−

=

+

 

           
2

2 tan
2( ) tan ,

1 tan
2

A

iii A
A

=

−

2cot 1
2( ) cot

2 cot
2

A

iv A
A

−

=  

     13.  If  A  is any real number, then  

                             

3 3

3

2

3

2

) sin 3 3sin 4sin , )cos3 4cos 3cos ,

3 tan tan
) tan 3 (3 )

1 3tan 2

3cot cot
) cot 3 (3 )

1 3cot

i A A A ii A A A

A A
iii A Ais not odd multipleof

A

A A
iv A Ais not an integral multipleof

A

π

π

= − = −

−
=

−

−
=

−

  

14.  If  A  is any real number, then                                   
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3 3

3 3

2 2

) sin 3sin 4sin , ) cos 4cos 3cos ,
3 3 3 3

3 tan tan 3cot cot
3 3 3 3) tan , ) cot .

1 3 tan 1 3cot
3 3

A A A A
i A ii A

A A A A

iii A iv A
A A

= − = −

− −

= =

− −

  

15.  If  A  is any real number, then                              

                

1 cos 2 1 cos 2
)sin , ) cos ,

2 2

1 cos 2
) tan ( )

1 cos 2 2

1 cos 2
)cot ( )

1 cos 2

A A
i A ii A

A
iii A Ais not odd multipleof

A

A
iv A Ais not an integral multipleof

A

π

π

− +
= ± = ±

−
= ±

+

+
= ±

−

  

16.  If  A  is any real number, then                  

                

1 cos 1 cos
)sin , )cos ,

2 2 2 2

1 cos
) tan ( )

2 1 cos

1 cos
) cot ( 2 )

2 1 cos

A A A A
i ii

A A
iii Ais not odd multipleof

A

A A
iv Ais not an integer multipleof

A

π

π

− +
= ± = ±

−
= ±

+

+
= ±

−

  

  17.  0 5 1
( ) sin18 ,

4
i

−
=

            

0 5 1
( ) cos36 ,

4
ii

+
=

 

        

0 10 2 5
( ) sin 36 ,

4
iii

−
=

   

0 10 2 5
( ) cos18 .

4
iv

+
=

 

 18.  

0
1 2 1

( ) sin 22 ,
2 2 2

i
−

=
                  

0
1 2 1

( ) cos 22 ,
2 2 2

ii
+

=
 

        

0
1 2 1

( ) tan 22 2 1,
2 2 1

iii
−

= = −
+    

0
1 2 1

( ) cot 22 2 1.
2 2 1

iv
+

= = +
−  

  19.  

0
1 2 1

( ) sin 67 ,
2 2 2

i
+

=
                  

0
1 2 1

( ) cos 67 ,
2 2 2

ii
−

=
 

        

0
1 2 1

( ) tan 67 2 1,
2 2 1

iii
+

= = +
−    

0
1 2 1

( ) cot 67 2 1.
2 2 1

iv
−

= = −
+  
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 20.  For ,A B R∈  we have         

           

( ) sin( ) sin( ) 2sin cos

( ) sin( ) sin( ) 2cos sin

( )cos( ) cos( ) 2cos cos

( ) cos( ) cos( ) 2sin sin

i A B A B A B

ii A B A B A B

iii A B A B A B

iv A B A B A B

+ + − =

+ − − =

+ + − =

+ − − = −

  

 21.  For any  ,C D R∈  we have 

          

( ) sin sin 2sin cos
2 2

( ) sin sin 2cos sin
2 2

( ) cos cos 2cos cos
2 2

( ) cos cos 2sin sin
2 2

C D C D
i C D

C D C D
ii C D

C D C D
iii C D

C D C D
iv C D

+ −   
+ =    

   

+ −   
− =    

   

+ −   
+ =    

   

+ −   
− = −    

   

   

 

                             Answers 
                      Exercise 6(a) 

3
(1) ( ) ( ) 2 ( ) 0 ( ) 1 ( ) 2 ( ) 1

2
i ii iii iv v vi

−
−  

1
(3) ( ) ( ) 1 ( ) 0 ( ) 2

2
i ii iii iv  

(6) ( )i x y a+ = ( )ii xy ab= ( ) ( )
2 2

2 23 3( ) 1iii x y xy− =

 

2 2
(7) ( ) 2 2 ,

3
i −

3
( )

5
ii −

 

                      Exercise 6(b) 

3 3 3 3 1
(1) ( ) ( ) ( )1 ( )0 ( )

24 2 4 2
i ii iii iv v

− +
 

st(3) I Quadrant
 

3 3
(4) ( ) and

4 5
i −

1 tan
( )

1 tan
ii

α

α

−

+  

 



 

222 

 

            7. TRIGONOMETRIC EQUATIONS 

      

Introduction:  

          In earlier classes, we have solved the simple equations involving a single variable. 

Here we solve the equations involving trigonometric functions as variables. 

7.1 General solution of trigonometric equations:  

           In this Section, we shall find the general solution of simple trigonometric 

equations like sin , cos , tanx k x k x k= = =  etc.  

7.1.1 Definition: 

          An equation consisting of the trigonometric functions of a variable angle x R∈  is 

called trigonometric equation. 

7.1.2 Example: 

The following are examples of  simple trigonometric equations. 

            

1
( )sin

2
i x =

 

            
( ) tan 3ii x =

 
7.1.3 Definition: 

           The values of the variable angle x R∈  satisfying the given trigonometric equation 

is called a solution of the trigonometric equation. The set of all solutions of a 

trigonometric equation is called a solution set of the trigonometric equation.   The general 

solution is a functional form of the solution set.  

7.1.4 Example: 

            The equation 
3

sin
2

x =  has a solution .
3

x
π

=  But  
2 7

, , ,....
3 3 3

x
π π π

=   are 

solutions of this equation. If x  is a solution of the equation then 2 ,n x x Zπ + ∈  is also a 

solution. 

            Now we define the concept of the principle solution and formula for finding the 

general solution of trigonometric equations.  
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7.1.5 Definition: 

                The function [ ]: , 1,1
2 2

f
π π 

− → −  
 by  ( ) sinf x x=  is a bijection. For each 

[ ]1,1k ∈ −   there exists a unique  ,
2 2

x
π π 

∈ −  
 such that sin .x k=  This ,

2 2
x

π π 
∈ −  

 is 

called the principal solution of the equation sin .x k=     

7.1.6 Definition: 

                The function [ ] [ ]: 0, 1,1f π → −  by  ( ) cosf x x=  is a bijection. For each 

[ ]1,1k ∈ −   there exists a unique  [ ]0,x π∈  such that cos .x k=  This [ ]0,x π∈  is called 

the principal solution of the equation cos .x k=     

7.1.7 Definition: 

                The function : ,
2 2

f R
π π 

− → 
 

 by  ( ) tanf x x=  is a bijection. For each k R∈   

there exists a unique  ,
2 2

x
π π 

∈ − 
 

 such that tan .x k=  This ,
2 2

x
π π 

∈ − 
 

 is called the 

principal solution of the equation tan .x k=     

7.1.8 Definition: 

                The function ( ): 0,f Rπ →  by  ( ) cotf x x=  is a bijection. For each k R∈   

there exists a unique  ( )0,x π∈  such that cot .x k=  This ( )0,x π∈  is called the principal 

solution of the equation cot .x k=     

7.1.9 Definition: 

                The function [ ] ] [: 0, ( , 1 1, )
2

f
π

π
 

− → −∞ − ∞ 
 

∪  by  ( ) secf x x=  is a 

bijection. For each ] [( , 1 1, )k ∈ −∞ − ∞∪   there exists a unique  [ ]0,
2

x
π

π
 

∈ −  
 

 such that 

sec .x k=  This [ ]0,
2

x
π

π
 

∈ −  
 

 is called the principal solution of the equation sec .x k=     
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7.1.10 Definition: 

                The function { } ] [: , 0 ( , 1 1, )
2 2

f
π π 

− − → −∞ − ∞  
∪  by  ( ) cosecf x x=  is a 

bijection. For each ] [( , 1 1, )k ∈ −∞ − ∞∪   there exists a unique  { }, 0
2 2

x
π π 

∈ − −  
 such 

that cosec .x k=  This { }, 0
2 2

x
π π 

∈ − −  
 is called the principal solution of the equation 

cosec .x k=     

7.1.11 General solution of the equations sin 0,cos 0x x= =  and tan 0x = : 

      (i) If  ,
2 2

x
π π 

∈ −  
 then  sin 0x =  if and only if 0.x = Hence the principal 

 solution of sin 0x =  is 0.x =    Then there exists an integer k  such that 

                                           2 2( 1)k x kπ π≤ < +   

                     
That is,

   
0 2 2x kπ π≤ − <   

                            
2 (2 1)x k or x kπ π∴ = = +  

The general solution of sin 0x =  is , .x n n Zπ= ∈   

     (ii) If  [ ]0,x π∈  then   cos 0x =  if and only if .
2

x
π

= Hence the principal solution of 

cos 0x =  is .
2

x
π

=     

           cos 0 sin 0
2

x x
π 

= ⇔ − = 
 

 ,
2

x n n Z
π

π⇔ − = ∈ ,
2

x n n Z
π

π⇔ = + ∈  

                       
(2 1) ,

2
x n n Z

π
∴ = + ∈  

The general solution of cos 0x =  is (2 1) ,
2

x n n Z
π

= + ∈   

     (iii) If  tan 0x =  then sin 0x =     if and only if 0.x = Hence the principal solution of 

tan 0x =  is 0.x =     

           tan 0 sin 0x x= ⇔ =  ,x n n Zπ⇔ = ∈  
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,x n n Zπ∴ = ∈  

The general solution of tan 0x =  is ,x n n Zπ= ∈   

7.1.12 General solution of the equation sin ( 1 1)x k k= − ≤ ≤ : 

       Let   [ ]1,1k ∈ −  and ,
2 2

π π
α

 
∈ −  

 be the principal solution of sin .x k=   

That is sin sinx k α= =    sin sin 0x α⇔ − =  

                                    

2cos sin 0
2 2

sin sin 2cos sin
2 2

x x

C D C D
C D

α α+ −   
⇔ =   

   

 + −    
− =     

    
∵

 

                                    cos sin 0
2 2

x x
or

α α+ −   
⇔ =   

     

If   cos 0 (2 1) ,
2 2 2

x x
n n Z

α α π+ + 
= ⇔ = + ∈ 

 
  (2 1) ,x n n Zα π⇔ + = + ∈  

                                   (2 1) ,x n n Zπ α⇔ = + − ∈  

If   sin 0 ,
2 2

x x
n n Z

α α
π

− − 
= ⇔ = ∈ 

 
  2 ,x n n Zα π⇔ − = ∈  

                                   2 ,x n n Zπ α⇔ = + ∈  

Thus ( 1) ,n
x n n Zπ α= + − ∈ is the general solution of  sin .x k=  

7.1.13 General solution of the equation cos ( 1 1)x k k= − ≤ ≤ : 

       Let   [ ]1,1k ∈ −  and [ ]0,α π∈  be the principal solution of cos .x k=   

That is cos cosx k α= =    cos cos 0x α⇔ − =  

                                    

2sin sin 0
2 2

cos cos 2sin sin
2 2

x x

C D C D
C D

α α+ −   
⇔ − =   

   

 + −    
− = −     

    
∵

 

                                    sin sin 0
2 2

x x
or

α α+ −   
⇔ =   
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If   sin 0 ,
2 2

x x
n n Z

α α
π

+ + 
= ⇔ = ∈ 

 
  2 ,x n n Zα π⇔ + = ∈  

                                   2 ,x n n Zπ α⇔ = − ∈  

If   sin 0 ,
2 2

x x
n n Z

α α
π

− − 
= ⇔ = ∈ 

 
  2 ,x n n Zα π⇔ − = ∈  

                                   2 ,x n n Zπ α⇔ = + ∈  

Thus 2 ,x n n Zπ α= ± ∈ is the general solution of  cos .x k=  

7.1.14 General solution of the equation tan ( )x k k R= ∈ : 

       Let   k R∈  and ,
2 2

π π
α

 
∈ − 
 

 be the principal solution of tan .x k=   

That is tan tanx k α= =    tan tan 0x α⇔ − =
sin sin

0
cos cos

x

x

α

α
⇔ − =  

                                                  
sin cos cos sin

0
cos cos

x x

x

α α

α

−
⇔ = sin cos cos sin 0x xα α⇔ − =  

                                    ( )sin 0x α⇔ − =  

If   ( )sin 0 ,x x n n Zα α π− = ⇔ − = ∈    

                                   ,x n n Zπ α⇔ = + ∈  

Thus ,x n n Zπ α= + ∈ is the general solution of  tan .x k=  

7.1.15 General solution of the equation ] [( )1 1,sec ( , )x k k − ∪ ∞= ∈ −∞ : 

       Let   1k ≥  and α  be the principal solution of 
1

cos .x
k

=   

That is sec x k=    
1

cos x
k

⇔ = 2 , ( 7.1.13)x n n Z byπ α⇔ = ± ∈   

Thus 2 ,x n n Zπ α= ± ∈ is the general solution of  sec x k=   where α is the principal 

solution of  
1

cos .x
k

=  

7.1.16 General solution of the equation ] [( )1 1,cosec ( , )x k k − ∪ ∞= ∈ −∞ : 
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       Let   1k ≥  and α  be the principal solution of 
1

sin .x
k

=   

That is cosec x k=    
1

sin x
k

⇔ = ( 1) , ( 7.1.12)n
x n n Z byπ α⇔ = + − ∈   

Thus ( 1) ,n
x n n Zπ α= + − ∈ is the general solution of  cosec x k=   where α is the 

principal solution of  
1

sin .x
k

=  

7.1.17 General solution of the equation ( )cot x k k R= ∈ : 

       We know that cot x k= has a solution for all .k R∈

 

Case (i): Let   { }0k R∈ −  and α  be the principal solution of 
1

tan .x
k

=  

       That is cot x k=    
1

tan x
k

⇔ = , ( 7.1.14)x n n Z byπ α⇔ = + ∈   

        Thus ,x n n Zπ α= + ∈ is the general solution of  cot x k=   where α is the 

         principal solution of  
1

tan .x
k

=  

Case (ii): Let   0k =  and α  be the principal solution of cot 0x =  

       That is cot 0x =    cos 0x⇔ = (2 1) ,
2

x n n Z
π

⇔ = + ∈  ,
2

x n n Z
π

π⇔ = + ∈  

                                                                                                                    ,x n n Zπ α⇔ = + ∈  

        Thus in either case  ,x n n Zπ α= + ∈ is the general solution of  cot x k=   where α is 

the principal solution of  cot x k=  

7.1.18 Solved Problems:  

1. Problem: Solve  
1

Sin .
2

x =  

 Solution: Given
1

Sin .
2

x =   

         
1

Sin Sin
42

x
π

⇒ = =  and ,
4 2 2

π π π 
∈ −    
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        4
x

π
∴ =  is the principal solution.  

          General solution is ( 1) ,
4

n
x n n Z

π
π= + − ∈  

2. Problem: Solve  
5 1

Sin 2 .
4

x
−

=  

 Solution: Given
5 1

Sin 2 .
4

x
−

=   

         
5 1

Sin 2 Sin
4 10

x
π−

⇒ = =  and ,
10 2 2

π π π 
∈ −    

         2
10

x
π

⇒ =  

        20
x

π
∴ =  is the principal solution.  

          General solution is 2 ( 1) ,
10

nx n n Z
π

π= + − ∈  

           ( 1) ,
2 20

nn
x n Z

π π
⇒ = + − ∈  

 3. Problem: Solve  3cos ec 4sin .x x=  

 Solution: Given 3cos ec 4sinx x=   

         
3

4sin
sin

x
x

⇒ =  24sin 3x⇒ = 2 3
sin

4
x⇒ =

3
sin

2
x⇒ = ±  

         3
x

π
⇒ = ±  

        ∴  Principal solutions are 
3

x
π

= ±  

          General solution is ,
3

x n n Z
π

π= ± ∈  

       4. Problem: Solve  
2tan 3.x =  

Solution: Given 2tan 3x =   
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        tan 3x⇒ = ±  

         3
x

π
⇒ = ±  

        ∴  Principal solutions are 
3

x
π

= ±  

          General solution is ,
3

x n n Z
π

π= ± ∈  

5. Problem: Solve  cos3 sin 2 .x x=  

 Solution: Given cos3 sin 2x x=   

         cos3 cos 2 sin cos
2 2

x x
π π

θ θ
    

⇒ = − = −    
    

∵   

          [ ]3 2 2 cos cos 2
2

x n x n
π

π θ α θ π α
 

⇒ = ± − = ⇒ = ± 
 

∵  

         5 2 2
2 2

x n or x n
π π

π π⇒ = + = −  

        
2

2
5 10 2

n
x or x n

π π π
π⇒ = + = −  

          General solution is 
2

2 ,
5 10 2

n
x or x n n Z

π π π
π= + = − ∈  

6. Problem: Solve  
2 27sin 3cos 4.x x+ =  

 Solution: Given 2 27sin 3cos 4x x+ =   

         
2 27sin 3(1 sin ) 4x x⇒ + − =   

          24sin 1x⇒ =  

        
1

sin
2

x⇒ = ±  

        6
x

π
⇒ = ±  

        ∴  Principal solutions are 
6

x
π

= ±  



 

230 

 

          General solution is ,
6

x n n Z
π

π= ± ∈  

7. Problem: Solve  
22 cos 3 sin 1 0.x x− + =  

 Solution: Given 2
2 cos 3 sin 1 0x x− + =   

         
22(1 sin ) 3 sin 1 0x x⇒ − − + =   

          2
2sin 3 sin 3 0x x⇒ + − =  

        (sin 3)(2sin 3) 0x x⇒ + − =  

        sin 3 0 2sin 3 0x or x⇒ + = − =  

        
3

sin 3 sin
2

x or x⇒ = − =  

        
3

sin sin 3
2

x x ⇒ = ≠ − ∵  

       sin sin
3

x
π

⇒ =  

        ∴  Principal solutions is 
3

x
π

=  

          General solution is ( 1) ,
3

nx n n Z
π

π= + − ∈  

 

8. Problem: Solve  
24 cos 3 2( 3 1) cos .x x+ = +  

 Solution: Given 2
4 cos 3 2( 3 1) cosx x+ = +   

         
24 cos 2 3 cos 2 cos 3 0x x x⇒ − − + =   

          (2 cos 3)(2cos 1) 0x x⇒ − − =  

        2cos 1 0 2cos 3 0x or x⇒ − = − =  

        
1 3

cos cos
2 2

x or x⇒ = =  
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        cos cos cos cos
3 6

x or x
π π

⇒ = =  

        ∴  Principal solutions is 
6 3

x or
π π

=  

          General solution is 2 2 ,
6 3

x n or x n n Z
π π

π π= ± = ± ∈  

9. Problem: Solve  tan 3cot 5sec .x x x+ =  

 Solution: Given tan 3cot 5secx x x+ =   

         
sin cos 5

3
cos sin cos

x x

x x x
⇒ + =   

          2 2sin 3cos 5sinx x x⇒ + =
2 2sin 3(1 sin ) 5sinx x x⇒ + − =  

        
22sin 5sin 3 0x x⇒ + − = (sin 3)(2sin 1) 0x x⇒ + − =  

        sin 3 0 2sin 1 0x or x⇒ + = − =
1

sin 3 sin
2

x or x⇒ = − =  

        [ ]
1

sin sin 3
2

x x⇒ = ≠ −∵ sin sin
6

x
π

⇒ =  

        ∴  Principal solutions is 
6

x
π

=  

          General solution is ( 1) ,
6

n
x n n Z

π
π= + − ∈  

10. Problem: Solve  
2cot ( 3 1)cot 3 0.x x− + + =  

Solution: Given 2cot ( 3 1) cot 3 0x x− + + =   

         
2cot 3 cot cot 3 0x x x⇒ − − + =   

          (cot 3)(cot 1) 0x x⇒ − − = cot 1 0 cot 3 0x or x⇒ − = − =    

        cot 1 cot 3x or x⇒ = =
1

tan 1 tan
3

x or x⇒ = =  

        tan tan tan tan
4 6

x or x
π π

⇒ = =  
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        ∴  Principal solutions is 
6 4

x or
π π

=  

          General solution is ,
6 4

x n or x n n Z
π π

π π= + = + ∈  

11. Problem: Solve  
21 sin 3sin cos .x x x+ =  

Solution: Given 21 sin 3sin cosx x x+ =   

         Dividing on both sides with 2cos x  we get 

        

2

2 2

1 sin 3sin cos

cos cos

x x x

x x

+
⇒ =

2 2sec tan 3 tanx x x⇒ + =  

         
22 tan 3 tan 1 0x x⇒ − + = (2 tan 1)(tan 1) 0x x⇒ − − =         

        2 tan 1 0 tan 1 0x or x⇒ − = − = tan 1x⇒ =     

        ∴  Principal solution is 
4

x
π

=  

          General solution is ,
4

x n n Z
π

π= + ∈  

         Let α  be the principal solution of 
1

tan
2

x =  

          General solution is ,x n n Zπ α= + ∈  

12. Problem: Solve  sin 5 sin sin 3 .x x x+ =  

Solution: Given sin 5 sin sin 3x x x+ =   

        

5 5
2sin cos sin 3 sin sin 2sin cos

2 2 2 2

x x x x C D C D
x C D

+ −  + −        
⇒ = + =        

        
∵  

         2sin 3 cos 2 sin 3x x x⇒ =  ( )sin 3 2 cos 2 1 0x x⇒ − =   

          sin 3 0 2cos 2 1 0x or x⇒ = − =  

          
1

sin 3 0 cos 2
2

x or x⇒ = =  

           sin 3 sin 0 cos 2 cos
3

x or x
π

⇒ = =  
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          General solution is 3 2 2 ,
3

x n or x n n Z
π

π π= = ± ∈  

                               ,
3 6

n
x or x n n Z

π π
π⇒ = = ± ∈  

13. Problem: Solve  cos8 cos 2 cos5 .x x x+ =  

Solution: Given cos8 cos 2 cos 5x x x+ =   

        

8 2 8 2
2cos cos cos5

2 2

cos cos 2 cos cos
2 2

x x x x
x

C D C D
C D

+ −   
⇒ =   

   

 + −    
+ =     

    
∵

 

       2cos5 cos3 cos 5x x x⇒ =  ( )cos5 2cos3 1 0x x⇒ − =  

       cos5 0 2 cos3 1 0x or x⇒ = − =
1

cos5 0 cos3
2

x or x⇒ = =  

           cos 5 cos cos3 cos
2 3

x or x
π π

⇒ = =  

          General solution is 5 2 3 2 ,
2 3

x n or x n n Z
π π

π π= ± = ± ∈  

                               
2 2

,
5 10 3 9

n n
x or x n Z

π π π π
⇒ = ± = ± ∈  

14. Problem: Solve  
1

cos cos 2 cos3 .
4

x x x =  

Solution: Given
1

cos cos 2 cos3
4

x x x =   

        4 cos cos 2 cos 3 1x x x⇒ =  

       ( )2 2 cos3 cos cos 2 1x x x⇒ =   

       
( ) ( )( )

( ) ( )

2 cos 3 cos 3 cos 2 1

2 cos cos cos cos

x x x x x

A B A B A B

⇒ + + − =

= + + −  ∵

 

       

22 cos 4 cos 2 2 cos 2 1 0x x x⇒ + − =

 

       

22 cos 4 cos 2 cos 4 0 2cos 1 cos 2x x x A A ⇒ + = − = ∵
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( )cos 4 2 cos 2 1 0x x⇒ + =  

       cos 4 0 2cos 2 1 0x or x⇒ = + =
1

cos 4 0 cos 2
2

x or x⇒ = = −  

           
2

cos 4 cos cos 2 cos
2 3

x or x
π π

⇒ = =  

          General solution is 
2

4 2 2 2 ,
2 3

x n or x n n Z
π π

π π= ± = ± ∈  

                               ,
2 8 3

n
x or x n n Z

π π π
π⇒ = ± = ± ∈

 

15. Problem: Solve  3 cos sin 2.x x+ =  

Solution: Given 3 cos sin 2x x+ =   

         Dividing on both sides with 2 2( 3) 1 3 1 4 2+ = + = =  we get 

        
3 cos sin 2

2 2

x x+
⇒ =  

         
3 1 1

cos sin
2 2 2

x x⇒ + =   

         
1

cos cos sin sin
6 6 2

x x
π π

⇒ + = cos cos
6 4

x
π π 

⇒ − = 
 

 

          General solution is 2 ,
6 4

x n n Z
π π

π− = ± ∈
 

                   

5
2 , 2 ,

12 12
x n x n n Z

π π
π π⇒ = + = − ∈  

16. Problem: Solve 
2 31 cos cos cos ... 3

8 4
x x x+ + + + ∞

= for all ( , )x π π∈ −  

Solution: Given
2 31 cos cos cos ... 3

8 4
x x x+ + + + ∞

=   

         For 0x =  the given equation has no solution. 

         For 0x ≠  we have cos 1x <  

         Then 2 3 1
1 cos cos cos ...

1 cos
x x x

x
+ + + + ∞ =

−  



 

235 

 

        Now 
2 31 cos cos cos ... 3

8 4
x x x+ + + + ∞

=   
2 33(1 cos cos cos ... ) 2 32 (2 )x x x+ + + + ∞⇒ =  

        

1
3( )

61 cos2 2x−⇒ =
3

6
1 cos x

⇒ =
−

1
1 cos

2
x⇒ − =

1
cos

2
x⇒ =  

          ,
3 3

x
π π

⇒ = −  

17. Problem: If cos 2 sin 2a b cθ θ+ = then prove that       

1 2 1 2

2
tan tan , tan . tan .

b c a

c a c a
θ θ θ θ

−
+ = =

+ +
 

Solution: Given cos 2 sin 2a b cθ θ+ =   

         We have  
2

2 2

1 tan 2 tan
cos 2 ,sin 2

1 tan 1 tan

θ θ
θ θ

θ θ

−
= =

+ +
 

        Now cos 2 sin 2a b cθ θ+ =   
2

2 2

1 tan 2 tan

1 tan 1 tan
a b c

θ θ

θ θ

 −  
⇒ + =   

+ +  
 

        ( ) ( ) ( )2 21 tan 2 tan 1 tana b cθ θ θ⇒ − + = +  

         ( ) ( )2tan 2 tan 0c a b c aθ θ⇒ + − + − =   

         This is a quadratic equation in tanθ and 1 2tan , tanθ θ  are solutions then we get 

         1 2 1 2

2
tan tan , tan . tan .

b c a

c a c a
θ θ θ θ

−
+ = =

+ +
 

                        Exercise 7 

I  1. Find the principle solution of  the following equations: 

 
2( ) 2cos 1i x =      

2( )3cot 1ii x =     ( ) 3 sec 2 0iii x + =     
5 1

( ) cos 2
4

iv x
+

=  

3
( ) sin 3

2
v x =    

2 3
( ) cos

4
vi x =  

  2. Find the general solution of  the following equations: 

 
2( ) 2sin 3cosi x x=          

2 1
( )sin cos

4
ii x x− =     

2 2( )7sin 5cos 6iii x x+ =     
2( ) 2sin 4 5cosiv x x− =     

2 2( ) 2sin sin 2 2v x x+ =     

II 1.  Solve the following equations: 
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 ( ) 3 sin cos 2i x x− =      ( ) cot cos ec 3ii x x+ =     ( ) tan s ec 3iii x x+ =     
 
 

 2. Solve the following equations: 

 ( ) sin 2 cos 2 sin cosi x x x x− = −          ( ) 4sin sin 2 sin 4 sin 3ii x x x x=     
( ) sin sin 2 sin 3 cos cos 2 cos3iii x x x x x x+ + = + +         
( ) cos3 cos 4 cos5 cos 6iv x x x x− = −  

                                      Key Concepts 

1.   An equation consisting of the trigonometric functions of a variable angle x R∈  is 

called trigonometric equation. The values of the variable angle x R∈  satisfying the given 

trigonometric equation is called a solution of the trigonometric equation. The set of all 

solutions of a trigonometric equation is called a solution set of the trigonometric equation.   

The general solution is a functional form of the solution set.  

2.  The function [ ]: , 1,1
2 2

f
π π 

− → −  
 by  ( ) sinf x x=  is a bijection then ,

2 2
x

π π 
∈ −  

 

is called the principal solution of the equation sin .x k=     

3.  The function [ ] [ ]: 0, 1,1f π → −  by  ( ) cosf x x=  is a bijection then [ ]0,x π∈  is 

called the principal solution of the equation cos .x k=     

4.  The function : ,
2 2

f R
π π 

− → 
 

 by  ( ) tanf x x=  is a bijection then [ ]0,x π∈  is 

called the principal solution of the equation tan .x k=     

5.  The function ( ): 0,f Rπ →  by  ( ) cotf x x=  is a bijection then ( )0,x π∈  is called 

the principal solution of the equation cot .x k=     

6.  The function [ ] ] [: 0, ( , 1 1, )
2

f
π

π
 

− → −∞ − ∞ 
 

∪  by  ( ) secf x x=  is a bijection then 

[ ]0,
2

x
π

π
 

∈ −  
 

 is called the principal solution of the equation sec .x k=     

7.  The function { } ] [: , 0 ( , 1 1, )
2 2

f
π π 

− − → −∞ − ∞  
∪  by  ( ) cosecf x x=  is a bijection 

then { }, 0
2 2

x
π π 

∈ − −  
 is called the principal solution of the equation cosec .x k=  

8. The general solution of sin 0x =  is , .x n n Zπ= ∈   

9. The general solution of cos 0x =  is (2 1) ,
2

x n n Z
π

= + ∈   
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10. The general solution of tan 0x =  is ,x n n Zπ= ∈   

11. The general solution of  sin x k=  is ( 1) ,n
x n n Zπ α= + − ∈   

12. The general solution of  cos x k=  is 2 ,x n n Zπ α= ± ∈   

13. The general solution of  tan x k=  is ,x n n Zπ α= + ∈   

14. The general solution of  sec x k=   is 2 ,x n n Zπ α= ± ∈ the where α is the principal 

solution of  
1

cos .x
k

=
 

15. The general solution of  cosec x k=   is ( 1) ,n
x n n Zπ α= + − ∈ the where α is the 

principal solution of  
1

sin .x
k

=  

16. The general solution of  cot x k=   is ,x n n Zπ α= + ∈ the where α is the principal 

solution of  
1

tan .x
k

=  

 

                             Answers 
                      Exercise 7 

I  

0 0 0 0 0 0 0 0 0 0 0
(1) ( )45 ,135 ( ) 60 ( )150 ( )18 ( )20 , 40 ,140 ,160 ( )30 ,150i ii iii iv v vi±

 

(2) ( ) 2 , ( ) 2 , ( ) ,
3 3 4

2
( ) 2 , ( ) (2 1) , ,

3 2 4

i x n n Z ii x n n Z iii x n n Z

iv x n n Z v x n n n Z

π π π
π π π

π π π
π π

= ± ∈ = ± ∈ = ± ∈

= ± ∈ = + ± ∈  

II  

(1) ( ) ( 1) , ( ) 2 , ( )
4 6 3 6

n
i x n n Z ii x n n Z iii x

π π π π
π π= + − + ∈ = + ∈ =

 

2 2
(2) ( ) 2 , , ( ) , ( ) 2 , ,

3 6 3 9 3 2 8

( ) (2 1) , , 2 ,2 ,
2 4 2

n n n
i x n n Z ii x n Z iii x n n Z

iv x n n n n n Z

π π π π π π π
π π

π π π
π π π

= − ∈ = ± ∈ = ± + ∈

= + − + ∈
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                8. HYPERBOLIC FUNCTIONS 

          In this chapter, we discuss definitions of hyperbolic functions, definitions of 

inverse hyperbolic functions and addition and subtraction formulas of hyperbolic 

functions. 

8.1 Definitions of hyperbolic functions: 

8.1.1 Definition: The function :f R R→ is defined by  ( )
2

x x
e e

f x
−−

=  is called 

hyperbolic sine function. It is denoted by sinh .x  . sinh .
2

x x
e e

i e x
−−

=  

8.1.2 Definition: The function :f R R→ is defined by  ( )
2

x x
e e

f x
−+

=  is called 

hyperbolic cosine function. It is denoted by cosh .x  . cosh .
2

x x
e e

i e x
−+

=  

8.1.3 Definition: The function :f R R→ is defined by  ( )
x x

x x

e e
f x

e e

−

−

−
=

+
 is called 

hyperbolic tangent function. It is denoted by tanh .x  . tanh .
x x

x x

e e
i e x

e e

−

−

−
=

+  

8.1.4 Definition: The function { }: 0f R R− → is defined by  ( )
x x

x x

e e
f x

e e

−

−

+
=

−
 is called 

hyperbolic cotangent function. It is denoted by coth .x  . coth .
x x

x x

e e
i e x

e e

−

−

+
=

−  

8.1.5 Definition: The function :f R R→ is defined by  
2

( )
x x

f x
e e

−
=

+
 is called 

hyperbolic secant function. It is denoted by sech .x  
2

. sech .
x x

i e x
e e

−
=

+  

8.1.6 Definition: The function { }: 0f R R− → is defined by  
2

( )
x x

f x
e e

−
=

−
 is called 

hyperbolic cosecant function. It is denoted by cos ec h .x  
2

. cos ec h .
x x

i e x
e e

−
=

−  

8.1.7 Domain and Range of hyperbolic functions: 

The domain and ranges of the hyperbolic trigonometric functions are as follows. 
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[

{ }

]

{ } { }

Function Domain Range

sinh

cosh 1, )

tanh ( 1,1)

coth 0 ( , 1) (1, )

sech (0,1

cos ec h 0 0

x R R

x R

x R

x R

x R

x R R

∞

−

− −∞ − ∪ ∞

− −  

8.1.8 Graphs of hyperbolic functions: 

 

The graphs of the hyperbolic trigonometric functions is as follows.

   

 

8.1.9 Identities of hyperbolic trigonometric functions: 

{ }

2 2

2 2

2 2

) cosh sinh 1

)1 tanh sech

)coth 1 cosec h 0 .

i x x for all x R

ii x x for all x R

iii x x for all x R

− = ∈

− = ∈

− = ∈ −
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8.1.10 Note :
  

1. For any x R∈  

       
)sinh( ) sinh , ) cosh( ) cosh , ) tanh( ) tanh

) coth( ) coth , )sech( ) sech , ) cos ec h( ) cos ec h .

i x x ii x x iii x x

iv x x v x x vi x x

− = − − = − = −

− = − − = − = −  

    

0 0

0 0

0 0

0 0

1 1
2. sinh 0 0,

2 2

1 1
3.cosh 0 1,

2 2

1 1 0
4. tanh 0 0.

1 1 2

e e

e e

e e

e e

−

−

−

−

− −
= = =

+ +
= = =

− −
= = = =

+ +

        

8.1.11 Formulas of hyperbolic trigonometric functions: 

In the following we give formulae to evaluate sinh( ), cosh( ), tanh( ),x y x y x y± ± ±  

coth( ), sinh 2 ,cosh 2 , tanh 2x y x x x±  and coth 2x   as in hyperbolic trigonometric 

functions.   

8.1.11(a) Theorem: 

For any ,x y R∈  
) sinh( ) sinh cosh cosh sinh , )sinh( ) sinh cosh cosh sinh ,

) cosh( ) cosh cosh sinh sinh , )cosh( ) cosh cosh sinh sinh .

i x y x y x y ii x y x y x y

iii x y x y x y iv x y x y x y

+ = + − = −

+ = + − = −

  

8.1.11(b) Theorem:
  

For any ,x y R∈  

       

tanh tanh tanh tanh
) tanh( ) , ) tanh( ) ,

1 tanh tanh 1 tanh tanh

coth coth 1 coth coth 1
) coth( ) , ) coth( ) .

coth coth coth coth

x y x y
i x y ii x y

x y x y

x y x y
iii x y iv x y

y x y x

+ −
+ = − =

+ −

+ −
+ = − =

+ −

 

8.1.11(c) Theorem:
  

For any x R∈  

    

2 2

2

2

) sinh 2 2sinh cosh , ) cosh 2 cosh sinh ,

2 tanh coth 1
) tanh 2 , ) coth 2 .

1 tanh 2 coth

i x x x ii x x x

x x
iii x iv x

x x

= = +

+
= =

+
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8.2 Definitions of Inverse hyperbolic functions: 

 8.2.1 Definition: Let the function :f R R→ is defined by  ( ) sinhf x x=  be a bijective 

function.  The inverse function of f  i.e  1 :f R R
− →  is also a bijective function and it is 

called inverse hyperbolic sine function. It is denoted by 1sinh .x
−

  

8.2.2 Definition: Let the function [ [: 0, ) 1, )f ∞ → ∞ is defined by  ( ) coshf x x=  be a 

bijective function.  The inverse function of f  i.e  [ [1 : 1, ) 0, )f − ∞ → ∞  is also a bijective 

function and it is called inverse hyperbolic cosine function. It is denoted by 1cosh .x
−

  

8.2.3 Definition: Let the function : ( 1,1)f R → − is defined by  ( ) tanhf x x=  be a 

bijective function.  The inverse function of f  i.e  1 : ( 1,1)f R
− − →  is also a bijective 

function and it is called inverse hyperbolic tangent function. It is denoted by 1tanh .x−

  

8.2.4 Definition: Let the function { }: 0 ( , 1) (1, )f R − → −∞ − ∪ ∞ is defined by  

( ) cothf x x=  be a bijective function.  The inverse function of f  i.e  

{ }1 : ( , 1) (1, ) 0f R
− −∞ − ∪ ∞ → −  is also a bijective function and it is called inverse 

hyperbolic cotangent function. It is denoted by 1coth .x−

  

8.2.5 Definition: Let the function [ ]: 0, ) (0,1f ∞ → is defined by  ( ) sechf x x=  be a 

bijective function.  The inverse function of f  i.e  ] [1 : (0,1 (1, ) 0, )f
− ∪ ∞ → ∞  is also a 

bijective function and it is called inverse hyperbolic secant function. It is denoted by 
1sech .x−

  

8.2.6 Definition: Let the function { } { }: 0 0f R R− → − is defined by  ( ) cos ec hf x x=  

be a bijective function.  The inverse function of f  i.e  { } { }1 : 0 0f R R
− − → −  is also a 

bijective function and it is called inverse hyperbolic cosecant function. It is denoted by 
1cos ec h .x−

  

8.2.7 Domain and Range of Inverse hyperbolic functions: 

The domain and ranges of the inverse hyperbolic trigonometric functions is as follows. 

      

[ [

{ }

] [

{ } { }

1

1

1

1

1

1

Function Domain Range

sinh

cosh 1, ) 0, )

tanh ( 1,1)

coth ( , 1) (1, ) 0

sech (0,1 0, )

cos ec h 0 0

x R R

x

x R

x R

x

x R R

−

−

−

−

−

−

∞ ∞

−

−∞ − ∪ ∞ −

∞

− −
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8.2.8 Graphs of Inverse hyperbolic functions: 

The graphs of the inverse hyperbolic trigonometric functions is as follows.

   

 

 

8.2.9 Formulas of inverse hyperbolic trigonometric functions: 

In the following we give formulae to evaluate 1 1 1sinh ,cosh , tanh ,x x x
− − −  1coth ,x

−

1sech x−  and 1cos ech x− . 

8.2.9(a) Theorem:
  

      For any x R∈  

       

1 2

2

1

) sinh log( 1),

) cosh log( 1) for 1,

1 1
) tanh log for ( 1,1),

2 1

i x x x

ii x x x x

x
iii x x

x

−

−

= + +

= + − ≥

+ 
= ∈ − 

− 
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]

1

2
1

2

1

2

1 1
) coth log for 1,

2 1

1 1
)sech log for (0,1 ,

1 1
log for 0

) cos ec h

1 1
log for 0.

x
iv x x

x

x
v x x

x

x
x

x
vi x

x
x

x

−

−

−

+ 
= > 

− 

 + −
= ∈ 

 
 

  + +
 > 

   
= 

  − +
<   

  

 

8.2.10 Solved Problems:  

1. Problem: If sinh 3, Prove that log(3 10).x x= = +  

 Solution: Given that sinh 3x =   

        To prove that log(3 10)x = +  

       since 1sinh 3 sinh 3x x
−= ⇒ =   

     we have 1 2sinh log( 1)x x x
− = + +  

        Put 3x =  

    
1 2

1

sinh 3 log(3 3 1)

sinh 3 log(3 10)

−

−

∴ = + +

⇒ = +
 

      log(3 10)x∴ = +  

2. Problem: 
3 17 15

If sinh , Prove that cosh 2 and sinh 2 .
4 8 8

x x x= = =  

 Solution: Given that 
3

sinh
4

x =   

        
17 15

To prove that cosh 2 and sinh 2 .
8 8

x x= =  

         we have 2cosh 2 1 2sinhx x= +  

       

2
3

cosh 2 1 2
4

x
 

⇒ = +  
 

9
cosh 2 1 2

16
x

 
⇒ = +  

 

18
cosh 2 1

16
x⇒ = +

9
cosh 2 1

8
x⇒ = +  
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17

cosh 2
8

x∴ =  

  
     we have 2 2cosh 2 sinh 2 1x x− =  

      2sinh 2 cosh 2 1x x⇒ = −

2
17

sinh 2 1
8

x
 

⇒ = − 
 

289
sinh 2 1

64
x

 
⇒ = − 

    

      
289 64

sinh 2
64

x
−

⇒ =
225

sinh 2
64

x⇒ =
15

sinh 2
8

x⇒ =  

      
15

sinh 2
8

x∴ =  

3. Problem: Prove that 1 1 1
tanh log 3.

2 2

−  
= 

 
 

Solution: We have 1 1 1
tanh log for ( 1,1)

2 1

x
x x

x

− + 
= ∈ − 

−   

       Put
1

2
x =   

     
1

1
1

1 1 2tanh log
12 2

1
2

−

 
+ 

=  
 −
 

 

    1

3
1 1 2tanh log

12 2
2

−
 
 ⇒ =
 
 

1 1 1
tanh log 3

2 2

−⇒ =  

      1 1 1
tanh log 3

2 2

−∴ =  

4. Problem: Find the value of  cosh 2 sinh 2+  

Solution: We have cosh
2

x xe e
x

−+
= , sinh .

2

x xe e
x

−−
=

 

     
cosh sinh

2 2

x x x xe e e e
x x

− −+ −
+ = + cosh sinh

2

x x x xe e e e
x x

− −+ + −
⇒ + =

 

     
cosh sinh xx x e⇒ + =  

         Put 2x = we get 2cosh 2 sinh 2 e+ =  



 

245 

 

 5. Problem: If 1cosh log(2 3)x− = + then find the value of  x   

 Solution:  We have 1 2cosh log( 1)x x x
− = + −  

    2 1log(2 3) log(2 2 1) cosh 2−+ = + − =  

      2x∴ =  

6. Problem: If log tan
4 2

x
π θ 

= + 
 

then prove that  cosh sec .x θ=   

 Solution:  Given log tan
4 2

x
π θ 

= + 
 

 

            To prove cosh secx θ=  

          Since log tan
4 2

x
π θ 

= + 
 

1 tan
2tan

4 2
1 tan

2

x
e

θ
π θ

θ

+
 

⇒ = + = 
  −

 

          and  

1 tan
2

1 tan
2

x
e

θ

θ
−

−

=

+

 

          Now  

1 tan 1 tan
2 2

1 tan 1 tan
2 2

x x
e e

θ θ

θ θ
−

+ −

+ = +

− +
 

              

2 2

1 tan 1 tan
2 2

1 tan 1 tan
2 2

x xe e

θ θ

θ θ
−

   
+ + −   

   ⇒ + =
  

+ −  
  

 

                

2

2

2 1 tan
2

1 tan
2

x xe e

θ

θ
−

 
+ 

 ⇒ + =
 

− 
 

2

2

1 tan
2

2
1 tan

2

x x
e e

θ

θ

− +
+

⇒ =

−

cosh secx θ⇒ =  

               cosh secx θ∴ =  

7. Problem: For any ,x y R∈  prove that 
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) sinh( ) sinh cosh cosh sinh , )sinh( ) sinh cosh cosh sinh ,

) cosh( ) cosh cosh sinh sinh , )cosh( ) cosh cosh sinh sinh .

i x y x y x y ii x y x y x y

iii x y x y x y iv x y x y x y

+ = + − = −

+ = + − = −
  

Solution: (i) We have cosh
2

x xe e
x

−+
= , sinh .

2

x xe e
x

−−
=  

       R.H.S sinh cosh cosh sinhx y x y= +   

                  . .
2 2 2 2

x x y y x x y y
e e e e e e e e

− − − −− + + −
= +  

                  ( )
1

4

x y x y x y x y x y x y x y x y
e e e e e e e e

+ − − + − − + − − + − −= + − − + − + −  

                      
( )2

4

x y x ye e+ − −−
=  

                     
( )

( )sinh L.H.S
2

x y x ye e
x y

+ − −−
= = + =  

      ( )sinh sinh cosh cosh sinhx y x y x y∴ + = +  

      (ii) We have cosh
2

x xe e
x

−+
= , sinh .

2

x xe e
x

−−
=  

       R.H.S sinh cosh cosh sinhx y x y= −   

                  . .
2 2 2 2

x x y y x x y y
e e e e e e e e

− − − −− + + −
= −  

                  ( )
1

4

x y x y x y x y x y x y x y x y
e e e e e e e e

+ − − + − − + − − + − −= + − − − + − +  

                      
( )2

4

x y x ye e− − +−
=  

                     
( )

( )sinh L.H.S
2

x y x ye e
x y

− − ++
= = − =  

      ( )sinh sinh cosh cosh sinhx y x y x y∴ − = −  

(iii) We have cosh
2

x xe e
x

−+
= , sinh .

2

x xe e
x

−−
=  
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       R.H.S cosh cosh sinh sinhx y x y= +   

                  . .
2 2 2 2

x x y y x x y y
e e e e e e e e

− − − −+ + − −
= +  

                  ( )
1

4

x y x y x y x y x y x y x y x y
e e e e e e e e

+ − − + − − + − − + − −= + + + + − − +  

                      ( )
2

4

x y x ye e+ − −= +  

                     
( )

( )cosh L.H.S
2

x y x y
e e

x y

+ − −+
= = + =  

      ( )cosh cosh cosh sinh sinhx y x y x y∴ + = +  

(iv)  We have cosh
2

x xe e
x

−+
= , sinh .

2

x xe e
x

−−
=  

       R.H.S cosh cosh sinh sinhx y x y= −   

                  . .
2 2 2 2

x x y y x x y y
e e e e e e e e

− − − −+ + − −
= −  

                  ( )
1

4

x y x y x y x y x y x y x y x y
e e e e e e e e

+ − − + − − + − − + − −= + + + − + + −  

                      ( )
2

4

x y x y
e e

− − += +  

                     
( )

( )cosh L.H.S
2

x y x y
e e

x y

− − ++
= = − =  

      ( )cosh cosh cosh sinh sinhx y x y x y∴ − = −  

8. Problem: For any ,x y R∈  prove that 

    

tanh tanh tanh tanh
) tanh( ) , ) tanh( ) ,

1 tanh tanh 1 tanh tanh

coth coth 1 coth coth 1
) coth( ) , ) coth( ) .

coth coth coth coth

x y x y
i x y ii x y

x y x y

x y x y
iii x y iv x y

y x y x

+ −
+ = − =

+ −

+ −
+ = − =

+ −

  

Solution: (i) We have 
sinh

tanh
cosh

x
x

x
=  
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sinh( )

L.H.S tanh( )
cosh( )

x y
x y

x y

+
= + =

+   

                  
sinh cosh cosh sinh

cosh cosh sinh sinh

x y x y

x y x y

+
=

+  

        Dividing the numerator and denominator with cosh coshx y  we get  

                  

sinh cosh cosh sinh

cosh cosh

cosh cosh sinh sinh

cosh cosh

x y x y

x y

x y x y

x y

+

=
+

 

                      

sinh cosh cosh sinh

cosh cosh cosh cosh

cosh cosh sinh sinh

cosh cosh cosh cosh

x y x y

x y x y

x y x y

x y x y

+

=

+

 

                     

sinh sinh

tanh tanhcosh cosh
R.H.S

sinh sinh 1 tanh .tanh
1 .

cosh cosh

x y

x yx y

x y x y

x y

+
+

= = =
+

+
 

      
tanh tanh

tanh( )
1 tanh tanh

x y
x y

x y

+
∴ + =

+  

      (ii) We have 
sinh

tanh
cosh

x
x

x
=  

       
sinh( )

L.H.S tanh( )
cosh( )

x y
x y

x y

−
= − =

−   

                  
sinh cosh cosh sinh

cosh cosh sinh sinh

x y x y

x y x y

−
=

−  

        Dividing the numerator and denominator with cosh coshx y  we get  

                  

sinh cosh cosh sinh

cosh cosh

cosh cosh sinh sinh

cosh cosh

x y x y

x y

x y x y

x y

−

=
−

 

                      

sinh cosh cosh sinh

cosh cosh cosh cosh

cosh cosh sinh sinh

cosh cosh cosh cosh

x y x y

x y x y

x y x y

x y x y

−

=

−
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sinh sinh

tanh tanhcosh cosh
R.H.S

sinh sinh 1 tanh .tanh
1 .

cosh cosh

x y

x yx y

x y x y

x y

−
−

= = =
−

−
 

      
tanh tanh

tanh( )
1 tanh tanh

x y
x y

x y

−
∴ − =

−  

 (iii) We have 
cosh

coth
sinh

x
x

x
=  

       
cosh( )

L.H.S coth( )
sinh( )

x y
x y

x y

+
= + =

+   

                  
cosh cosh sinh sinh

sinh cosh cosh sinh

x y x y

x y x y

+
=

+  

        Dividing the numerator and denominator with sinh sinhx y  we get  

                  

cosh cosh sinh sinh

sinh sinh

sinh cosh cosh sinh

sinh sinh

x y x y

x y

x y x y

x y

+

=
+

 

                      

cosh cosh sinh sinh

sinh sinh sinh sinh

sinh cosh cosh sinh

sinh sinh sinh sinh

x y x y

x y x y

x y x y

x y x y

+

=

+

 

                     

cosh cosh
1

coth coth 1sinh sinh
R.H.S

cosh cosh coth coth

sinh sinh

x y

x yx y

y x y x

y x

+
+

= = =
+

+
 

      
coth coth 1

coth( )
coth coth

x y
x y

y x

+
∴ + =

+  

(iv) We have 
cosh

coth
sinh

x
x

x
=  

       
cosh( )

L.H.S coth( )
sinh( )

x y
x y

x y

−
= − =

−   

                  
cosh cosh sinh sinh

sinh cosh cosh sinh

x y x y

x y x y

−
=

−  
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        Dividing the numerator and denominator with sinh sinhx y  we get  

                  

cosh cosh sinh sinh

sinh sinh

sinh cosh cosh sinh

sinh sinh

x y x y

x y

x y x y

x y

−

=
−

 

                      

cosh cosh sinh sinh

sinh sinh sinh sinh

sinh cosh cosh sinh

sinh sinh sinh sinh

x y x y

x y x y

x y x y

x y x y

−

=

−

 

                     

cosh cosh
1

coth coth 1sinh sinh
R.H.S

cosh cosh coth coth

sinh sinh

x y

x yx y

y x y x

y x

−
−

= = =
−

−
 

      
coth coth 1

coth( )
coth coth

x y
x y

y x

−
∴ + =

−  

9. Problem: For any x R∈  prove that
 

    

2 2

2

2

) sinh 2 2sinh cosh , ) cosh 2 cosh sinh ,

2 tanh coth 1
) tanh 2 , ) coth 2 .

1 tanh 2 coth

i x x x ii x x x

x x
iii x iv x

x x

= = +

+
= =

+

  

Solution: (i) We have ( )sinh sinh cosh cosh sinhx y x y x y+ = +
 

        Replace y with x we get ( )sinh sinh cosh cosh sinhx x x x x x+ = +  

       sinh 2 2sinh coshx x x∴ =   

      (ii) We have ( )cosh cosh cosh sinh sinhx y x y x y+ = +
 

        Replace y with x we get ( )cosh cosh cosh sinh sinhx x x x x x+ = +  

       2 2cosh 2 cosh sinhx x x∴ = +   

     (iii) We have 
tanh tanh

tanh( )
1 tanh tanh

x y
x y

x y

+
+ =

+  

        Replace y with x we get 
tanh tanh

tanh( )
1 tanh tanh

x x
x x

x x

+
+ =

+  

       
2

2 tanh
tanh 2

1 tanh

x
x

x
∴ =

+         
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(iv)  We have 
coth coth 1

coth( )
coth coth

x y
x y

y x

+
+ =

+  

        Replace y with x we get 
coth coth 1

coth( )
coth coth

x x
x x

x x

+
+ =

+  

       
2coth 1

coth 2
2 coth

x
x

x

+
∴ =         

                                     Exercise 8 

1. Find the values of the following  1) cosh 1i −
3

1 2) sinh 2ii − 1 1

2
)sechiii −  

2. If 1sinh log(5 2 6)x− = + then find the value of  x  

3. If 
5

cosh
2

x =  then prove that
21

.
23 5

cosh 2 andsinh 2
2 2

x x= =  

4. If log tan
4

x
π

θ
 

= + 
 

then prove that  cosh sec 2 .x θ=  

5. If log cot
4

x
π

θ
 

= + 
 

then prove that  sinh tan 2 .x θ= −  

6. If 
1sinh (tan )

e k
θ−

= then prove that  sec tan .kθ θ+ =  

7. Prove that  (cosh sinh ) cosh sinh .
n

x x nx nx+ = +  

8. Prove that  (cosh sinh ) cosh sinh .
n

x x nx nx− = −  

9. If 2 2tanh tanx θ= then prove that  cosh 2 sec 2 .x θ=  

10. For any x R∈  prove that  

   

3 3

3

2

) sinh 3 3sinh 4sinh , ) cosh 3 4 cosh 3cosh ,

3 tanh tanh
) tanh 3 .

1 3 tanh

i x x x ii x x x

x x
iii x

x

= + = −

+
=

+  

                                 Key Concepts 

1. sinh
2

x xe e
x

−−
=

  
2. cosh

2

x xe e
x

−+
= 3. tanh

x x

x x

e e
x

e e

−

−

−
=

+
4.coth .

x x

x x

e e
x

e e

−

−

+
=

−  

2
5.sech

x x
x

e e
−

=
+

2
6.cos ec h .

x x
x

e e
−

=
−  

7. The domain and ranges of the hyperbolic trigonometric functions are as follows. 
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[

{ }

]

{ } { }

Function Domain Range

sinh

cosh 1, )

tanh ( 1,1)

coth 0 ( , 1) (1, )

sech (0,1

cos ec h 0 0

x R R

x R

x R

x R

x R

x R R

∞

−

− −∞ − ∪ ∞

− −  

{ }

2 2

2 2

2 2

8. ) cosh sinh 1

)1 tanh sech

)coth 1 cos ec h 0 .

i x x for all x R

ii x x for all x R

iii x x for all x R

− = ∈

− = ∈

− = ∈ −

 

9.     For any x R∈  

       
)sinh( ) sinh , ) cosh( ) cosh , ) tanh( ) tanh

) coth( ) coth , )sech( ) sech , ) cos ec h( ) cos ec h .

i x x ii x x iii x x

iv x x v x x vi x x

− = − − = − = −

− = − − = − = −

10. sinh 0 0 11.cosh 0 1 12.tanh 0 0= = =       

13.   For any x R∈  

       
)sinh( ) sinh , ) cosh( ) cosh , ) tanh( ) tanh

) coth( ) coth , )sech( ) sech , ) cos ec h( ) cos ec h .

i x x ii x x iii x x

iv x x v x x vi x x

− = − − = − = −

− = − − = − = −   
 

14.For any ,x y R∈  
) sinh( ) sinh cosh cosh sinh , )sinh( ) sinh cosh cosh sinh ,

) cosh( ) cosh cosh sinh sinh , )cosh( ) cosh cosh sinh sinh .

i x y x y x y ii x y x y x y

iii x y x y x y iv x y x y x y

+ = + − = −

+ = + − = −

15.For any ,x y R∈  

tanh tanh tanh tanh
) tanh( ) , ) tanh( ) ,

1 tanh tanh 1 tanh tanh

coth coth 1 coth coth 1
) coth( ) , ) coth( ) .

coth coth coth coth

x y x y
i x y ii x y

x y x y

x y x y
iii x y iv x y

y x y x

+ −
+ = − =

+ −

+ −
+ = − =

+ −

      

16.For any x R∈  

    

2 2

2

2

) sinh 2 2sinh cosh , ) cosh 2 cosh sinh ,

2 tanh coth 1
) tanh 2 , ) coth 2 .

1 tanh 2 coth

i x x x ii x x x

x x
iii x iv x

x x

= = +

+
= =

+

  

17. For any ,x y R∈  prove that 
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tanh tanh tanh tanh
) tanh( ) , ) tanh( ) ,

1 tanh tanh 1 tanh tanh

coth coth 1 coth coth 1
) coth( ) , ) coth( ) .

coth coth coth coth

x y x y
i x y ii x y

x y x y

x y x y
iii x y iv x y

y x y x

+ −
+ = − =

+ −

+ −
+ = − =

+ −  

18.  For any x R∈  

       

1 2 2

1 1

) sinh log( 1), ) cosh log( 1) for 1,

1 1 1 1
) tanh log for ( 1,1), ) coth log for 1,

2 1 2 1

i x x x ii x x x x

x x
iii x x iv x x

x x

−

− −

= + + = + − ≥

+ +   
= ∈ − = >   

− −   

   

        

]
2

1

2

1

2

1 1
)sech log for (0,1 ,

1 1
log for 0

) cos ec h

1 1
log for 0.

x
v x x

x

x
x

x
vi x

x
x

x

−

−

 + −
= ∈ 

 
 

  + +
 > 

   
= 

  − +
<   

  

 

19. The domain and ranges of the inverse hyperbolic trigonometric functions is as 

follows. 

      

[ [

{ }

] [

{ } { }

1

1

1

1

1

1

Function Domain Range

sinh

cosh 1, ) 0, )

tanh ( 1,1)

coth ( , 1) (1, ) 0

sech (0,1 0, )

cos ec h 0 0

x R R

x

x R

x R

x

x R R

−

−

−

−

−

−

∞ ∞

−

−∞ − ∪ ∞ −

∞

− −
 

                            Answers 
                      Exercise 8 

(1) ( )0 ( ) log(3 2 2) ( ) log(2 3)i ii iii+ + (2) 5x =
 

 



 

254 

 

9. LIMITS AND CONTINUITY 
 

Introduction: 

 Calculus can be considered as the subject that studies the problems of change. 

This mathematical discipline stems from the 17
th

 century investigations of Isaac Newton 

(1642-1727) and Gottfried Leibnitz (1646-1716) and today it stands as the quantitative 

language of science and technology 

 The very basic notion of a limit was conceived in 1680’s by Newton and Leibnitz 

simultaneously, while they were struggling with the creation of calculus. They gave a 

loose verbal definition of limit which led to many problems. There were other 

mathematicians of the same era who proposed other definitions of the intuitive concept of 

limit. But none of these were adequate to provide a basis for rigorous proofs. Of course 

there are evidences that the idea of limit was first known to Archimedes (281-212B.C). 

 It is Augustin-Louis Cauchy (1789-1857) who formulated the definition and 

presented the arguments with greater care than his predecessors in his monumental work 

’Cours d Analyse’. But the concept of a limit still remained elusive. 

 The precise definition of limit that as we use today, was given by Karl 

Weierstrass (1815-1897). 

9.1 Intervals and neighbourhoods: 

First we look into the concepts of intervals and neighbourhoods, which are very much 

useful in studying limits and continuity. 

9.1.1 Intervals:  

Let ,a b R∈ such that a b≤ .Then the set 

1. { : }x R a x b∈ ≤ ≤  Denoted by [ ],a b is called a Closed Interval. 

2. { : }x R a x b∈ < < Denoted by ( , )a b is called an Open Interval. 

In a similar way, some more intervals are given below. 

3. ( , ] { : }a b x R a x b= ∈ < ≤  

4. [ , ) { : }a b x R a x b= ∈ ≤ <  

5. [ , ) { : }a x R x a∞ = ∈ ≥  

6. ( , ) { : }a x R x a∞ = ∈ >  

7. ( , ] { : }a x R x a−∞ = ∈ ≤  

8. ( , ) { : }a x R x a−∞ = ∈ <  

The intervals in 1, 2, 3 and 4 are said to be intervals of finite length .b a−  Others are 

intervals of infinite length. 
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9.1.2 Neighbourhoods: 

 Let , .a b R∈ If 0δ > , then the open interval ( , )a aδ δ− +  is called the δ -

neighbourhood of .a  That is { : }x R a x aδ δ∈ − < < + .Figure 9.1 shows the location of 

( , )a aδ δ− +  on the number line. 

  

                                           a δ−                  a                 a δ+  

Figure.9.1 

The set obtained by deleting the point a  from this neighbourhood is called the deleted 

neighbourhood of .a  That is, the deleted δ − neighbourhood of a  is ( , ) ( , )a a a aδ δ− ∪ +  

or ( , ) { }.a a aδ δ− + −  

9.1.3 Note:  

1. Any interval ( , )c d is a neighbourhood of some ( , )a c d∈ .In fact, take  
2

c d
a

+
=  and 

0.
2

d c
δ

−
= >  Then ( , ) , ( , )

2 2 2 2

c d d c c d d c
a a c dδ δ

+ − + − 
− + = − + = 

 
 

Therefore ( , )c d is the δ  neighbourhood of .a  

2.  The set { : 0 }x R x a δ∈ < − <  is the deleted δ − neighbourhood of ,a  because  

  0 &x a x a x aδ δ< − < ⇔ − < ≠  

  &x a x aδ δ⇔ − < − < ≠  

  &a x a x aδ δ⇔ − < < + ≠  

  ( , ) { }x a a aδ δ⇔ ∈ − + −  

3. If 1 2, ................. nδ δ δ are positive real numbers and a R∈  then 

  
1

( , )
n

k k

k

a aδ δ
=

− +∩  is also a neighbourhood of .a  

 For, take 1 2min{ , ....... }nδ δ δ δ= .Then clearly 0δ > and  

   1

( , ) ( , )

( , )

n

k k

k

a a a a

x a a

δ δ δ δ

δ δ

=

− + = − +

⇒ ∈ − +

∩
 

   ( 1,2,.... )k ka x a k nδ δ⇒ − < < + =  
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   ( , )k kx a aδ δ⇒ ∈ − +    for all k  

   
1

( , )
n

k k

k

x a aδ δ
=

⇒ ∈ − +∩  

Conversely if  
1

( , )
n

k k

k

a aδ δ
=

− +∩  then
k ka x aδ δ− < < +  for all .k  

But 
1 2min{ , ....... }nδ δ δ δ=  implies that 

iδ δ=  for some i among 1,2,3,...,n  

Hence ( , ) ( , )i ix a a a aδ δ δ δ∈ − + = − + . 

9.1.4   Limits: We illustrate some examples to get familiarity on the concept of limits. 

1. Example: Let  :f R R→  be the function defined by  

2( ) 1,f x x x R= + ∈  .Here we observe that x  takes  

values very close to 0, the value of ( )f x approaches 

 to 1(see fig).In this case we say that ( )f x tends to 1  

as x  tends to 0 and we write it as 
0

lim ( ) 1
x

f x
→

=   

That is limit of ( )f x is 1 as x  tends  to 0. 

2. Example: Let us define : {1}f R R− →  by 
2 1

( ) , 1
1

x
f x x

x

−
= ≠

−
 

    In the following table we compute the values of ( )f x for certain values  

    on either side of 1x = . 

x  0.9 0.99 0.999 0.9999 1.0001 1.001 1.01 1.1 

( )f x  1.9 1.99 1.999 1.9999 2.0001 2.001 2.01 2.1 

           From the table we observe that these values are very near to 2.This can be 

illustrated by considering the graph of the function ( )f x  given in the fig. Here we note 

that the limit of ( )f x  at 1 exists even through ( )f x  is not defined at 1. 

3. Example: Let : { 2}f R R− − →  be defined by
1

( )
2

x
f x

x

−
=

+
 for each { 2}R − −  

Consider the following table of values of x  close to 3x = on either side or the 

corresponding values of ( ).f x  

x 2.9 2.99 2.999 2.9999 2.99999 3.00001 3.0001 3.001 3.01 3.1 

f(x) 0.38776 0.39880 0.39988 0.39999 0.399999 0.400001 0.40001 0.40012 0.40120 0.41176 

The above table shows that as x  gets close to 3, the function ( )f x is approaching 

to 0.4 
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4. Example: Let : {2}f R R− →  be defined by
2 3 10

( )
2

x x
f x

x

+ −
=

−
 

Here is a table of values of x  near 2 and corresponding ( ).f x  

x 1.9 1.99 1.999 1.9999 2.0001 2.001 2.01 2.1 

f(x) 6.9 6.99 6.999 6.9999 7.001 7.001 7.01 7.1 

 

Though f  is not defined at 2, but ( )f x is approaching to 7 as x  is nearing to 2. 

The same can be seen from table and the fig. 

5. Example:  Let us look at the value of x  near 0 and corresponding ( ).f x  

x 0.01 0.001 0.0001 0.00001 

f(x) 0.1 0.0316 0.01 0.0031 

           From the table we observe that ( )f x approaches zero as x  approaches zero. In 

each of the above examples it is clear that ( )f x approaches value l when x  is nearing to a 

particular point .c  This leads to an important concept called the limit of a function. In the 

third century (B.C) Archimedes of Greece (287-212 B.C) was the first person who 

formulated this concept. But a precise definition of the limit of a function, that we use 

today, is due to the German mathematician Karl Weierstrass (1815-1897), We introduce 

this concept in the present section. 

9.1.5  Definition of the limit: Let E R⊆  and :f E R→ .let a R∈  be such that 

(( , ) { })a r a r a E− + − ∩  is non empty for every 0.r > If there exists a real number l  

satisfying the condition below then l is said to be a limit of f  at :a  

Given 0ε > , there exists a 0δ >  such that ( )f x l ε− <  whenever x E∈  and 

0 x a δ< − < .In this case, we say that limit of the function ( )f x as x  tends to a
 
exists 

and it is ‘l’ and we write it as lim ( )
x a

f x l
→

=  or ( )f x l→  as x a→   

     If such an l does not exist we say that lim ( )
x a

f x
→

 does not exist. 

9.1.6 Note: Let , , ,f E a l be as given in definition 9.1.1. Also let m R∈  be such that 

lim ( ) .
x a

f x m
→

= Then it can shown that .l m=
 
In other words, the limit of a function at a 

given point if exists is unique. This is proved as follows. 

Given that lim ( )
x a

f x m
→

= and lim ( )
x a

f x l
→

=  

In order to show that l = m it is sufficient to show that l m ε− <  for every 0ε >  

Let 0ε >   

Since lim ( )
x a

f x l
→

=  for 
10, 0

2

ε
δ> ∃ > suh that 

x R∈  and 
10 ( ) .........(I)

2
x a f x l

ε
δ< − < ⇒ − <  
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Since lim ( )
x a

f x m
→

=  for 
20, 0

2

ε
δ> ∃ >  such that 

x E∈  and 
20 ( ) .........(II)

2
x a f x m

ε
δ< − < ⇒ − <  

Let 1 2min{ , }δ δ δ= .Then if x E∈  and 0 x a δ< − <  we have by (I)  and (II)  

( ) ( )l m l f x f x m− = − + − ( ) ( )
2 2

l f x f x m
ε ε

ε≤ − + − < + =  

 . .,i e l m ε− <  

Since 0ε >  is arbitrary, we get .l m=  

9.1.7 Examples: In the following we illustrate the definition of limit through examples 

with ,δ ε  notation 

1. Suppose : (0, )f R∞ →  is defined by ( )f x x= .Then 
0

lim ( ) 0
x

f x
→

=  

Let 0ε >  be given. Choose 
2δ ε= .Then 0δ >  and for all x  with 

(0, ),0x x δ∈ ∞ < <  

. .,i e 0 x δ< <  we have  ( ) 0f x x δ ε− = < =  

Hence  
0

lim ( ) 0
x

f x
→

=  

2. Suppose : ( \{0})f R R→   is given by 
1

( ) , 0f x x
x

= ≠ .Then  
0

1
lim
x x→

=  does 

not exist. 

If possible suppose that 
0

1
lim
x x→

=  exists and is equal to say l  

Then for 1ε =  there is a 0δ >  such that 

  
1

0 1x l
x

δ< < ⇒ − <  

  . .,i e
1 1 1

0 1x l l l l l
x x x

δ< < ⇒ = − + ≤ − + < +  

That is 
1

;0
1

x x
l

δ> < <
+

 

But if we choose a 0y
 
such that

0

1
0 min{ , },

1
y

l
δ< <

+
then 0 00 y y δ< = <  

and   
0 0

1

1
y y

l
= <

+
, contradicting. Therefore 

0

1
lim
x x→

=  does not exist. 

9.1.8Note: lim
x a

x a
→

=
 
(Try to give a proof) 

   We state the following theorem (without) proof which is helpful in finding the limits. 
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9.1.9 Theorem: Let : , :f E R g E R→ →  and let a R∈  be such that 

(( , ) { })E a r a r a∩ − + −  is non empty for every 0.r >  

Let k R∈ .Suppose that lim ( )
x a

f x l
→

=  and lim ( )
x a

g x m
→

= .Then the following are true. 

(i) 
lim( )( ) , lim( )( ) , lim( )( )

lim( )( )

x a x a x a

x a

f g x l m f g x l m fg x lm

kf x kl

→ → →

→

+ = + − = − =

=
 

(ii) If  :h E R→  and lim ( ) 0
x a

h x n
→

= ≠  then h  is never zero in 

(( , ) { })E a r a r a∩ − + −  for some 0,r >
1 1 1

lim ( ) & lim ( )
x a x a

f
x x

h n h n→ →

   
= =   

   
. 

As an illustration we prove the following. 

9.1.10 Theorem: If p is a polynomial function ( . .,i e a function ( )p x of the form

0 1 ....... , 1k

ka a x a x k+ + + ≥ ) then lim ( ) ( )
x a

p x p a
→

=  

9.1.11 Remark: During the course of proof of theorem 9.1.10, we proved that  

            
lim , ,

n n

x a
x a a R n N

→
= ∈ ∈

 

9.1.12 Theorem: Let E R⊆ , let , :f g E R→ be two functions. Let a R∈ be such that

(( , ) { })a r a r a E ϕ− + − ∩ ≠  for every 0.r > Assume that ( ) ( )f x g x≤  for all x  in E  

with x  not equal to .a  If both lim ( ) & lim ( )
x a x a

f x l g x m
→ →

= = then l m≤ .That is 

lim ( ) lim ( )
x a x a

f x g x
→ →

≤ . 

9.1.13 Theorem (Sandwich theorem): Let  E R⊆ , , , :f g h E R→  and let a R∈  be 

such that ( )( , ) { }a r a r a E ϕ− + − ∩ ≠  for every 0.r > If ( ) ( ) ( )f x g x h x≤ ≤  for all 

,x R x a∈ ≠  and if lim ( ) lim ( ),
x a x a

f x l h x
→ →

= =  then lim ( )
x a

g x
→

 exists and is equal to l. 

9.1.14 Theorem: If F  and G  are polynomials such that 

( ) ( ) ( ), ( ) ( ) ( )k kF x x a f x G x x a g x= − = −  for some k N∈  and for some polynomials 

( )f x and ( )g x with ( ) 0g a ≠  then 
( )

lim ( )
( )x a

F f a
x

G g a→

 
= 

 
 

We shall now make use of theorems to compute some limits. Hereafter if the domain of a  

function f  is not explicitly given, then by convention, the domain of f  is to be taken as 

the set of all those real x  for which ( )f x is real. 
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9.1.15 Solved problems: 

1. Problem:    Find 
3 2

23

6 9
lim

9x

x x x

x→

− +

−
  

Solution: Write ( )F x =
3 2 26 9 ( 3) ( 3) ( )x x x x x x f x− + = − = −  where ( ) ( 3)f x x x= −  

Write ( )G x =
2 9 ( 3)( 3) ( 3) ( )x x x x g x− = + − = −  where ( ) 3g x x= +   

   Therefore
( ) ( 3) ( ) ( )

& (3) 6 0
( ) ( 3) ( ) ( )

F x x f x f x
g

G x x g x g x

−
= = = ≠

−
 

Now by applying theorem 9.1.14, we get 

3 2

23

6 9
lim

9x

x x x

x→

− +

−
=

3

( ) (3) 3(3 3)
lim 0

( ) (3) 3 3x

F x f

G x g→

−
= = =

+
 

2. Problem:      Find 
3 2

23

3
lim

5 6x

x x

x x→

−

− +
  

Solution: We write ( )F x =
3 2 2 23 ( 3) ( 3) ( 3) ( ); ( )x x x x x x f x f x x− = − = − = − =  

( )G x =
2 5 6 ( 2)( 3) ( 3) ( )x x x x x g x− + = − − = −  where ( ) 2g x x= − with 

(3) 3 2 1 0g = − = ≠  

∴  By applying theorem 9.1.14, we get 

             

3 2 2

23 3

3 ( ) (3) 3
lim lim 9

5 6 ( ) (3) 3 2x x

x x F x f

x x G x g→ →

−
= = = =

− + −  

                              Exercise 9(a) 

2

0

2
1. lim cos

x
x

x→      

4

23

81
2. lim

2 5 3x

x

x x→

−

− −    

2

23

8 15
3. lim

9x

x x

x→

− +

−
 

4. If 2( ) 25f x x= − −  then find 
1

( ) (1)
lim

1x

f x f

x→

−

−
 

9.1.16 Right and left hand limits: 

We studied limit of function ( )f x  at a given point x a= as the approaching value of 

( )f x when x  tends to ‘ a ’. Hence we note that there are two ways x  could approach ‘ a ’ 

either from the left of ‘ a ’ or front the right of ‘ a ’. This naturally leads to two limits 

namely the’ right hand limit’ and ‘left hand limit’. Right hand limit of a function f  at 

x a= is the limit of the values of ( )f x as x  tends to ‘ a ’ when x  takes values greater 



 

261 

 

than ‘ a ’. We denote the right hand limit of f at ‘ a ’ by lim ( )
x a

f x
→ +

.Similarly we describe 

the left hand limit of ( )f x at ‘ a ’ and we denote it by lim ( )
x a

f x
→ −

. 

1. Example: Define :f R R→  by f(x)=  
1 0

1 0

if x

if x

≤


− >
       

It is clear that the 
0

lim ( ) 1
x

f x
→ −

=  and 
0

lim ( ) 1
x

f x
→ +

= − . 

Hence the right and left hand limits of ( )f x  at 0 are different. We observe that the limit 

of ( )f x as x  tends to 0 does not exist. 

To formulate these concepts analogous to the definition of a limit in the following. 

9.1.17   Definition (Right and left hand limits): 

Let E R⊆  and  :f E R→  

(i). Suppose a R∈ is such that ( , )E a a r+∩  is non-empty for every 0.e > We say that 

l R∈  is a right hand limit of  at ,a  and we write lim ( )
x a

f x l
→ +

= , if given 0ε >  there exists 

a 0δ >  such that ( )f x l ε− <  whenever 0 x a δ< − < and x E∈ . 

(ii) Suppose a R∈ is such that ( , )E a r a−∩ is non empty for every 0.r > We say that 

m R∈  is a left hand limit of f  at a  and we write lim ( )
x a

f x m
→ −

=  if, given 0,ε > there 

exists a 0δ > such that ( )f x m ε− < whenever 0 a x δ< − < and x E∈ . 

The limits lim ( )
x a

f x
→ +

and lim ( )
x a

f x
→ −

 are called one –sided limits.  

These limits (if exists) are unique. 

9.1.18 Note: 

(i) If ( , )E a b=  then it is clear from definitions 9.1.17 and 9.1.5 that 

:f E R→  has limit at a  if and only if has right hand limit at .a  

In this case lim ( ) lim ( )
x a x a

f x f x
→ → +

=  

(ii) Also f  has limit at b  if and only if it has left hand limit .b  

In this case lim ( ) lim ( )
x b x b

f x f x
→ → −

= . 

(iii) If ,a c b< < f has limit at c  if and only if the left hand limit and the right 

hand limit both exist at c  and are equal. 

 In this case lim ( ) lim ( ) lim ( )
x c x c x c

f x f x f x
→ → − → +

= =  

The following theorem relates limit of a function to one sided limits. 
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9.1.19   Theorem:  Let ( , ) { }E a r a r a= − + −  for all 0r > and : .f E R→  

Then lim ( ) lim ( ) lim ( )
x a x a x a

f x l f x l f x
→ → + → −

= ⇔ = = . 

9.1.20 Note: 

If lim ( ) & lim ( )
x a x a

f x f x
→ + → −

 exist then 
0

0

lim ( ) & lim ( )
x a h

h

f x f a h
→ + →

>

+  and 
0

0

lim ( ) & lim ( )
x a h

h

f x f a h
→ − →

>

−  

9.1.21 Solved Problems: 

1. Problem: Show that 
0

lim 1
x

x

x→ +
=  and 

0
lim 1
x

x

x→ −
= −  

Solution: Here 
1 0

1 0

if xx

if xx

>
= 

− <
 

Therefore 
0

lim 1
x

x

x→ +
= =

0
lim 1
x→ +

=1 and 
0

lim 1
x

x

x→ −
= −  

2. Problem: Let :f R R→  be defined by
2 1 3

( )
5 3

x if x
f x

if x

− <
= 

≥
.  

Show that 
3

lim ( ) 5
x

f x
→

= . 

Solution: 
3

lim ( ) 5
x

f x
→ +

= , since ( ) 5f x = for 3x > and 
3 3

lim ( ) lim (2 1) 5
x x

f x x
→ − → −

= − =   

Hence 
3

lim ( ) 5.
x

f x
→

=  

3. Problem: Show that 
2 2

2 2
lim 4 0 lim 4
x x

x x
→ − →

− = = −  

Solution: Observe that 
2 4x −  is not defined over ( 2, 2)−  

But 
2

2
lim 4
x

x
→ +

− =0 and 
2

2
lim 4 0
x

x
→ −

− =  

Therefore 
2 2

2 2
lim 4 0 lim 4
x x

x x
→ →−

− = = −  

4. Problem: If 
2 1

( )
2 1 1

x if x
f x

x if x

 ≤
= 

− >
, then find 

1
lim ( )
x

f x
→ +

 and 
1

lim ( )
x

f x
→ −

.  

Does 
1

lim ( )
x

f x
→

 exist? 

Solution: 
1 0 0

0

lim ( ) lim (1 ) lim(2(1 ) 1) 1
x h h

h

f x f h h
→ + → →

>

= + = + − =  
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And   2

1 0 0
0

lim ( ) lim (1 ) lim(1 ) 1
x h h

h

f x f h h
→ − → →

>

= − = − =  

Since  
1 1

lim ( ) lim ( ) 1
x x

f x f x
→ + → −

= = , we get  
1

lim ( )
x

f x
→

 exists and 
1

lim ( )
x

f x
→

=1. 

Exercise 9(b) 

 Find the right and left hand limits of the functions at a point a mentioned against 

them .Hence check whether the functions have limits at those ' .a s  

1. 
1 1

( )
1 1

x if x
f x

x if x

− ≤
= 

+ >
   1.a =  

2. 
2

2 1 3
( )

3 5

x if x
f x

x if x

+ − < ≤
= 

< <
  3.a =  

3. 
2

2
2

( )

2
3

x
if x

f x
x

if x


<

= 
 ≥


   2.a =  

4. Show that 
2

2
lim 1

2x

x

x→ −

−
= −

−
 

5. Show that 
0

2
lim 1 3
x

x
x

x→ +

 
+ + = 

 
 

6. Compute ( ) ( )
2 2

lim [ ] & lim [ ]
x x

x x x x
→ + → −

+ +  

9.1.22 Standard limits: 

We shall now obtain the limits of some standard functions in the following 

theorems. Using these we can find the limits of some functions easily. 

9.1.23 Theorem:   If 0,a > n R∈  then lim
n n

x a
x a

→
=  

9.1.24 Theorem:  Let n  be a rational number and a  be a positive real number. 

Then 1lim
n n

n

x a

x a
na

x a

−

→

−
=

−
 

9.1.25 Theorem:   
0 0

sin
lim cos 1& lim 1
x x

x
x

x→ →
= =  

9.1.26 Theorem:   
1

0
lim(1 ) x

x
x e

→
+ =  

9.1.27 Theorem:  
0

1
lim log

x

e
x

a
a

x→

 −
= 
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9.1.27 Corollary:  
0

1
lim 1

x

x

e

x→

 −
= 

   

 

9.1.28 Theorem:   
0

log (1 )
lim 1e

x

x

x→

+
=  

 

9.1.29  Solved problems: 

1. Problem: Compute 
0

1
lim

1 1

x

x

e

x→

 −
 

+ − 
 

    Solution:  For 1o x< <  

  Let 
0

1
L lim

1 1

x

x

e

x→

−
=

+ −  

0
1

1 0 1

e −
=

+ −

1 1

1 1

−
=

−

1 1

1 1

−
= =

−

0

0
form  

              Now 
0

0 0

0

11 lim
1

L lim lim
1 1 1 1 1 1

lim

x
x

x x

x x

x

ee
xe x

x x x

x x

→

→ →

→

 − −
  −   = = =

 + − + −  + −
   
   

 

                      0

1 1
lim 1

1/ 2

y

y

e

y→

 −
= = 

 
∵

 

                     

2
1 2

1
= × =

 

2. Problem: Compute 
0

1
lim ,( 0, 0, 1)

1

x

xx

a
a b b

b→

−
> > ≠

−
 

        Solution: Let 
0

1
L lim

1

x

xx

a

b→

−
=

−  

0

0

1

1

a

b

−
=

−

1 1

1 1

−
= =

−

0

0
form  

              Now 
0

0 0

0

1 1
lim

1
L lim lim

1 11
lim

x x

x
x

x xxx x

x

a a

a x x

b bb

x x

→

→ →

→

   − −
   −

= = =   
− −−    

      

 

                      0

log 1
lim log

log

y

e
e

y
e

a a
a

b y→

 −
= = 

 
∵

 

                      

log
log log

log

k

b b

k

a
a a

b

 
= = 

 
∵
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3. Problem:  Compute 
0

sin 1
lim

x

x

e x

x→

− −
 

Solution: We have 

0 0 0 0

sin 1 1 sin 1 sin
L lim lim lim lim 1 1 0

x x x

x x x x

e x e x e x

x x x x x→ → → →

   − − − −
= = − = − = − =  

   
 

 

5. Problem: Evaluate 
1

log
lim

1

e

x

x

x→ −
 

Solution: Put 1.y x= −
 
Then y  implies 0 

 

 Now 
1 0

log log(1 )
lim lim 1

1

e

x y

x y

x y→ →

+
= =

−
 

 

Exercise 9(c) 

     

2 2 0

2

cos tan( ) sin( ) sin( )
1. lim 2. lim ( 0) 3. lim

2

x a x
x

x x a a bx a bx
a

x a x
x

π π → →
→

− + − −
≠

− 
− 

   

    

3 3 sin

20 0 1

1 (2 1)( 1)
4. lim 5. lim 6. lim

(2 3)

x x

x x x

e e e x x

x x x x

+

→ → →

− − − −

+ −
 

 

9.1.30   Infinite limits and limits at infinity:  Consider 4( )f x x−=  for x  not equal to 

zero. At the points very close to zero the values of ( )f x would be increasing 

rapidly. Thus we can’t have the concept o limit at zero for this function. We shall 

try to describe this nature of the function in the present section. 

(i) Let , : &E R f E R a R⊆ → ∈  be such that (( , ) { })E a r a r a∩ − + −  is non 

empty for every 0.r > We say that ( )f x tends to infinity as x a→  and write 

lim ( )
x a

f x
→

= ∞  is given Rα ∈  there exists a 0δ >  such that ( )f x α>  for all 

x R∈  with 0 x a δ< − < . 

(ii) ( )f x is said that to tend to −∞  as x a→  and write lim ( )
x a

f x
→

= −∞ , if given 

Rβ ∈  there exists a 0δ >  such that ( )f x β< ,for all x E∈ with o x a δ< − <

. 

(iii) Let , :E R f E R⊆ → .Suppose ( , )a E∞ ⊆  for some .a R∈ Then we say that l

belongs R is a limit of ( )f x as x  tends to infinity and write lim ( ) ,
x

f x l
→∞

= if 

given 0ε >  there exists a K a> such that ( )f x l ε− <  or all >Kx Such an l   

if exists, is unique. 
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(iv) Let , :E R f E R⊆ → .Suppose ( , )a E−∞ ⊆  for some a belongs to R . Then we 

say that l  belongs to R  is a limit of ( )f x as x  tends to −∞  and write 

lim ( )
x

f x l
→−∞

= ,if given 0ε >  there exists a K< a such that ( )f x l ε− < for all 

<K.x Such that an l , if exists is unique. 

(v) Let , :E R f E R⊆ → .Suppose ( , )a E∞ ⊆  for some a R∈ . Then we say  f(x) 

tends to ∞ as x  tends to ∞  and write lim ( )
x

f x
→−∞

= ∞ , if given Rα ∈  there 

exists a K> a such that ( )f x α>  for all >Kx .  

(vi) Let , :E R f E R⊆ → .Suppose ( , )a E∞ ⊆  for some a R∈ . Then we say  

( )f x tends to - ∞ as x  tends to ∞  and write lim ( )
x

f x
→−∞

= −∞ , if given Rα ∈  

there exists a K> a such that ( )f x α<  for all >Kx .  

(vii) Let , :E R f E R⊆ → .Suppose ( , )a E−∞ ⊆   for some a R∈ . Then we say  

( )f x tends to ∞ as x  tends to -∞  and write lim ( )
x

f x
→−∞

= ∞ , if given Rα ∈  

there exists a K< a such that ( )f x α>  for all Kx < .  

(viii) Let , :E R f E R⊆ → .Suppose ( , )a E−∞ ⊆   for some a R∈ . Then we say  

( )f x tends to −∞as x  tends to −∞  and write lim ( )
x

f x
→−∞

= −∞ , if given Rα ∈  

there exists a K a< such that ( )f x α<  for all K.x <  

In order to compute the limits defined in (i) through (vii) the following theorem is of 

great use. We state the theorem without proof as the proof is beyond the scope of this 

book. 

9.1.31 Theorem:  Let , : &E R f E R a R⊆ → ∈  be such that (( , ) { })E a r a r a∩ − + −  

                      is non empty for every 0.r >  

(i) Suppose lim ( )
x a

f x
→

= ∞ .Then 
1

lim 0
( )x a f x→

=  

(ii) Suppose lim ( )
x a

f x
→

= −∞ .Then 
1

lim 0
( )x a f x→

=  

(iii) If 
1

lim 0
( )x a f x→

=  and f  is positive in a deleted neighbourhood of a ,  

then 
1

lim
( )x a f x→

= ∞ . 

(iv) If 
1

lim 0
( )x a f x→

=  and f  is negative in a deleted neighbourhood of ,a then 

1
lim

( )x a f x→
= −∞  

9.1.32 Theorem: 

Let , : , : , :E R f E R g E R h E R⊆ → → →  and let ( , )a E∞ ⊂  for some a R∈ . If 

lim ( ) lim ( ) & ( ) ( ) ( )
x x

g x l h x g x f x h x
→∞ →∞

= = ≤ ≤  for all x R∈  then lim ( ) 1
x

f x
→∞

= . 
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9.1.33 Solved Problems: 

1. Problem: Show that 
2

1
lim 0
x x→∞

= . 

Solution: Given 0,ε >  choose 
1

0α
ε

= > . Then 

 2

2 2

1 1 1 1
0x x x

x x
α ε ε

εε
> ⇒ > ⇒ > ⇒ < ⇒ − <  

             Hence 
2

1
lim 0
x x→∞

=  

2. Problem: Show that lim
x

x
e

→∞
= ∞  

Solution:  Given 0,K > let log Kα = . Then 
xx e e Kαα> ⇒ > =  

Hence lim
x

x
e

→∞
= ∞  

3. Problem: Compute 
2

22

2 1
lim

4 4x

x x

x x→

+ −

− +
 

Solution: Write 
2 2

2 2

4 4 ( 2)
( )

2 1 2 1

x x x
f x

x x x x

− + −
= =

+ − + −
 

Clearly ( ) 0f x > in a deleted neighbourhood of 2. 

Hence 
2

22

2 1
lim

4 4x

x x

x x→

+ −

− +
= ∞ . 

4. Problem:If 1 0

1 0

.........
( )

.........

n

n

m

m

a x a x a
f x

b x b x b

+ + +
=

+ + +
 with 0, 0n ma b> >  then show that 

lim ( )
x

f x
→∞

= ∞  if .n m>  

Solution: 

1 01

1

1 01

1

.....

( )

.....

n n
n n n

n m
m m m

a aa
x a

x x x
f x

b bb
x b

x x x

−

−

−

−

 
+ + + + 

 =
 

+ + + + 
 

 

As x → ∞ , all the quotients approach to zero. Therefore the quantity in the big bracket 

above approaches  ( 0).n

m

a

b
>  But lim n m

x
x

−

→∞
= ∞  (since n m> ). Hence  lim ( ) .

x
f x

→∞
= ∞  
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                                            Exercise 9(d) 

2
2 3 2

2 23 1

8 33 2 1 5 6 7
1. lim 2. lim 3. lim 4. lim 5. lim

6 9 1 3 3 2

x

x x x x x

x xx x x x x
e

x x x x x x

−

→ → − →∞ →∞ →∞

++ + + − +

− + − + −

 

( )

( )

2 2 3

2 2 3 2

2
2

22

2

5 2 2 3 11 3 43
6. lim 7. lim 8. lim 9.lim 1

2 5 1 2 5 13 5 7

2 3 2 sin 2 cos
10. lim 11. lim 12. lim 13. lim

3 20071

cos sin
14.lim

1

x x x x

x x x x

x

x x x x x x
x x

x x x x x x

x x x
x x x

x xx

x x

x

→∞ →∞ →∞ →∞

→∞ →−∞ →−∞ →−∞

→∞

+ + − + −
+ −

− + − + − −

 + + +
+ −  

+ +− 

+

+

 

     9.2 Definition of Continuity and simple problems: 
In this section, we shall define one of the most important concepts of mathematical 

analysis, namely, the continuity of a function at a point and on a set. We shall also discuss 

the relation between limits and continuity. 

We start this section with some examples. 

1. Example: Define :f R R→  by ( ) 2 1,f x x= + x R∈ . Note that this function is 

defines at every point of .R The graph of this function is given in the figure. 

We observe that the left hand limit of f  at 0x = is 1 and also the right 

hand limit of f  at 0x = is 1. 

            Thus the 
0 0

lim ( ) lim ( ) 1
x x

f x f x
→ + → −

= =  and this value equal to (0) 1.f =  

                Here, it is worth mentioning that it is possible to draw the graph of the function 

around the point 0x = without lifting the pen from the plane of the paper. Since the same 

is true for every point in ,R  graphically the function ( ) 2 1,f x x= + defines a line without 

any breaks. 

2. Example: Define :f R R→   by
1 0

( )
2 0

if x
f x

if x

≤
= 

>
. 

               This function is defined at every point of .R  The graph of this function is given 

in the figure. It is east to see that  
0 0

lim ( ) 2 (0) & lim ( ) 1
x x

f x f f x
→ + → −

= ≠ = . 

           Here we note that it is not possible to draw the graph of the function on the plane 

of the paper without lifting the pen at 0.x = The graph of the function and has a break at 

0.x =  

3. Example: Define :f R R→ by 2( ) ,f x x x R= ∈  we observe that 
0

lim ( ) 0
x

f x
→ +

=  

with (0) 0f = so that 
0 0 0

lim ( ) lim ( ) lim ( ) 0 (0)
x x x

f x f x f x f
→ → + → −

= = = =  
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9.2.1 Definition: Let , : &E R f E R a E⊆ → ∈ , Then we say that f is continuous at ‘ a ’ 

if given 0ε > there exists a 0δ > such that ( ) ( )f x f a ε− <  whenever x E∈  and 

0 x a δ< − < . 

If f  is continuous at every point of  E  then we say that f  is continuous on E . 

If f  is not continuous at a , we say that f  is discontinuous at .a  

Observe that, we talk of continuity or discontinuity of f  at a point ‘ a ’ only when ‘ a ’ is 

in the domain of .f  

9.2.2 Remark: Let , : &E R f E R a E⊆ → ∈ , Suppose that there exists a positive real 

number r such that ( , ) { }a r a r E a− + ∩ = .Then f  is continuous at ,a  a  being arbitrary, 

f  is continuous on .N  

For let 0ε >  be given. Then  

x E∈  And ( )x a r x a− < ⇒ = (since ( , ) { }a r a r E a− + ∩ = ) 

   ( ) ( ) ( ) ( ) 0f x f a f x f a ε⇒ = ⇒ − = <  

As a particular case, any function :f N R→ is continuous on N . In fact for any given 

a N∈ ,
1 1

, { }
2 2

a a N a
 

− + ∩ = 
 

.Hence f  is continuous at a .  As being arbitrary, f  is 

continuous on .N  

9.2.3 Geometric interpretation of continuity at a point: 

 If :f R R→  is a function recall that the set {( , ( )) ; }x f x R R x R∈ × ∈  is called the 

graph of .f  

 If [ , ]a b and [ , ]c d are intervals in R  then the Cartesian product [ , ] [ , ]a b c d∗ is 

called a rectangle R  in the plane. Infact [ , ] [ , ] [( , ) : ,R a b c d x y a x b c y d= × = ≤ ≤ ≤ ≤ (see 

the fig).Note that b a− is the width and d c− is the height of the rectangle. 

 Now recall that f  is continuous at a point 
0x  in R  if and only if to each 0ε >

,there is a 0δ >  such that 0 0( , )x x xδ δ∈ − +  implies 0 0( ) ( ( ) , ( ) )f x f x f xε ε∈ − + .That 

is f is continuous at 0x  if and only if to each 0ε > there is a 0δ >  such that 

0 0 0 0( , ( )) ( , ) ( ( ) , ( ) )x f x x x f x f x Rεδδ δ ε ε∈ − + × − + =  (say). 

 Thus is continuous at 0x R∈  if and only if to each 0ε >  there is a 0δ >  such 

that the part of the graph of f is given by 
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  0 0{( , ( ) : ( , )}x f x x x x Rεδδ δ∈ − + ⊆  (see fig) 

 That is, as the height 2ε  of the rectangle Rεδ  is sufficiently small, a part of the 

graph of f  is contained in Rεδ . 

9.2.4 Remark:   Let , : &E R f E R a E⊆ → ∈  be such that (( , ) { })a r a r a E− + − ∩  is 

non-empty for every 0.r >  Then f  is continuous at a  if and only if  lim ( ) ( ).
x a

f x f a
→

=  

The following conditions should be valid. 

(i) f  should be defined at ,a  

(ii) lim ( )
x a

f x
→

 must exist 

(iii) ( ) lim ( )
x a

f a f x
→

=  

Theorem analogous to theorem 9.2.5 can also be had for continuous functions. 

9.2.5 Theorem: Let E R⊆ , ,f g be functions from E  into R  and c  belongs R . 

Suppose a  belongs to E and ,f g are continuous at a , then 

(i) , , ,f g f g fg cf+ −  are all continuous at a . 

(ii) If, in addition ( )g a is not equal to 0 then the quotient 
f

g
is continuous at a  

9.2.6 Observation: 

When f  and g  are continuous at a
 
we have lim ( ) ( ) & lim ( ) ( )

x a x a
f x f a g x g a

→ →
= =

.Now by theorem 9.2.5 we get 

(i) lim( ) ( ) ( )
x a

f g x f a g a
→

+ = +  

(ii) lim( ) ( ) ( )
x a

f g x f a g a
→

− = −  

(iii) lim( ) ( ) ( )
x a

fg x f a g a
→

=  

(iv) lim( ) ( )
x a

cf x cf a
→

=  for any c  belongs to R 

(v) Also if g(a) not equal to 0 then 
( )

lim
( )x a

f f a
x

g g a→

 
= 

 
 

9.2.7 Theorem: 

Let *E R⊆  ,f g be real valued continuous functions on E  and c  belongs to R . 

Then 

(i) , , ,f g f g fg cf+ − are all continuous on E  

(ii) If, in addition ( )g x not equal to zero for all x  belongs to E  then 
f

g
is 

continuous on E . 

Proofs of these two theorems are not given, as they are beyond the scope of this book. 
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9.2.8 Definition (Right and left continuities): 

Let E R⊆ , :f E R→ be a function. Let &(( , ) { }) 0a E a r a r a E∈ − + − ∩ ≠ for every 

0r > We say that a function f  is right continuous at ‘ a ’ if lim ( )
x a

f x
→ +

 exists and is equal 

to ( ).f a Similarly we say that f  is left continuous at ‘ a ’ if lim ( )
x a

f x
→ −

 exists and is equal 

to ( ).f a  

9.2.9 Theorem:   Let E R⊆ , :f E R→  be a function. Let a belongs to E. Then f  is 

continuous at a if and only if lim ( ) & lim ( )
x a x a

f x f x
→ + → −

 both exist and 

lim ( ) lim ( ) ( )
x a x a

f x f x f a
→ + → −

= = . 

The proof of this theorem is beyond the scope of the book. 

9.2.10 Note: 

1. f  is continuous on the closed interval [ , ]a b if 

(i) f  is continuous in ( , )a b  

(ii) lim ( ) ( )
x a

f x f a
→ +

=  

(iii) lim ( ) ( )
x a

f x f b
→ −

=  

2. Let ,E R a E⊆ ∈ , f  is discontinuous at a point x a= in any one of the 

following cases 

(i) lim ( ) & lim ( )
x a x a

f x f x
→ + → −

 exist, but are not equal. 

(ii) lim ( ) & lim ( )
x a x a

f x f x
→ + → −

 exist and are equal, but not equal to ( ).f a  

(iii) One or both of the two limits lim ( ) & lim ( )
x a x a

f x f x
→ + → −

 fail to exist. 

9.2.11 Theorem: Let , :A R f A R⊆ →  and let ( ) 0f x ≥  for all x  in A. Let f  be 

defined for x  belongs to A  by ( ) ( ) ( )f x f x= .then the following conclusions 

hold 

(i) If f  is continuous at a point c  in A , then f  is continuous at c  

(ii) If f  is continuous on A , then f  is continuous on A . 

The continuity behaviour of the composition of two continuous functions is given in the 

follow theorems. 

9.2.12 Theorem: 

Let , , :A B R f A R⊆ →  and :g B R→  be two functions such that ( )f A B⊆  continuous 

at a point c  in A  and g  is continuous at ( )b f c=  in B  then the composition :g f�  is 

continuous at c . 

9.2.13 Theorem: Let , , :A B R f A R⊆ →  be continuous on A  and let be continuous of 

( )f A B⊆  then the composite function :g f�  A  tends to R  is continuous on A . 
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9.2.14 Solved problems: 

1. Problem: Show that ( ) [ ]( )f x x x R= ∈  is continuous at only those real numbers 

that are integers. 

Solution:  

Case 1: If a Z∈ then ( ) [ ]f a a a= = .  

Now 
0 0

lim ( ) lim[ ] 1, lim ( ) lim[ ]
x a h x a h

f x a h a f x a h a
→ − → → + →

= − = − = + =  

Hence, lim ( ) lim ( )
x a x a

f x f x
→ − → +

≠  so that lim ( )
x a

f x
→

 does not exist. 

Case 2: If a Z∉ , then there exists n Z∈  such that 1n a n< < +  and ( ) [ ]f a a n= =  

 Now, 
0 0

lim ( ) lim[ ] 0, lim ( ) lim[ ]
x a h x a h

f x a h f x a h n
→ − → → + →

= − = = + =  

So lim ( ) ( )
x a

f x n f a
→

= =  

Hence f is continuous at .x a=  

2. Problem: Show that the function ‘ f ’ defined on R  by 2( ) cos ,f x x x R= ∈  is 

continuous function. 

Solution:  We define :h R R→  by 2( )h x x=  and :g R R→  by ( ) cosg x x= . Now for x  

belongs to R we have 2 2( )( ) ( ( )) ( ) cos ( )goh x g h x g x x f x= = = =  

 Since g  and h  are continuous on their respective domains, by theorem 9.2.13, it 

follows that ‘ f ’ is a continuous function on R . 

3. Problem: If :f R R→  is such that ( ) ( ) ( ) ,f x y f x f y x y R+ = + ∀ ∈ , the ‘ f ’ is 

continuous on R  if it continuous at a single point in R . 

Solution: Let ‘ f ’ be continuous at 0x R∈  

 Then lim ( ) ( )
o

o
t x

f t f x
→

=  or 
0

lim ( ) ( )o o
h

f x h f x
→

+ =  

Let x R∈ . Now since ( ) ( ) ( ) ( ) ( )o of x h f x f h f x h f x+ − = = + − , we have  

  
0 0

lim( ( ) ( )) lim( ( ) ( )) 0o o
h h

f x h f x f x h f x
→ →

+ − = + − =  

Therefore ‘ f ’ is continuous at ‘ x ’. Since x R∈  is arbitrary, ‘ x ’ is continuous on R . 

4. Problem: Show that the function ‘ f ’ is defined on R  by 

( ) 1 2 ,f x x x x R= + + ∈  is a continuous function. 
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Solution:  We define :g R R→  by ( ) 1 2 ,g x x x x R= + + ∈  and :h R R→  by 

( ) ,h x x x R= ∈ . Then ( )( ) ( ( )) (1 2 ) ( )hog x h g x h x x f x= = + + =  

By example we have ‘ h ’ is a continuous function. Since ‘ g ’ is the sum of the 

polynomial function 1 2x+ and the modulus function x  and since both are continuous 

functions, by theorem 9.2.7 (i), ‘ g ’ is continuous. 

 Since ‘ f ’ is the composition of two continuous functions ‘ h ’ and ‘ g ’ by 

theorem 9.2.13, it follows that ‘ f ’ is continuous. 

Exercise 9(e) 

I. 1.    Is the function f , defined by 
2 1

( )
1

x if x
f x

x if x

 ≤
= 

>
 ,continuous on R  

2.     Is f defined by 

sin 2
0

( )

1 0

x
if x

f x x

if x


≠

= 
 =

 continuous at 0 

3. Show that the function 
1

10 3( ) [cos( 1)] ,f x x x R= + ∈  is a continuous 

function. 

II.  1. Check the continuity of the following function at 2.        

                        

2

3

1
( 4) 0 2

2

( ) 0 2

2 8 2

x if x

f x if x

x if x−


− < <


= =


− >


   

3. Check the continuity of f given by 

2

2

( 9)
0 5

( ) & 32 3

1.5 3

x
if x

f x xx x

if x

 −
< <

= ≠− −
 =

      

  the point 3. 

3. Show that f , given by ( ) ( 0)
x x

f x x
x

−
= ≠  is continuous on { }0 .R −  

4. If f  is a function defined by 

1
1

1

( ) 5 3 2 1

6
2

10

x
if x

x

f x x if x

if x
x

−
>

−


= − − ≤ ≤

 < −

−

  then discuss the                                         

continuity of f . 
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5. If f  is given by 
2 1

( )
2 1

k x k if x
f x

if x

 − ≥
= 

<
 is a continuous function on R  then 

find the values of k . 

6. Prove that the functions sin x  and cos x  are continuous on R . 

 

III  1. Check the continuity of f  given by 

2

2

4 0

5 0 1
( )

4 9 1 2

3 4 2

x if x

x if x
f x

x if x

x if x

 − ≤


− < ≤
= 

− < <
 + ≥

 at the points 

0, 1, 2. 

2. Find real consonants ,a b so that the unction f  given by   

2

sin 0

0 1
( )

3 1 2

3 3

x if x

x a if x
f x

bx if x

if x

≤


+ < <
= 

+ ≤ ≤
− >     is continuous on R . 

        3. Show that 

( )

2

2 2

cos cos
0

( )
1

0
2

ax bx
if x

x
f x

b a if x

−
≠

= 
 − =


 where a and b  are real constants, is 

continuous at 0. 

                           Key Concepts 

1. If  lim ( )
x a

f x l
→

=  and lim ( )
x a

g x m
→

= . And k ∈R, then  

(i) 
lim( )( ) , lim( )( ) , lim( )( )

lim( )( )

x a x a x a

x a

f g x l m f g x l m fg x lm

kf x kl

→ → →

→

+ = + − = − =

=
 

(ii) If  :h E R→  and lim ( ) 0
x a

h x n
→

= ≠  then h is never zero in 

(( , ) \{ })E a r a r a∩ − +  for some r>0 , 
1 1 1

lim ( ) & lim ( )
x a x a

f
x x

h n h n→ →

   
= =   

   
. 

2. If p is a polynomial function (i.e. a function p(x) of the form

0 1 ....... , 1k

k
a a x a x k+ + + ≥ ) then lim ( ) ( )

x a
p x p a

→
=  

3. 
lim , ,

n n

x a
x a a R n N

→
= ∈ ∈

 
4.  (Sandwich theorem) 
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Let  E R⊆ , , , :f g h E R→  and let a R∈  be such that (( , ) \{ })a r a r a E ϕ− + ∩ ≠  for 

every r>0.If ( ) ( ) ( )f x g x h x≤ ≤  for all ,x R x a∈ ≠  and if lim ( ) lim ( ),
x a x a

f x l h x
→ →

= =  then 

lim ( )
x a

g x
→

 exists and is equal to l. 

5. If  F and G are polynomials such that ( ) ( ) ( ), ( ) ( ) ( )k kF x x a f x G x x a g x= − = −  for 

some k N∈  and for some polynomials f(x) and g(x) with ( ) 0g a ≠  then 

( )
lim ( )

( )x a

F f a
x

G g a→

 
= 

 
 

6. If a>0, n R∈  then lim
n n

x a
x a

→
=  

7. Let n be a rational number and a be a positive real number. Then 

1lim
n n

n

x a

x a
na

x a

−

→

−
=

−
 

8. 0 0

sin
lim cos 1& lim 1
x x

x
x

x→ →
= =

 

9. 
1

0
lim(1 ) x

x
x e

→
+ =  

10.  
0

1
lim log

x

e
x

a
a

x→

 −
= 

 
 

11. 
0

1
lim 1

x

x

e

x→

 −
= 

 
  

12. 0

log (1 )
lim 1e

x

x

x→

+
=

 

 

13. Let , : &E R f E R a R⊆ → ∈  be such that (( , ) \{ })E a r a r a− +∩  is non empty 

for every r>0. 

(i)  Suppose
lim ( )
x a

f x
→

= ∞
.Then 

1
lim 0

( )x a f x→
=  

(ii)  Suppose 
lim ( )
x a

f x
→

= −∞
.Then 

1
lim 0

( )x a f x→
=  

(iii) If 
1

lim 0
( )x a f x→

=  and f is positive in a deleted neighbourhood of a,  

then 
1

lim
( )x a f x→

= ∞ . 
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(iv) If 
1

lim 0
( )x a f x→

=  and f is negative in a deleted neighbourhood of a ,then 

1
lim

( )x a f x→
= −∞  

 

14. Let , : , : , :E R f E R g E R h E R⊆ → → →  and let ( , )a E∞ ⊂  for some a R∈ . If 

lim ( ) lim ( ) & ( ) ( ) ( )
x x

g x l h x g x f x h x
→∞ →∞

= = ≤ ≤  for all x R∈  then lim ( ) 1
x

f x
→∞

= . 

Answers 

                             Exercise 9(a) 

1. 0
      

108
2.

7      

1
3.

3

−

     

1
4.

24
 

                             Exercise 9(b) 

1. (1) 2, (1) 0.Rf Lf= =   2. (3) 9, (3) 5.Rf Lf= =  
4

3. (2) , (2) 1.
3

Rf Lf= =  6. 4, 3.  

                                Exercise 9(c) 

     

1
1. 1 2. 3. 2 cos

2
b a

a
− 3 1

4. 5. 1 6.
10

e

                            Exercise 9(d) 

1. 2. 3. 4. 0 5. 11∞ ∞ ∞

         

1 11
6. 7. 2 8. 9.0

2 13

 
1

10. 11. 2 12. 0 13.0 14.0
2

−  

                           Exercise 9(e) 

  I.  1. yes     2.  discontinuous at 0 

 II. 1. discontinuous at 2     2.  continuous at 3 4.  continuous  at 1,   discontinuous at -2 

       5. 1, 2k = −   

III  1. discontinuous at 0, discontinuous at 1, discontinuous at 2.       .       .        

3. 0, 2a b= = −   
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                        10. DIFFERENTIATION 

Introduction: 

            We shall discuss in this chapter, the derivative which forms a basis for the 

fundamental concepts like velocity, acceleration and the slope of a tangent to a curve and 

so on. The credit goes to the great English mathematician Sir Isaac Newton (1642-1727) 

and the noted German mathematician Gottfried Wilhelm Leibnitz (1646-1716) who 

independently conceived this idea simultaneously. Sir Isaac Newton was the most 

distinguished student of his distinguished teacher Isaac Barrow. 

 Suppose :f I R→ is a function, I  being an interval. We usually denote it by the 

equation ( ),y f x= where x  is the independent variable and y  is the dependent variable. 

Let c  be a point in .I  Let c h+ also be a point in I  lying either to the left side of c  or to 

the right side of c  ( c h c+ <  if 0;h < c h c+ > if 0h > ).Then ( ) ( )f c h f c+ − denotes the 

change in ( )f x corresponding to a change h  in x  at .c  The ratio 
( ) ( )f c h c

h

+ −
 is called 

the average change in ( )f x corresponding to a change of h  in x  at .c If this ratio tends to 

a finite limit as h  approaches zero, then the limit the derivative (or the rate of change) of 

f  at .c  

10.1 Derivative of a function: 

 We begin with the definition of the derivative of a function and later prove certain 

important elementary properties of the derivatives. 

10.1.1 Definition: Let I  be an interval in ,R  : ,f I R a I→ ∈ and let 0h ≠ be 

sufficiently small such that a h I+ ∈ . If 
0

( ) ( )
lim
h

f c h c

h→

+ −
 exists, then f  is said to be 

differentiable at a  and the limit is called the derivative of f at a  (or the differential 

coefficient of f  at a ). The derivative of f at a  is denoted by any one of the forms. 

 ( )f a′  or 
x a

dy

dx =

 
 
 

 or ( )y a′  where ( )y f x=  

The definition of derivative is also called the ‘first principle of derivative’ 

 Observe that if a  is not an end point of the interval ,I  then '( )f a  exists if and 

only if 
0 0

( ) ( ) ( ) ( )
lim & lim
h h

f a h a f a h a

h h→ + → −

+ − + −
 both exist and are equal. The limits 

0 0

( ) ( ) ( ) ( )
lim & lim ,
h h

f a h a f a h a

h h→ + → −

+ − + −
if exists are denoted by ( ) & ( )f a f a′ ′+ −  

respectively and are called the right and left hand derivative of  f  at .a  
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  If :[ , ]f c d R→ , then f is said to be differentiable. 

(i) At c if ( )f c′ + exists 

(ii) At d  if ( )f d′ −  exists 

Suppose A I⊆ and f is differentiable at every x A∈ .The function that assigns ( )f x′ to 

each x  belongs to A  is called the derived function or the derivate of f  and is denoted by 

.f ′
 The process of finding the derivative of a function is called differentiation. 

10.1.2 Note: If we denote the change h  in x  by x∆  and the change in y  by ,y∆  then 

( ) ( )y f a x f a∆ = + ∆ − . Moreover
0 0

( ) ( )
( ) lim lim

x x

f a x a y
f a

x x∆ → ∆ →

+ ∆ − ∆
′ = =

∆ ∆
 

We also note that
( ) ( )

( ) lim
x a

f x a
f a

x a→

−
′ =

−
 

10.1.3 Solved problems: 

1. Problem: If 2( ) ( ),f x x x R= ∈ prove that f  is differentiable on R  and find its 

derivative. 

Solution: Given that 2( ) ( )f x x x R= ∈  

 For ,x h R∈  we have 2 2 2( ) ( ) ( ) 2 (2 )f x h f x x h x xh h h x h+ − = + − = + = +  

 Hence for 
( ) ( )

0, 2
f x h f x

h x h
h

+ −
≠ = +  

Therefore 
0

( ) ( )
lim 2
h

f x h f x
x

h→

+ −
=  

Therefore f  is differentiable on R  and ( ) 2f x x′ =  for each x R∈ . 

2. Problem: Suppose ( ) ( 0)f x x x= > . Prove that f  is differentiable on (0, )∞  and find 

( )f x′ . 

Solution: Let (0, ), 0& | |x h h x∈ ∞ ≠ <  

 Then 

( )
( )

( )( ) ( ) 1x h x x h xf x h f x x h x

h h x h xh x h x

+ − + ++ − + −
= = =

+ ++ +
 

Therefore 
0

( ) ( ) 1
lim

2h

f x h f x

h x→

+ −
=  
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Hence f is differentiable at ‘ x ’ and 
1

( )
2

f x
x

′ =  for each (0, )x ∈ ∞  

3. Problem: If 
2

1
( ) ( )

1
f x x R

x
= ∈

+
, prove that f  is differentiable on R  and find ( )f x′ . 

Solution: Let x R∈ . Then for 0h ≠ , we have 

2 2 2 2 2 2

( ) ( ) 1 1 1 (2 ) (2 )

( ) 1 1 ( 1) ( ) 1 ( 1) ( ) 1

f x h f x h x h x h

h h x h x h x x h x x h

 + − − + − +
= − = = 

+ + +    + + + + + +     
 

Therefore  
2 20

( ) ( ) 2
lim

( 1)h

f x h f x x

h x→

+ − −
=

+
 

Hence f  is differentiable at ‘ x ’ and ( )f x′ =
2 2

2

( 1)

x

x

−

+
 for each x belongs to R . 

4. Problem: If ( ) sin ( )f x x x R= ∈ , then show that f is differentiable on R  and 

( ) cosf x x′ = . 

Solution: Let x R∈ . Then for 0h ≠ , we have 

 

2sin cos
( ) ( ) sin( ) sin 2 2

h h
x

f x h f x x h x

h h h

   
+   

+ − + −    
= =  

Therefore, 
0 0

sin
( ) ( ) 2

lim lim cos . cos
2

2

h h

h

f x h f x h
x x

hh→ →

  
  + −     

= + =  
       

 

Hence f  is differentiable at x  on R  and ( ) cosf x x′ =  for each x  belongs to R . 

5. Problem: Show that ( ) | | ( )f x x x R= ∈  is not differentiable at zero and is differentiable 

at any 0x ≠ . 

Solution:  We have to show that 
0

(0 ) (0)
lim
h

f h f

h→

+ −
 does not exist. 

 Given that 
0

( ) | |, ( )
0

h if h
f x x f h

h if h

≥
= = 

− <
 

Thus, for 0h ≠ , 
1 0(0 ) (0) ( )

1 0

if hf h f f h

if hh h

>+ −
= = 

− <
 

Therefore (0 ) 1& (0 ) 1f f′ ′+ = − = −  
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Hence f  is differentiable at zero. It can be easily proved that f is differentiable at any 

0x ≠  and that '
1 0

( )
1 0

if x
f x

if x

>
= 

− <
 

6. Problem: Check whether the following function is differentiable at zero 

3 0
( )

3 0

x if x
f x

x if x

+ ≥
= 

− <
 

Solution: We show that f has the left and the right hand derivative at zero and find them. 

First we observe that, for 0h ≠ , 
3 0

( )
3 0

x if x
f x

x if x

+ ≥
= 

− <
 and (0) 3f =  

Therefore, for 0h > , we have 
(0 ) (0) ( ) 3 3 3

1
f h f f h h

h h h

+ − − + −
= = =  

Hence, 
0

(0 ) (0)
lim 1
h

f h f

h→ +

+ −
= . Thus f has right hand derivative at zero and (0 ) 1f ′ + =  

Similarly, 
0

(0 ) (0)
lim 1
h

f h f

h→ −

+ −
= − , so that f has left hand derivative at zero and 

(0 ) 1f ′ − = − . 

Therefore  (0 ) (0 )f f′ ′− ≠ + . 

Hence f is not differentiable at zero. 

Note that the function in the problem can be rewritten as ( ) 3 | |,f x x= + which is not 

differentiable at zero. (see problem 5 above) 

7. Problem: Show that the derivative of a constant on an interval is zero. 

Solution: Let f be a constant function on an interval ,I  Then x for all 

( ) sin ( )f x x x R= ∈ belongs to I  for some constant .c Let a I∈ .Then for 0,h ≠   

( ) ( )
0

f a h f a c c

h h

+ − −
= =  for sufficiently small .h  

Hence  
0

( ) ( )
lim 0
h

f a h f a

h→

+ −
=  

Hence f is differentiable at a  and ( ) 0f a′ = .  

Thus the derivative of a constant function is zero. 

10.1.3 Elementary properties: 

 Now we shall prove certain important properties of derivatives of functions. 
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10.1.4 Theorem: Let I  be an interval in R, : &f I R a I→ ∈ . If f  is differentiable at 

,a then f is continuous at .a  

Proof:  Suppose that  f  is differentiable at .a  Then we have
( ) ( )

lim ( )
x a

f x a
f a

x a→

−
′=

−
 

 Now  
( ) ( )

( ) ( ) .( ) ( )
f x f a

f x f a x a x a
x a

−
− = − ≠

−
 and  

 Therefore lim[ ( ) ( )] ( ).0 0
x a

f x f a f a
→

′− = =  

 That is lim ( ) ( )
x a

f x f a
→

=  proving f is continuous at .a  

 If f is differentiable at ,a  then f is continuous at .a  

10.1.4 Note: The converse of the above theorem is not true. That is If f is continuous at 

,a  then f need not be differentiable at .a  

For example, ( ) ( )f x x x R= ∈  is continuous at zero but not differentiable at zero. 

10.1.5 Theorem (the derivate of the sum and difference of two functions): 

 Let I  be an interval in ,R u  and v be real valued functions on I  and x  belongs to 

,I Suppose that u  and v are differentiable at x . Then u v+ is also differentiable at x  and

( ) ( ) ( ) ( )u v x u x v x′ ′ ′+ = + . 

Proof: Let f u v= +  

  Then for sufficiently small non –zero values of h , we have 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )f x h f x u x h v x h u x v x u x h u x v x h v x

h h h h

+ − + + + − − + − + −   
= = +      

 

Which tends to ( ) ( )u x v x′ ′+  as h  tends to 0. Hence f  is differentiable at x  and 

( ) ( ) ( )f x u x v x′ ′ ′= + ( ) ( ) ( ) ( )u v x u x v x′ ′ ′⇒ + = +    

We may similarly prove that ( ) ( ) ( ) ( )u v x u x v x′ ′ ′− = −  

10.1.6 Corollary: If 
1 2 3, , ............ nu u u u  are real valued functions on an interval I  and are 

differentiable at x  belongs to I  then 1 2 3, , ............ nv u u u u=  is also differentiable at x  and 

1 2 3( ) ( ), ( ), ( )............... ( )nv x u x u x u x u x′ ′ ′ ′ ′= . (Proof is easy). 

10.1.7 Theorem (The derivative of the product of two functions): 
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 Let I  be an interval, u  and v  be real valued functions on I  and x  belongs to I . 

Suppose that u  and v are differentiable at x . Then .u v  is differentiable at x  and

( ) ( ) ( ) ( ) ( ) ( )uv x u x v x u x v x′ ′ ′= + . 

Proof: Let .f u v= . Then for sufficiently small non-zero of h , we have 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
( ) ( )

f x h f x u x h v x h u x v x v x h v x u x h u x
u x h v x

h h h h

+ − + + − + − + −   
= = + +      

Since u  is differentiable at ,x it is continuous at x so that 
0

lim ( ) ( )
h

u x h u x
→

+ = .Hence  

( ) ( )
( ) ( ) ( ) ( )

f x h f x
u x v x v x u x

h

+ −
′ ′→ +  as h  tends to 0. Thus .f u v= is differential at x

and  ( ) ( ) ( ) ( ) ( ) ( ).uv x u x v x v x u x′ ′ ′= +  

 As a consequence of mathematical induction and theorem 9.2.5 the following 

result follows. 

10.1.8 Corollary: If 
1 2 3, , ............ nu u u u  are real valued functions on an interval I  and are 

differentiable at x  belongs to I , then 1 2 3, , ............ nu u u u  is also differentiable at x  and  

1 2 1 1

1

( ) ( , ....... , ....... )( ) ( )
n

j j n j

j

u x u u u u u x u x
− +

=

′ ′=∑ . 

10.1.9 Corollary: If ,u v are real valued functions on an interval I  and are differentiable 

at x  belongs I  and ,α β  are any constants, then u vα β+  is also differentiable at x  and  

   ( )u v u vα β α β′ ′ ′+ = +  

10.1.10 Note: If u  is a real valued function on an interval I  and is differentiable at x

belongs to I  then ( )v u n N′= ∈  is differentiable at x  and 1( ) ( ). ( )nv x nu x u x−′ ′= . 

For take 1 2 .......... nu u u u= = = =  in corollary 9.2.6. 

10.1.11 Theorem (The derivative of the reciprocal of a function):  

 Let f  be a function defined on an interval I  such that ( ) 0f t ≠  for any t  belongs 

to I  and f  is differential at x  belongs to I . Then 
1

f
 is differentiable at x  and  

2

1 ( )
( )

[ ( )]

f x
x

f f x

′ ′ 
= − 

 
. 

Proof:  Since f is differentiable at ,x  it is continuous at .x  Given that ( )f x is not equal 

to 0. 
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Now write 
1

g
f

= . Then for sufficiently small non- zero values of h , we have  

1 1

( ) ( ) ( ) ( )( ) ( )

( ) ( )

g x h g x f x f x hf x h f x

h h hf x f x h

−
+ − − ++

= =
+  

( ) ( ) ( ) ( ) 1
. ....(I)

( ) ( )

g x h g x f x h f x

h h f x f x h

+ − + − 
⇒ =   + 

 

From the hypothesis, we have
0 0

( ) ( )
lim ( ) & lim ( ) ( )
h h

f x h f x
f x f x h f x

h→ →

+ −
′= + =  

Hence from (I)  it follows that 
2

( ) ( ) ( )

( ( ))

g x h g x f x

h f x

′+ −
→  as h  tends to 0. 

Therefore g is differentiable at x and 
2

( )
( )

[ ( )]

f x
g x

f x

′
′ = −  

   
2

1 ( )
( )

[ ( )]

f x
x

f f x

′ ′ 
= − 

 
. 

10.1.12 Theorem (The derivative of the quotient of two functions): 

 Let u  and v  be real valued functions on an interval I  such that v  is never zero 

on I and let u  and v  be differentiable at x  belongs to I . Then 
u

v
is differentiable at x  

and   [ ]2

1
( ) ( ) ( ) ( ) ( )

[ ( )]

u
x v x u x u x v x

v v x

′ 
′ ′= − − 

 
. 

Proof:   From the theorem 9.2.9 it follows that 
1

v
is differentiable at x  and

2

1 1
( )

[ ( )]
x

v v x

′ 
= − 

 
. From theorem 9.2.5 it follows that 

1
.u
v

is differentiable at x  and   

  
1 1 1

( ) . ( ) ( ) ( ) ( ) ( )
u

x u x u x x u x x
v v v v

′ ′ ′     
′= = +     

     
 

  [ ]2 2

( ) ( ) 1
( ) ( ) ( ) ( ) ( )

( ( )) ( ) ( ( ))

v x u x
u x v x u x u x v x

v x v x v x

′ ′ −
′ ′= + = − 

 
 

  
[ ]

2

( ) ( ) ( ) ( )
( )

( )

u v x u x u x v x
x

v v x

′ ′ ′− 
= 
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10.1.13 Theorem (The derivative of a composite function): 

 Let I  be an interval, :g I R→  and f be a real valued function on an interval 

containing g( I ). Suppose that g  is differentiable at x  and f is differentiable at ( ).g x Let 

F f g= �  (so that ( ) ( ( ))F x f g x= ).Then F  is differentiable at x  and 

( ) ( ( )) ( )F x f g x g x′ ′ ′= .(This is also known as chain rule for differentiation) 

Proof:   Write ( )y g x=  

 Let us define a function ϕ  in a neighbourhood of zero as follows. 

 

( ) ( )
( ) 0

0 0

f y k f y
f y if k

k

if k

ϕ(κ) =

+ −
′− ≠


 =

                                                           

Since f is differentiable at ( )y g x= we have 
0

( ) ( )
lim ( )
k

f y k f y
f y

k→

+ −
′=  

Hence  
0

lim ( ) 0
k

kϕ
→

=  

Moreover ( ) ( ) ( ) ( )f y k f y kf y k kϕ′+ − = +  for k  not equal to zero 

Write ( ) ( ) ( )h g x h g xψ = + −  for h  not equal to zero. 

Then 
( ) ( ) ( ( )) ( ( ))F x h F x f g x h f g x

h h

+ − + −
=  

   =
( ( )) ( ) ( ) ( )

( ) ( ( ))
f y h f y h h

f y h
h h h

ψ ψ ψ
θ ψ

+ −
′= +   (by 1) 

   =
( ) ( ) ( ) ( )

( ) ( ( ))
g x h g x g x h g x

f y h
h h

ϕ ψ
+ − + −   

′ +      
 

   ( ) ( ) ( ).0; 0g x f y g x h′ ′ ′→ + →  

Since ( )g x  is differentiable at x , ( ) 0 0, ( ) 0 0h h kas a ksψ ϕ→ → → →  

Hence 
0

( ) ( )
lim
h

F x h F x

h→

+ −
 exists and is equal to ( ) ( )f y g x′ ′  

i.e.., F is differentiable at x and ( ) ( ( )) ( )F x f g x g x′ ′ ′= . 

Thus ( ) ( ) ( ( )). ( )fog x f g x g x′ ′ ′= . 

10.1.14 Note: If we write ( ), ( )z f y y g x= =  in the above theorem, 
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  We get .
dz dz dy

dx dy dx
= . 

The derivative of the inverse of a function is given in the following theorem. 

10.1.15 Theorem (The derivative of the inverse of a function): 

 Let :[ , ] [ , ]f a b c d→  be a bijection and g  denote the inverse of .f  Suppose that 

f is differentiable at ( , ), ( ) 0x a b f x′∈ ≠  and g is continuous at ( ).f x Then g  is 

differentiable at ( )f x and 
1

( ( ))
( )

g f x
f x

′ =
′

. 

Proof:  Let ( )y f x= Let k  be a non zero real number such that [ , ]y k c d+ ∈  

Let ( ) ( )  .g y k g y h+ − = Since g  is one-to-one, h  not equal to zero. 

We have ( ) ( )g y k g y h x h=+ + = +  

Hence, ( )f x yh k+ = + . 

Hence ( )( ) ) (k y f fk x xy h+ − = + −= , since ( )g x  is continuous at y

( ) ( ) 0g y k g y as k+ → →  Hence 0 0h as k→ → .Since f  is differentiable at x . 

( ) ( )
( ) 0

f x h f x
f x as h

h

+ −
′→ →  

Since 
1

( ) 0, 0
( ) ( ) ( )

h
f x as h

f x h f x f x
′ ≠ → →

′+ −
 

We have  
( ) ( )

( ) ( )

g y k g y h

k f x h f x

+ −
=

+ −
 

Hence  
( ) ( ) 1

0
( )

g y k g y
as h

k f x

+ −
→ →

′
 

Therefore g  is differentiable at ( )f x and 
1

( ( ))
( )

g f x
f x

′ =
′

 

10.1.16 Note: If ( )y f x= then 1 1
( ) &

dx
x f y

dydy

dx

−= =   

We shall now find the derivative of some standard functions. 

10.1.17 Example: If ( ) ( )xf x e x R= ∈ , then show that ( ) xf x e′ =  by first principle. 
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Solution: From ( ) xf x e= , we have for 0h ≠  

 
( ) ( ) 1x h x h

xf x h f x e e e
e

h h h

++ − − −
= =  

Therefore 
( )

0 0

1( ) ( )
lim .lim .1

h

x x x

h h

ef x h f x
e e e

h h→ →

−+ −
= = =  

Therefore ( ) xf x e′ =  for each x belongs to R . 

10.1.18   Example:   If ( ) log ( 0)f x x x= > , then 
1

( )f x
x

′ =  by first principle. 

Solution: Now for 0h ≠  

( ) ( ) log( ) log 1 1 1
log 1 . log 1 log 1

x x

h hf x h f x x h x h h h h

h h h x h x x x x

+ − + −      
= = + = + = +     

     
 

Now, putting  
h

z
x

= , we get 0z →  as 0h →  

Therefore 
1

log 1 log(1 ) log 1

x

h
z

h
z e

x

 
+ = + → = 

 
 as 0z →  

Hence 
( ) ( ) 1f x h f x

h x

+ −
→  as 0h → . 

Thus   
1

( )f x
x

′ =  for each 0.x >  

  
1

(log )
d

x
dx x

=  

10.1.19 Example:  If ( ) ( )( 0)xf x a x R a= ∈ > , then show that ( ) logx

e
f x a a′ =  by first 

principle. 

Solution: For 0,h ≠
( ) ( ) 1

x h x h
xf x h f x a a a

a
h h h

+  + − − −
= =  

 
 

We know that 
1

log
ha

a
h

−
→  as 0h →  

Hence  ( ) logx

e
f x a a′ =  
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  ( ) logx x

e

d
a a a

dx
=  

10.1.20   Solved problems: 

1. Problem: If ( ) ( )n b
f x ax b x

a

− 
= + > 

 
, then find ' ( )f x . 

Solution: Write u ax b= +  so that ( ) nf x u= . Then  

  ( ) ( ).nd du
f x u

dx dx
′ = , by Note 9.2.12 

   = 1 1. ( )n nnu a an ax b− −= + . 

2. Problem: Find the derivative of 2( ) ( 1)xf x e x= + . 

Solution: Write 2, 1xu e v x= = + , so that ( ) ( ) ( )f x u x v x=  and  

( ) ( ) ( ) ( ) ( )f x u x v x u x v x′ ′ ′= + , by theorem 9.2.5 

Now ( ) xu x e′ = and ( ) 2v x x′ =  imply that 2 2( ) (2 ) ( 1) ( 1)x x xf x e x x e x e′ = + + = + . 

3. Problem: If ( )
a x

y x a
a x

−
= ≠ −

+
, find 

dy

dx
 

Solution: Write ( ) , ( )u X a x v x a x= − = + , so that 
u

y
v

=  

  ( ) 1& ( ) 1u x v x′ ′= − =  

Therefore 

[ ]
2 2 2

1 1 2
[ ( ) ( ) ( ) ( )] [( )( 1) ( )(1)]

( ) ( )( )

dy a
v x u x v x u x a x a x

dx a x a xv x

−
′ ′= − = + − − − =

+ +
 

4. Problem:  If 2( ) .log ( 0)xf x e x x= > , then ( )f x′  

Solution: Write 2( ) , ( ) logxu x e v x x= = , so that 

 2 1
( ) ( ) ( ), ( ) 2 , ( )xf x u x v x u x e v x

x
′ ′= = =  

Therefore  ( ) ( ) ( ) ( ) ( )f x u x v x u x v x′ ′ ′= +  

  = 2 2 21 1
2 log 2logx x xe e x e x

x x

 
+ = + 
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5. Problem:  If 
2

2

1
( ) (| | 1)

1

x
f x x

x

+
= <

−
, then find ( )f x′ . 

Solution: Write 
2

2

1
( )

1

x
u x

x

+
=

−
 and ( ).y f x=  Then 

1
2( )y f x u= =  

Now by the chain rule, we get 
dy dy du

dx du dx
= ×  where in 

  
1 1

1
2 2

1 1 1

2 2 2

dy
u u

du u

−
−

= = =  

And   
2 2

2 2 2 2

(1 )(2 ) (1 )( 2 ) 4

(1 ) (1 )

du x x x x x

dx x x

− − + −
= =

− −
 

Therefore  
2 2 2 4

1 4 2
( ) .

(1 )2 (1 ) 1

dy x x
f x

dx xu x x
′ = = =

− − −
 

6. Problem: If 2( ) 2 log ( 0)xf x x x x= > , find ( )f x′  

Solution: Write 2( ) , ( ) 2 & ( ) logxu x x v x w x x= = =  so that ( ) ( )( )f x uvw x= . 

Then   ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )f x u x v x w x u x v x w x u x v x w x′ ′ ′ ′= + +  

   = 2 2 1
2 (2 log ) (2 log 2)( log ) 2 .x x xx x x x x

x
+ +  

   = 22 [log log log 2 1]xx x x x+ +  

7. Problem: If 
3

3( ) 7 ( 0)x xf x x+= > , then find ( )f x′  

Solution: Write 3( ) 3u x x x= + , so that 23 3
du

x
dx

= +  and ( ) 7uf x =  

Therefore, by the chain rule, we get ( ) .
df du

f x
du dx

′ =  

 
3

2 2 3(7 log 7)(3 3) 3( 1)7 log 7u x xx x += + = +  

Exercise 10(a) 

1. Find the derivatives of the following functions ( ).f x  

53

64( ) 2 3 ( 0)i x x x x+ + >
   ( ) 2 3 7 3ii x x− + −    

2 3( ) ( 3)(4 1)iii x x− +  
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1
( ) ( 3 )( )iv x x x

x
− +      

2( ) ( 1)( 4 2)( 0)v x x x x+ − + >    ( ) ( ) ( )n mvi ax b cx d+ +  

( ) 5sin logxvii x e x+      
3( ) 5 logx xviii x x e+ +    ( ) sin cosxix e x x+  

                

2

( ) ( 0)
px qx r

x a b
ax b

+ +
+ ≠

+    7( ) log (log )( 0)xi x x >  

                2

1
( ) ( ) 0xii a b c

ax bx c
+ + ≠

+ +

2 4
( ) log(3 4)

3

xxiii e x x
− 

+ > 
 

 

                 
2 2( ) (4 ) xxiv x e+     ( ) ( 0)

ax b
xv c d

cx d

+
+ ≠

+
 

2. If 2 100( ) 1 ...............f x x x x= + + + +  then find (1)f ′  

3. If  2( ) 2 3 5f x x x= + −  then prove that (0) 3 ( 1) 0f f′ ′+ − =  

 

4.  Find the derivatives of the following functions from the first principles. 

 

3( )i x  
4( ) 4ii x +  

2( )iii ax bx c+ + ( ) 1iv x + ( ) sin 2v x ( ) cosvi ax ( ) tan 2vii x

( )cotviii x  
5. Find the derivatives of the following functions 

1
( ) ( 0)

1

x x
i x

x x

−
>

+  ( ) log( )( 0, )n xii x n nx x n N> ∈  
2( ) logn n xiii ax x bx e−+

3
1

( ) x
iv x e

x

 
− 

   

6. Show that the function ( ) 1 ,f x x x x R= + − ∈  is differentiable for all real 

numbers except for 0 and 1. 

 

 

7. Verify whether the following function is differentiable at 1 and 3.

    

 

                    
2

1

( ) 3 1 3

4 3 3

if

if

x x

f x x x

x x xif

 <


= − ≤ ≤


− + >

 

 

8. Is the following function f derivable at 2? Justify 

0 2
( )

2 2

x x
f x

x

if

if

≤ ≤
= 

≥
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10.2 Trigonometric, Inverse Trigonometric, Hyperbolic, Inverse 

Hyperbolic functions-Derivatives: 

 In this section we find the derivatives of trigonometric and hyperbolic function 

and also of their inverses. 

10.2.1 Derivatives of trigonometric functions:  

 1. (sin ) cos
d

x x
dx

=  

  We have already proved this result. 

2. (cos ) sin
d

x x
dx

= −  

(cos ) sin cos . sin
2 2 2

d d d
x x x x x

dx dx dx

π π π      
= − = − − = −      

      
 

This result can be obtained from the first principle also. 

  (cos ) sin
d

x x
dx

= −  

3. If tan , (2 1) ;
2

y x x R n n Z
π 

= ∈ − + ∈ 
 

 , then 2sec
dy

x
dx

=  

 Now 
2

sin 1
tan cos (sin ) sin (cos )

cos cos

x dy d d
y x x x x x

x dx x dx dx

 
= = ⇒ = −  

 

  = 2 2 2

2

1
cos sin sec

cos
x x x

x
 − =   

Similarly 2(tan ) sec
d

x x
dx

= . 

4.  If { }cot , :y x x R n n Zπ= ∈ − ∈ , then 2cos
dy

ec x
dx

= −  

     2(cot ) cos
d

x ec x
dx

= −  

5. If  sec , (2 1) :
2

y x x R n n Z
π 

= ∈ − + ∈ 
 

 , then 

 
2 2

1 1 sin
& (cos ) tan .sec

cos cos cos

dy d x
y x x x

x dx x dx x

−
= = = =  
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  (sec ) sec tan
d

x x x
dx

=  

6. If { }cos , :y ecx x R n n Zπ= ∈ − ∈  , then cos cot
dy

ecx x
dx

= −  

  (cos ) cos cot
d

ecx ecx x
dx

= −  

10.2.2 Derivatives of inverse trigonometric functions: 

 Let us recall that if f and g are functions that ( ( ))f g x x= and ( ( ))g f y y= for 

any x  any y  and ( ) 0f y′ ≠ , then 
1

( )
( )

g y
f y

′ =
′

, where ( ).y g x=  

 Hence we have

1

( ) ( ) &
dy dx

y g x x f y
dx dy

−

 
= ⇔ = =  

 
. 

1. If 1sin , [ 1,1]y x x−= ∈ −  then its range is ,
2 2

π π 
−  

. 

1sin sin & cos
dx

y x x y y
dy

−= ⇔ = = . 

If 1 1x− < < then 
2 2

y
π π−

< <  

Hence cos 0
dx

y
dy

= > . This implies  

1

2 2

1 1

1 sin 1

dy dx

dx dy y x

−

 
= = = 

− − 
. 

1

2

1
(sin )

1

d
x

dx x

− =
−

 

2. If 1cos , [ 1,1]y x x−= ∈ −  , then we have [0, ]y π∈  

1cos cos

cos sin

y x x y

dx
x y y

dy

−= ⇔ =

= ⇒ = −
 

Hence 
2 2

1 1 1

sin 1 cos 1

dy

dx y y x

− −
= = =

− − −
 

1

2

1
(cos )

1

d
x

dx x

− −
=

−
. 
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3. If 1tan ,y x x R−= ∈ , then we know that  ,
2 2

y
π π 

∈ − 
 

 

2 2 2tan sec 1 tan 1 0
dy

x y y y x
dx

= ⇒ = = + = + >  

Therefore 

1

2

1

1

dy dx

dx dy x

−

 
= = 

+ 
 

1

2

1
(tan )

1

d
x

dx x

− =
+

. 

4. 1 1

2

1
(cot ) ( , cot (0, ))

1

d
x x R x

dx x
π− −−

= ∈ ∈
+

 

1

2

1
(cot )

1

d
x

dx x

− −
=

+
. 

 

5. If 1sec , [ 1,1]y x x R−= ∈ − −  then 0, ,
2 2

y
π π

π
   

∈ ∪   
   

. 

2

sec sec tan

1 0, ,0
2 2

sec tan sec sin 0
2

dx
x y y y

dy

x y

dx
y y y y y

dy

π π

π

= ⇒ =

   
> ⇒ ∈ ∪   

   

 
⇒ = = > ≠ 

 

  (1) 

Now 1 sec 1 tan 0x y y< − ⇒ < − ⇒ <     (from 1) 

And 2 2 2 2
tan sec 1, tan sec 1 1y y y y x= − = − − = − −  (since tany<0) 

Therefore 

1
2

2

1
; 1

1 1

1sec tan
; 1

1

x
dy dx x x

dx dy y y
x

x x

−


>  −

= = =  
   < −

− −

 

1

2

1
(sec )

1

d
x

dx x x

− =
−

 

6. If 1cosy ec x
−= , then 

2

1

1

dy

dx x x

−
=

−
[ 1,1], ,0 0,

2 2
x R y

π π    
∈ − − ∈ − ∪    

    
 

1

2

1
( sec )

1

d
co x

dx x x

− −
=

−
. 

10.2.3 Derivatives of hyperbolic functions: 

      1.  If sinh ( )y x x R= ∈  then cosh
dy

x
dx

= . 
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For sinh cosh
2 2

x x x x
e e dy e e

y x x
dx

− −− +
= = ⇒ = =  

 (sinh ) cosh
d

x x
dx

=
 

      2.  If cosh ( )y x x R= ∈  then sinh
dy

x
dx

= . 

For sinh
2 2

x x x x
e e dy e e

y x
dx

− −+ −
= ⇒ = = . 

(cosh ) sinh
d

x x
dx

= . 

      3.  If tan ( )y hx x R= ∈  then 2sec
dy

h x
dx

= . 

      

For

 
2

sinh 1
tanh (cosh ) (sinh ) sinh (cosh )

cosh cosh

x dy d d
y x x x x x

x dx x dx dx

 
= = ⇒ = −  

 

2 2 2

2 2

1 1
(cosh sinh ) sec

cosh cosh
x x h x

x x
= − = =  

 2(tanh ) sec
d

x h x
dx

= . 

      4.  If sec ( )y hx x R= ∈  then sec tanh
dy

hx x
dx

= − . 

        For

 
2 2

1 1 sinh
sec . (cosh ) sec tanh

cosh cosh cosh

dy d x
y hx x hx x

x dx x dx x

−
= = ⇒ = = − = − . 

 (sec ) sec tanh
d

hx hx x
dx

= −
 

   5.  If cos ( {0})y echx x R= ∈ −  then cos coth
dy

echx x
dx

= − .
 

For

 
2

1 1 cosh
cos . (sinh ) cos coth

sinh sinh sinh

dy d x
y echx x echx x

x dx x dx x

− −
= = ⇒ = = = −  

   ( sec ) cos coth
d

co hx echx x
dx

= − . 

   6.  If coth ( {0})y x x R= ∈ −  then 2cos
dy

ech x
dx

= − .
 



 

294 

 

        For

 

2
2

2 2

1 1 sec
coth (tanh ) cos

tanh tanh tanh

dy d h x
y x x ech x

x dx x dx x

− −
= = ⇒ = = = − . 

 2(coth ) cos
d

x ec x
dx

= −  

10.2.4 Derivatives of inverse hyperbolic functions: 

        1.  If 1sinh ( )y x x R
−= ∈  then  

2

1

1

dy

dx x
=

+
. 

     1sinh sinhy x x y
−= ⇒ =  

 Hence 
2 2

1 1 1

cosh 1 sinh 1

dy

dx y y x
= = =

+ +
. 

  1

2

1
(sinh )

1

d
x

dx x

− =
+

. 

2. If 1cosh ( (1, ))y x x
−= ∈ ∞ , then 

2

1

1

dy

dx x
=

−
 

 For 1, cosh sinh 0
dx

x x y y
dy

> = ⇒ = > . 

Therefore for 1,x > we have 

1

2 2

1 1 1

sinh cosh 1 1

dy dx

dx dy y y x

−

 
= = = = 

− − 
. 

 1

2

1
(cosh )

1

d
x

dx x

− =
−

. 

3. If  1tanh ( ( 1,1))y x x
−= ∈ −  , then  

2

1

1

dy

dx x
=

−
. 

     For 2 2 2tanh , sec 1 1 tanh 1 0
dx

x y h y y x
dy

= = = = − = − > . 

Therefore 

1

2

1

1

dy dx

dx dy x

−

 
= = 

− 
. 

  1

2

1
(tanh )

1

d
x

dx x

− =
−

. 
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4. If 1sech ( (0,1))y x x
−= ∈ , then 

2

1

1

dy

dx x x

−
=

−
. 

     For 1 1 1
(0,1), sec coshx y h x

x

− −  
∈ = =  

 
 

Hence 
22 2

1 1 1

11
1

dy

dx x x x

x

− −
= × =

− 
− 

 

. 

1

2

1
(sech )

1

d
x

dx x x

− −
=

−
 

 5. If 1cos h ( {0})y ec x x R
−= ∈ −  then 

2

1

1

dy

dx x x

−
=

−
 

  1 1 1
cos sinhy ech x

x

− −  
= =  

 
 

 Hence  
22 2

1 1 1

11
1

dy

dx x x x

x

− −
= × =

+ 
+  
 

. 

  1

2

1
(cos h )

1

d
ec x

dx x x

− −
=

+
. 

6. If 1coth ( ( , 1) (1, ))y x x
−= ∈ −∞ − ∪ ∞  then 

2

1

1

dy

dx x
=

−
. 

1 1

2 2

2

1 1 1 1
coth tanh

1 1
1

dy
y x

x dx x x

x

− − −   
= = ⇒ = × =   

−   −

 

  1

2

1
(coth )

1

d
x

dx x

− =
−

 

Observe that through the formulae for the derivatives of 1 1tanh ,cothx x− −  are the same, 

their domains are disjoint. 

10.2.5 Note: The formulae mentioned under 1, 2, 3 above can also be obtained by using 

the following identities. 

  1 2sinh log( 1 )x x x
− = + +  

  1 2cosh log( 1)( 1)x x x x
− = + − ≥  
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  1 21 1
tanh log (1 0)

2 1

x
x x

x

− + 
= − > 

− 
. 

10.2.6 Note: Hereafter, in order to find the derivative of a function, even though its 

domain is not explicitly mentioned, we mean that in its appropriate domain the derivative 

exists and we have to find the same. 

10.2.7 Solved Problems: 

1. Problem: Find the derivative of 
2

cos
( )

1

x x
f x

x
=

+
 

Solution: Write 2( ) cos , ( ) 1u x x x v x x= = +  so that 

 ( ) ( )
u

f x x
v

 
=  
 

 and 
[ ]

2

1
( ) [ ( ) ( ) ( ) ( )]

( )
f x v x u x v x u x

v x
′ ′ ′= −  

Here    ( ) ( cos ) cos sin
d

u x x x x x x
dx

′ = = −  

And   ( )2

2 2

2
( ) 1

2 1 1

d x x
v x x

dx x x
′ = + = =

+ +
 

Therefore the derivative of  f (x) is  

  
2

2

2 2

1 cos
( ) 1 (cos sin )

1 1

x x
f x x x x x

x x

 
′ = + − − 

+ + 
 

   = 2 3 2 2(1 ) [cos (1 )sin ]x x x x x−+ − +  

2. Problem:  If ( ) log(sec tan )f x x x= + , then find ( )f x′ . 

Solution: Write ( ) sec tanu x x x= + , ( )y f x= so that 

 'log & ( )
dy dy du

y u f x
dx du dx

= = = ×  

Now  21
, sec tan sec

dy du
x x x

du u dx
= = +  

Therefore 21
( ) (sec tan sec ) secf x x x x x

u
′ = + =  

3. Problem: If 1
siny x

−
= , then find 

dy

dx
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Solution: Write ( )u x x= , then 1siny u−=  and 
dy dy du

dx du dx
= ×  

 Hence 
2 2

1 1 1

2 1 2

dy

dx x u x x
= × =

− −
 

4. Problem: If sec( tan )y x= , then find 
dy

dx
. 

Solution: Write tanu x=  then sec , , tany u u v v x= = =  

Imply that  
dy dy du dv

dx du dv dx
= × ×  

Now   21
sec tan , & sec

2

dy du dv
u u x

du dv dxv
= = =  

Therefore  ( ) ( )
2sec

.sec tan .tan tan
2 tan

dy x
x x

dx x
=  

5. Problem: If 
1

2

sin

1

x x
y

x

−

=
−

, then find 
dy

dx
 

Solution: Write 1 2sin , 1u x x v x
−= = −  so that 

u
y

v
=  

Now  1

2
sin

1

du x
x

dx x

−= +
−

 and  
2 2

2

2 1 1

dv x x

dx x x

− −
= =

− −
 

 
2

1
[ ]

dy
vu v u

dx v
′ ′= −  

      = 
2 1

2 1

2 2 2

1 sin
1 sin

(1 ) 1 1

x x x
x x

x x x

−
−

  
− + +  

− − −   
 

    =  2 1

3
2 2

1
1 sin

(1 )
x x x

x

− − +
 

−
 

6. Problem: If log(cosh 2 )y x= , then find 
dy

dx
 

Solution: Let cosh 2u x= , so that logy u=  

Then   
dy dy du

dx du dx
= ×  



 

298 

 

Here   
1

& 2sinh 2
dy du

x
du u dx

= =  

Hence  
2 2sinh 2

sinh 2 2 tanh 2
cosh 2

dy x
x x

dx u x
= = =  

7. Problem: If log(sin(log ))y x= , then find 
dy

dx
. 

Solution: Write log , sinv x u v= =  so that logy u=  

Therefore   
dy dy du dv

dx du dv dx
= × ×  

  
1 1 cos(log ) 1

cos .cot(log )
sin (log )

x
v x

u x x x x x
= × × = =  

8. Problem: If ( )
2

1 3coty x−= , then find 
dy

dx
. 

Solution: Put 1 3cotu x
−=  so that 2y u=  

 Then 
2 1 3

2

6 6

1 6 cot ( )
2 .3

(1 ) 1

dy dy du x x
u x

dx du dx x x

−− −
= × = × =

+ +
. 

Exercise 10(b) 

1. Find the derivatives of the following functions 

( ) cotni x  
4( ) cosii ec x  ( ) tan( )xiii e

1 cos 2
( )

1 cos 2

x
iv

x

−

+
( ) sin cosm nv x x

( ) sin .cosvi mx nx
1( ) tanvii x x

− 1( )sin (cos )viii x
−

( ) log(tan5 )ix x
1 3

( )sin
4

x
x −  

 
   

1( ) tan (log )xi x−

2

2

2
( ) log

2

x x
xii

x x

 + +
 

− + 

1( ) log(sin ( ))xxiii e− 2 1 2( ) (sin ) (sin )xiv x x
−

 

cos
( )

sin cos

x
xv

x x+

2

2

(1 )
( )

1

x x
xvi

x

+

+

1
sin( ) xxvii e

−

( )cos(log )x
xvii x e+

sin( )
( )

cos

x a
xix

x

+

1( )cot (cos 3 )xx ec x−
 

2. Find the derivatives of the following functions 

              

2( ) sinhi x y=      
2( ) tanhii x y=

             

sinh( ) yiii x e=
       

           
( ) tan( )yiv x e−=

   

2( ) log(1 sin )v x y= +
  

( ) log(1 )vi x y= +  

3. Find the derivatives of the following functions 
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( ) cos(log(cot ))i x  

1 1
( ) sinh

1

x
ii

x

− − 
 

+    

2( ) log(cot(1 ))iii x−
 

2( ) sin(cos( ))iv x
   

       

1( ) sin(tan ( ))xv e−

  

sin( )
( )

cos( )

ax b
vi

cx d

+

+

1 2( ) sin .(tan )vii x x−  

4. Find the derivatives of the following functions 

            

1 sin
( ) sin ( 0, 0)

sin

b a x
i a b

a b x

− + 
> > 

+ 
 1 cos

( ) cos ( 0, 0)
cos

b a x
ii a b

a b x

− + 
> > 

+ 
   

           

1 cos
( ) tan

1 cos

x
iii

x

−  
 

+ 
 

10.3 Methods of differentiation: 

 Some times the formulae obtained so far, may prove to be difficult in finding the 

derivative of some typical functions. There are some special methods of differentiation to 

deal with such situations. Our main aim in this section is to discuss such methods. 

 This method is well illustrated in the following examples. 

1. If 
1 1

tan (| | 1)
1

x
y x

x

− −
= <

+
, we shall find 

dy

dx
 

Substituting  cos ( (0, ))x u u π= ∈  in ,y we get 

 
2

2

2

1 1 cos 2sin ( 2)
tan ( 2)

1 1 cos 2cos ( 2)

x u u
u

x u u

− −
= = =

+ +
 

So that   
1

tan
1 2

x u

x

−  
=  

+  
 

And    
1

tan tan
2 2

u u
y

−   
= =  

  
 

Therefore,   
1

. ( sin )
2

dy dy dx dy
u

du dx du dx
= ⇒ = −  

Hence   
2

1 1

2sin 2 1

dy

dx u x

− −
= =

−
 

Observe that 
1 1

tan ,
1

x
x

x

− −

+
 and cos u are the functions that stand for ( ), ( )f x g x

and ( )h u respectively, mentioned in the method. 

2. If 1

2

2
tan (| | 1)

1

x
y x

x

−  
= < 

− 
 then we shall find 

dy

dx
. 

Substituting  tanx u=  
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We get  
2 2

2 2 tan
tan 2

1 1 tan

x u
u

x u
= =

− −
 

And   1tan (tan 2 ) 2y u u−= =  

Therefore from  .
dy dy dx

du dx du
=  

We get that   22 .sec
dy

u
dx

=  

Therefore  2

2 2

2 2
2cos

1 tan 1

dy
u

dx u x
= = =

+ +
 

10.3.1 Substitution methods: 

 Let y f g= � If we are able to find a function h such that 1g h f −=� , then the 

substitution ( )x h u= may give the derivative of y  with respect to x  easily (Here f is a 

bijection defined on an interval). 

 The method is well illustrated in the following examples. 

1. If 
1 1

tan ( 1)
1

x
y x

x

− −
= <

+
, then we shall find 

dy

dx
. 

Substituting cos ( ( , ))x u u o π= ∈  in y  we get 

2
2

2

1 1 cos 2sin ( / 2)
tan ( / 2)

1 1 cos 2cos ( / 2)

x u u
u

x u u

− −
= = =

+ +
 

 So that 
1

tan
1 2

x u

x

−
=

+
 

And 
1

tan tan
2 2

u u
y

−   
= =  

  
 

Therefore,  
1

. ( sin )
2

dy dy dx dy
u

dx dx dy dx
= ⇒ = −  

Hence, 
2

1 1

2sin 2 1

dy

dx u x

− −
= =

−
 

Observe that 
1 1

tan ,
1

x
x

x

− −

+
 and cos u  are the functions that stand for ( ), ( )f x g x

and ( )h u respectively, mentioned in the method.   

 

2. If 1

2

2
tan ( 1)

1

x
y x

x

−  
= < 

− 
 then we shall that find 

dy

dx
 

Substituting tanx u=  
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We get  
2 2

2 2 tan
tan 2

1 1 tan

x u
u

x u
= =

− −
 

And 1tan (tan 2 ) 2y u u−= =  

Therefore from .
dy dy dx

dx dx du
=  

We get from 22 .sec
dy

x
dx

=  

Therefore 2

2 2

2 2
2cos

1 tan 1

dy
u

dx u x
= = =

+ +
. 

 

10.3.2 Logarithmic Differentiation:  

Use of the logarithms will be of great help in finding the derivatives of function of 

the form ( )( ) , : (0, ), :g xy f x f A g A R= → ∞ → ( A  an interval). 

Write ( )( ) ( ) .g xy h x f x= =  Then log ( ) ( ) log ( ).h x g x f x=    

Differentiating both sides with respect to ,x  we get  

( ) ( )
( ) log ( ) ( )

( ) ( )

h x f x
g x f x g x

h x f x

′ ′
′= +  

Therefore 
( )

( ) ( ) ( ) log ( ) ( )
( )

f x
h x h x g x f x g x

f x

′ 
′ ′= + 

 
 

( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) log ( ) ( )

( )

g x g x f x
h x f x h x f x g x f x g x

f x

′ 
′ ′ ′= ⇒ = + 

 
 

This method is well illustrated in the following examples. 

1. If ( 0)xy x x= > , we shall find 
dy

dx
 

Taking logarithm on both sides of  xy x= , we obtain log logy x x=  

Differentiating with respect to ,x  we get 
1

. log 1 log
y

x x x
y x

′
= + = +  

Therefore ' (1 log ) (1 log )xdy
y y x x x

dx
= = + = +  

2. If sin(tan ) (0 )
2

x
y x x

π
= < < . Compute 

dy

dx
 

Taking logarithms on both sides of sin(tan ) xy x=  , we get 

 log sin .log(tan )y x x=  

Differentiating with respect to ,x  we get 

2sin
.sec cos .log(tan ) sec cos .log(tan )

tan

y x
x x x x x x

y x

′
= + = +  
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Hence sin(tan ) [sec cos log(tan )]xdy
x x x x

dx
= + . 

10.3.3 Parametric Differentiation: 

 Let , ,A B C be intervals, : , : ,f A B g A C f→ →  a bijection, 1,f g−  be 

differentiable. 

Then, writing ( ), ( )x f t y g t= =  we get 1( ) ( ) ( )y g f x xϕ−= =�  

( ), ( )x f t y g t= =  are called the parametric equations of the function ( )y xϕ=  

1 1 1
( ( )) ( ( ))( ( ))

dy

dy dy dt dty g f x g f x f x
dtdx dt dx

dx

− − −′ ′= ⇒ = = × = =
( )

( )

g t

f t

′

′
 

The following examples illustrate parametric differentiation. 

1. If 3 3cos , sinx a t y a t= = , find 
dy

dx
 

Here 2 23 cos ( sin ) & 3 sin .cos
dx dy

a t t a t t
dt dx

= − =  

Therefore tan

dy

dy dt t
dxdx

dt

= = −  

2. If cos , log sinty e t x t t= + = + , find 
dy

dx
 

Here sintdy
e t

dt
= −  and  

1
cos

dx
t

dt t
= +  

Therefore  
( sin )

(1 cos )

tdy t e t

dx t t

−
=

+
. 

3. To find the derivatives of 
1

sin( ) xf x x
−

=  with respect to 1( ) sing x x−=  

We have to compare
df

dg
. 

Now 
1

sin 1( ) log ( ) sin .logxf x x f x x x
− −= ⇒ =  so that 

1
1

1 sin

2 2

( ) 1 log sin log
sin ( )

( ) 1 1

xf x x x x
x f x x

f x x xx x

−
−

−
   ′

′= + ⇒ = +   
− −   

 

1

2

1
( ) sin ( )

1
g x x g x

x

− ′= ⇒ =
−
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Therefore  
1

1
2 sin

2

( ) sin log
1 .

( ) 1

xdf f x x x
x x

dg g x x x

−
− ′

= = − + 
′ − 

. 

10.3.4 Differentiation of implicit function: 

 A function defined on a set ( )A R⊆  is usually denoted by ( ).y f x=  A function 

which can be put in this form is said to be in implicit form. Sometimes, such a form of a 

function may not be possible. But f can be defined in terms of a function F  which is 

defined on 2R  by the equation of the form ( , ) 0F x y =  For example, ( )y f x= defined by 

2 26 0x xy y− + =  is a function which can’t be given in explicit form. 

 A function ( ),y f x= defined by ( , ) 0.F x y = is called an implicit function. In 

order to differentiate such functions, we differentiate F  with respect to x  (treating y  as 

a function of x ) and equate it to zero and thereby we get
dy

dx
. 

The following examples illustrate this process. 

1.  If 3 3 3 0x y axy+ − =  , find 
dy

dx
 

Let the given equation define the function 

( )y f x=  That is 3 3( ( )) 3 ( ) 0x f x axf x+ − =  

Differentiating both sides of this equation with respect to ,x  we get  

3 23 3( ( )) ( ) [3 . ( ) 3 ( )] 0x f x f x a f x axf x′ ′+ − + =  

Hence 3 23 3 ( ) [3 3 ( )] 0x y f x ay axf x′ ′+ − + =  

Therefore  
2

2
( )

dy ay x
f x

dx y ax

−
′ = =

−
 

2. If 2 22 3 2 8 0x xy y x y− + + + − = , find 
dy

dx
 

Treating y as a function of x and then differentiating with respect to .x We get

4 3 3 2 1 2 0.x y xy yy y′ ′ ′− − + + + =  

Therefore  
3 4 1

.
2 3 2

dy y x
y

dx y x

− −
′= =

− +
 

10.3.5 Solved problems: 

1. Problem: If ( )1
tan cosy x

−=  then find 
dy

dx
 

     Solution: Substitute , cost x u x= = . 

 Then 1tany u−=  and 
dy dy du dt

dx du dt dx
= × ×  
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   = 
2

1 1
sin

1 2
t

u x
× − ×

+
 

   = 
2

sin

2 (1 cos )

x

x x
−

+
 

2. Problem: If 
2 2

1

2 2

1 1
tan 0 | | 1

1 1

x x
y x

x x

−
 + + −

= ∀ < < 
+ − −  

 then find 
dy

dx
 

      Solution: Substituting 2 cos 2x θ= , we get 

  1 1 cos 2 1 cos 2
tan

1 cos 2 1 cos 2
y

θ θ

θ θ

−
 + + −

=  
+ − − 

 

  = 
2 2

1

2 2

2cos 2sin
tan

2cos 2sin

θ θ

θ θ

−
 +
 

−  
 

  =  1 1cos sin 1 tan
tan tan

cos sin 1 tan

θ θ θ

θ θ θ

− −+ +   
=   

− −   
 

  = 1
tan tan

4 4

π π
θ θ−   

+ = +  
  

 

Therefore  1 21
cos ( )

4 2
y x

π −= +  

Hence   
4 4

1 ( 1)
2

2 1 1

dy x
x

dx x x

− −
= × =

− −  

3. Problem: If cos log tan , sin
2

t
x a t y a t

 
= + =  

 then find 
dy

dx
 

   Solution: Here, 
2

21 1 cos
sin .sec .

tan( 2) 2 2 sin

dx t a t
a t

dt t t

  
= − + =  

  
 

 And  cos
dy

a t
dt

=  so that tan

dy

dy dt t
dxdx

dt

= = . 

4. Problem: If y x yx e −=  then show that 
2

log

(1 log )

dy x

dx x
=

+
. 

   Solution: Taking logarithms on both sides of y x yx e −=  we get logy x x y= −  
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 That is,  
1 log

x
y

x
=

+
 

   Therefore  
2 2

1
(1 log ).1 .

log

(1 log ) (1 log )

x x
dy xx

dx x x

+ −

= =
+ +  

5. Problem: If sin sin( )y x a y= + , show that
2sin ( )

,
sin

dy a y

dx a

+
= a  is not a multiple of π  

Solution: 
sin

sin sin( )
sin( )

y
y x a y x

a y
= + ⇒ =

+
 

 Differentiating both the sides with respect to ,x  we get 

  
2

sin( ).cos sin .cos( )
1 .

sin ( )

a y y y a y dy

a y dx

+ − +
=

+
 

             Hence  
2 2sin ( ) sin ( )

sin( ) sin

dy a y a y

dx a y y a

+ +
= =

+ −
 

                             Exercise 10(c) 

1. Find the derivatives of the following functions. 

1 3( ) sin (3 4 )i x x− −  
1 3( ) cos (4 3 )ii x x− −

  

1

2

2
( ) sin

1

x
iii

x

−  
 

+   

1( ) tan
1

a x
iv

ax

− − 
 

+     

             

1 1 cos
( ) tan

1 cos

x
v

x

− −

+   

2( ) sin(cos( ))vi x 1( )sin(tan ( ))xvii e− −   

2.  Differentiate ( )f x with respect to ( )g x for the following. 

( ) ( ) , ( )xi f x e g x x= =       
sin( ) ( ) , ( ) sinxii f x e g x x= =

  
 

1 1

2 2

2 2
( ) ( ) tan , ( ) sin

1 1

x x
iii f x g x

x x

− −   
= =   

− +   
  

3. If 
1

sina xy e
−

=  then prove that 
21

dy ay

dx x
=

−
 

4. Find the derivative of the following functions 

2 3
1

2 2

3
( ) tan

( 3 )

a x x
i

a a x

−  −
 

− 

1( ) tan (sec tan )ii x x− +

2

1
1 1

( ) tan
x

iii
x

−

 + −
 

 

tan( ) (log ) xiv x
  

( ) ( )x xv x log(tan )( ) 20 xvi ( )
x

x evii x e+ ( ) log .log(log )viii x x x  

               
  

5. Find 
dy

dx
 for the following functions 
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3 3( ) 3cos 2cos , 3sin 2sini x t t y t t= − = −
    

2

3 3

3 3
( ) ,

1 1

at at
ii x y

t t
= =

+ +
   

( ) (cos sin ), (sin cos )iii x a t t t y a t t t= + = −   

6. Differentiate ( )f x with respect to ( )g x for the following. 

        
( ) ( ) log , ( )

x

a
i f x x g x a= =

    

1 2

2

1
( ) ( ) sec , ( ) 1

2 1
ii f x g x x

x

−  
= = − 

− 
   

                       

2
1 11 1

( ) ( ) tan , ( ) tan
x

iii f x g x x
x

− −
 + −

= = 
 
 

   

7. Find the derivative of the function y  defined implicitly by each of the 

following equations. 
4 4 2( ) 0i x y a xy+ − = ( ) yii y x= sin( ) x yiii y x=  

8. Establish the following 

( )i  If  2 2
1 1 ( )x y a x y− + − = − then 

2

2

1

1

dy y

dx x

−
=

−  

( )ii  If  2 2 2 2 2log( )y x a x a x a x= + + + + then 2 22
dy

a x
dx

= +  

( )iii  If  log logyx x= then 
2

1 log log

log

dy y x y

dx x x

 −
=  

   

( )iv  If
3 3

1 1 1

2 2 2 4

2 3 4 4
tan tan tan

1 1 3 1 6

x x x x x
y

x x x x

− − −   − − 
= + −    

− − − +     
then 

2

1

1

dy

dx x
=

+  

( )v  If  y xx y= then 
( log )

( log )

dy y x y y

dx x y x x

−
=

−  

( )vi  If  2 3 2 3 2 3x y a+ = then 3
dy y

dx x
= −

 

9. Find 
dy

dx
 of each of the following functions 

2 3 3 4

5 6 6 7

(1 2 ) (1 3 )
( )

(1 6 ) (1 2 )

x x
i y

x x

−

−

− +
=

− −     

34 2

2

4
( )

4 7

x x
ii y

x

+
=

−

2 3

3

( ) ( )
( )

( 2 )

a x b x
iii y

c x

− −
=

−
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3. 2 3
( )

(2 )(1 )

x x
iv y

x x

+
=

+ −
  

10. Find the derivatives of the following functions 

log sin( ) (sin ) x xi x x+
    

( )
xx

ii x ( ) (cot )x xiii x x+ sin( ) (sin )x xiii x x+    

11. Establish the following 

( )i  If  y x bx y a+ = then 
1

1

log

log

y x

y x

dy yx y y

dx x x xy

−

−

 +
= −  

+   

( )ii  If
1( ) sin &

x
f x

x

β

α

− −
=

−

1( ) tan
x

g x
x

β

α

− −
=

−
then                 

' '( ) ( )( )f x g x xβ α= < <  

( )iii  If  0a b> >  and 0 ;x π< <  then 2 2 1 2 1 cos
( ) ( ) .cos

cos

a x b
f x a b

a b x

− − + 
= −  

+   

12. Differentiate 2 3( 5 8)( 7 9)x x x x− + + +  

(i) Using product rule. 

(ii) Obtaining a single polynomial expanding the product 

(iii) Logarithmic differentiation 

 

KEY CONCEPTS 

I. The derivative  of  a function f at x = a is denoted by 

 '( )f a  = 
0

( ) ( ) ( ) ( )
lim lim
h h a

f a h f a f x f a

h x a→ →

+ − −
=

−
 both exist and are equal.  

II. Every  differentiable  function is continuous  but the converse is not true. 

III. let u and v be  functions of x whise derivatives exixts. Then 

(i) 
( )

0
d c

dx
=  

(ii). 
( )d ku du

k
dx dx

=  

(iii) ( )
d du dv

u v
dx dx dx

+ = +  

(iv). ( )
d dv du

uv u v
dx dx dx

= +  

(v) 
2

1 1
( )

d du

dx u u dx
= −  
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(vi) 
2

( )

du dv
v u

d u dx dx

dx v v

−

=  

IV. Some of the standered derivatives in appropriate domains 

1. (sin ) cos
d

x x
dx

=
 

12. ( )n nd
x nx

dx

−=
 

3. ( )x xd
e e

dx
= .  

1
4. (log )

e

d
x

dx x
=

 

5. ( ) logx x

e

d
a a a

dx
=  

6. (sin ) cos
d

x x
dx

=  

 7. (cos ) sin
d

x x
dx

= −  

 8. 2(tan ) sec
d

x x
dx

=  

9. 2(cot ) cos
d

x ec x
dx

= −  

 10.
 

(sec ) sec tan
d

x x x
dx

=   

11. (cos ) cos cot
d

ecx ecx x
dx

= −
7.

 

1

2

1
12. (sin )

1

d
x

dx x

− =
−  

1

2

1
13. (cos )

1

d
x

dx x

− −
=

−
. 

1

2

1
14. (tan )

1

d
x

dx x

− =
+

. 
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1

2

1
15. (cot )

1

d
x

dx x

− −
=

+
. 

1

2

1
16. (sec )

1

d
x

dx x x

− =
−

 

1

2

1
17. ( sec )

1

d
co x

dx x x

− −
=

−
. 

18. (sinh ) cosh
d

x x
dx

=  

19. (cosh ) sinh
d

x x
dx

= . 

220. (tanh ) sec
d

x h x
dx

= . 

21. (sec ) sec tanh
d

hx hx x
dx

= −     

22. ( sec ) cos coth
d

co hx echx x
dx

= − . 

223. (coth ) cos
d

x ec x
dx

= −  

1

2

1
24. (sinh )

1

d
x

dx x

− =
+

. 

1

2

1
25. (cosh )

1

d
x

dx x

− =
−

. 

1

2

1
26. (tanh )

1

d
x

dx x

− =
−

. 

1

2

1
27. (sech )

1

d
x

dx x x

− −
=

−
 

1

2

1
28. (cos h )

1

d
ec x

dx x x

− −
=

+
. 

1

2

1
29. (coth )

1

d
x

dx x

− =
−
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                             Answers 

                                 Exercise 10(a) 

11

64
1 3 5

1. ( )
2 22

i x x
x

−−

+ +    
1 3

( )
2 3 2 7 3

ii
x x

−
− −    

4 2( ) 20 36 2iii x x x− +  

        

3 1
( ) 6

2 2
iv x x

x x
− −     

5 1
( ) 2 6 4

2
v x x x x

x
+ − + −     

       
( ) ( ) ( )n m na mb
vi ax b cx d

ax b cx d

 
+ + + 

+ + 

1
( ) 5cos (log )xvii x e x

x
+ +  

        
3 21

( ) 5 log 5 ( 3 )x x
viii x x e

x
+ + +    ( ) cos 2x

ix e x+
2

2

2
( )

( )

apx pbx bq ar
x

ax b

+ + −

+
 

                        7

1
( ) log

log
xi e

x x
2 2

(2 )
( )

( )

ax b
xii

ax bx c

− +

+ +

2 3
( ) 2log(3 4)

3 4

x
xiii e x

x

 
+ + 

+   

                         
2 2( ) 2 ( 4)x

xiv e x x+ +     2
( )

( )

ad bc
xv

cx d

−

+
            

2. (1) 5050f ′ =
 

24. ( ) 3i x  
3( ) 4ii x  ( ) 2iii ax b+

1
( )

2 1
iv

x +
( ) 2cos2v x ( ) sinvi a ax−

2( )2sec 2vii x
2( ) cosviii ec x−  

2

3
5 ( )

(1 )

x
i

x x

−

+
( )1( ) log( ) log log( ) 1n xii x n n nx x n nx− + +

      

       
( ) ( )2 1 1

( ) 2 log 1
n n x

iii ax n x bx e n x
− − −

+ + −
   

2

2

1 1 3
( ) 3x
iv x e x

x x x

   
− − − −   

     

                7.not differentiable at 1 and 3.

       

8. not differentiable at 2

  

 

Exercise 10(b) 

1 21. ( ) cot cosn
i n x ec x

−−  
4( ) 4cos cotii ec x x−  

2( ) sec ( )x x
iii e e

2( ) 2 tan seciv x x

1 1 2 2 1

2
( ) sin cos ( cos sin )( ) cos cos sin sin ( ) tan

1

m n x
v x x m x n x vi m mx nx n mx nx vii x

x

− − −− − +
+

( ) 1viii − ( )10cos 10ix ec x
2

3
( )

16 9
x

x−
2

1
( )

(1 (log ) )
xi

x x+

2

4 2

4 2
( )

3 4

x
xii

x x

−

+ +  

1 2
( )

sin ( ) 1

x

x x

e
xiii

e e
−

−

1 1

2

sin
( )2(sin )(sin ) (cos .sin )

1

x
xiv x x x x

x

− −
 

+ 
−   
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2

1
( )

(sin cos )
xv

x x

−

+

2 4

3

2 2

1 3 2
( )

(1 )

x x
xvi

x

+ −

−

1sin

2
( )

1

x
e

xvii
x

−

−

1
( ) sin(log )( )x x
xvii x e e

x
− + +

 

   

2( )cos secxix a x
2

3cos 3 cot 3
( )

1 cos 3

ec x x
xx

ec x+
 

             2

1
2 ( )

2
i

x x+
 

1
( )

2 (1 )
ii

x x−   

1
( )

cosh
iii

x y
2

( )
1

y
e

iv
x

−−

+
( )

sin 2

x
e

v
y

( ) 2 (1 )vi y y+
    

   

2 2 2

2

sin(log(cot )) 2
3 ( ) ( ) ( ) 4 cos 2(1 )( ) 2 sin( ) cos(cos( ))

sin cos (1 ) 1

x
i ii iii x ec x iv x x x

x x x x

±
− −

+ +

         

       

1

2 2

cos( ) cos( ) sin( ) sin( )
( ) cos(tan ( ))( )

1 cos ( )

x
x

x

e a ax b cx d c ax b cx d
v e vi

e cx d

− + + + + +

+ +    

     

1 2( ) sin .(tan )vii x x
−  

            

2 2

4 ( )
sin

a b
i

a b x

−

+
 

2 2

( )
cos

a b
ii

a b x

−

+
 

2

sin
( )

2cos 2cos 1

x
iii

x x

−

+ +
  

           
 

                             Exercise 10(c) 

          2

3
1 ( )

1
i

x−
 2

3
( )

1
ii

x
−

−
  2

2
( )

1
iii

x+  2

1
( )

1
iv

x

−

+   

1
( )

2
v  

               

2 2( ) 2 sin( ) cos(cos( ))vi x x x−
1

2

cos(tan ( ))
( )

1

x x

x

e e
vii

e

− − −

−

−

+
  

         

2. ( ) 2 xi xe
      

sin( ) x
ii e

          

( )1iii  

         

tan 2

2 2 2

3 1 1 tan
4 ( ) ( ) ( ) ( ) (log ) sec log(log )

2 2(1 ) log

xa x
i ii iii iv x x x

a x x x x

 
+ 

+ +  
  

              

2 1 2( ) logxv x ex+ log(tan )( )2 log 20.cos 2 . 20 x
vi ec x ( ) (1 log )

x
x x evii x x e e+ +  

             
( ) log( log ) log .log(log )viii e x x x+

               
  



 

312 

 

         
5 ( ) coti t

    

3

3

(2 )
( )

1 2

t t
ii

t

−

−
 ( ) taniii t  

        2

1
6 ( )

(log )x
i

xa a     

2
( )ii

x

1
( )

2
iii    

      

2 3

3 2

4
7 ( )

4

a y x
i

y a x

−

−

2

( )
(1 log )

y
ii

x x−

(sin log )
( )

( cos log )

y y x y
iii

x x y y x

−

−
 

2 3 3 4

5 6 6 7

(1 2 ) (1 3 ) 5 6 4 9
9 ( )

(1 6 ) (1 2 ) 1 6 1 7 3(1 2 ) 4(1 3 )

x x
i

x x x x x x

−

−

 − +
+ − − 

− − − + − + 
         

       

34 2 2 3

2 2 32

4 4 2 4 ( ) ( ) 6 3 2
( ) ( )

3(4 ) 4 7 ( 2 ) 24 7

x x x x a x b x
ii iii

x x x c x c x b x a xx

 + − −  
+ − − −   + − − − − − −  

     

        
3. 2 3 3 3 1 1

( )
(2 )(1 ) 2(2 3 ) 1 2

x x
iv

x x x x x x

 +
+ + − 

+ − + − + 
 

log log(sin )
10 ( ) (sin ) cot logx x

i x x x
x

 
+       

1( ) (1 log log( ))
x

x xii x x x ex+ − +
 

2
( ) (1 log ) (cot ) log(cot )

sin 2

x x x
iii x x x x

x

 
+ + −  

[ ] sin sin
( ) (sin ) cot log(sin ) cos logx x x
iii x x x x x x x

x

 
+ + +  

 12 yes   
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11. APPLICATIONS OF DERIVATIVES 

Introduction: 

 In chapter 10, we have studied the concept of the derivative of a function. In this 

chapter, we will study some applications of derivatives. In fact, the derivative plays a 

vital role in solving some problems such as errors and approximation, finding maxima 

and minima (extreme values) of a function. We shall also discuss the geometrical 

interpretation of the derivative and the methods of finding the equations of the tangent 

and the normal at a point on a given curve. 

11.1 Errors and approximation:  

 The word infinitesimal is used in the sense that it is extremely small or very very 

small. In other words, it is so small that it cannot be distinguished from zero by any 

available means. Roughly we can say that an infinitesimal it close to zero but it is not 

equal to zero. The infinitesimal in the variable x  is denoted by x  and the infinitesimal 

in the variable y  is denoted by y . Then infinitesimal x  and y  are referred as change 

in x  and change in y  respectively. 

 If a dependent variable y  depends on x  by a functional relation ( )y f x  then 

change in y  is given by ( ) ( )y f x x f x     

Where the variable x  is changed from x  to x x . 

11.1.1 Notation: 

0 0( , )x y

dy

dx

 
 
 

 Denotes the value of the derivative of the function ( , )f x y  at 

0 0( , )x y . 

If the function y  is in explicit form ( )y f x  then we write 

0 0( , )x y

dy

dx

 
 
 

as '

0( )f x . 

11.1.2 Formula for approximation value of y  :  We define '( )f x x  or 
dy

x
dx

  as     

differential of y  and is denoted by ,dy  

i.e..,                      '( )dy f x x        (1) 

   
dy

dy x
dx

        (2) 

If we take ( )y f x x   in (1), we get 

   dy x        (3) 
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   And we call dx  as differential of .x  

 Though dx  and x  are equal, &y dy  need not be equal. In case ( )y f x  

represents a line then &y dy  are equal. Geometrically dy  denotes the change in y  

along the tangent line where as y  is the change along the curve (in fig). 

 In the above fig, PT  is the tangent to the curve ( )y f x  at 0 0( , ( ))P x f x  and 

0 0( , ( ))Q x x f x x   is a neighbouring point of  P  lying on the curve. The line 

segments ,PR RS  and RQ  are respectively equal to , &x dy y  . 

 If x  is an infinitesimal then  '( )
y

f x
x





   (4) 

Since 
y

x




 is approximately equal to ( )f x  there exists an infinitesimal   such that  

 ( )
y

f x
x




 


      (5) 

Where    depends on x  and x . Equation (5) can be expressed as 

   ( )y f x x x          (6) 

Since  and x are infinitesimal, their product is very small and nearer to zero [like the 

product of (0.001).(0.000001)=0.00000001]. Therefore we take ( )f x x   as an 

approximate value of y . Thus 

    ( )y f x x        (7) 

    ( )y f x dx       (8) 

In view of (1), the equation (7) can be written as 

    y dy   

We can also have another formula from equation (8) i.e.., 

    '( ) ( ) ( )f x x f x f x dx      (9) 

Since  ( ) ( ).y f x x f x    The equation (9) can be used to find an approximate value 

of y  at 0x x x 
 

Y                                                           Q        T 

      S 

                 
O

                                               P              R 
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11.1.3 Note: When x changes from 
0x  to 

0x x  then change in y  is given by  

   0 0( ) ( )y f x x f x        (10) 

And we call y  given by (10) as the change in y  at 0x x  

11.1.4 Definition: If a number A is very close to a number B but it is not equal to B then 

A is called an approximate value of B. For example 3.141592 is an approximate value of 

=3.14159263589......... 

 If K(e) is an exact value of a certain entity ( length of a side, square root of a 

number) and K(a) is an approximate value of K(e) then the difference of these two is 

defined as an error i.e.., K(e)-K(a) is the error. If x  is considered as an error in x  then 

the error in ( )y f x is y . The exact error can be computed from equation (1) of 10.1.2 

and the approximation of y  can be computed from the equation (8) of 10.1.2. 

Definition (Absolute error, Relative error and Percentage error) 

 If y  is any variable then 

(i) y  is called an absolute error in y  

(ii) 
y

y


 is called a relative error in y . 

(iii) 100
y

y


  is called percentage error in .y  

If ( )y f x is a differentiable function and x  is an error in x  then the approximation of 

absolute error, relative error and percentage error in y  are respectively as given below 

   ( )y f x x          (1) 

   
( )

( )

y f x
x

y f x

 
  
 

      (2) 

And   
( )

100 100
( )

y f x
x

y f x

 
    

 
    (3) 

11.1.5 Solved Problems: 

1. Problem:  Find &dy y  of 2y x x   at 10x   when 0.1x   

Solution:  As change in ( )y f x  is given by ( ) ( )y f x x f x     , this change at 

10x  with 0.1x  . 

  2 2(10.1) (10) {(10.1) 10.1} {10 10} 2.11x f f         
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Since '( ), ,dy f x x dy   at 10x  with 0.1x   is  

{(2)(10) 1}0.1 2.1dy      (since 2 1
dy

x
dx

  ) 

2. Problem:   Find &y dy  for the function cos( )y x  at 60  with 1x   

Solution: For the given &y dy  at  60x   with 1x   are  

  cos(60 1 ) cos(60 )y        (1) 

And  sin(60 )(1 )dy        (2) 

  cos(60 ) 0.5, cos(61 ) 0.4848 , sin(60 ) 0.8660 , 1 0.0174  radians 

Therefore,   0.0152& 0.0150y dy      

3. Problem:  If the radius of a sphere is increased from 7cm to 7.02 cm then find the 

approximate increase in the volume of the sphere. 

Solution: Let r be the radius of a sphere and V  be its volume. Then 

   
34

3

r
V


       (1) 

Here V  is a function of .r  As the radius is increased from 7cm to 7.02, we can take r = 

7cm and 0.02r  cm. Now we have to find the approximate increase in the volume of 

the sphere. 

    24
dV

V r r r
dr

      

Thus, the approximation increase in the volume of the sphere is  

   34(22)(7)(7)(0.02)
12.32

7
cm  

4. Problem:  If ( ) ny f x kx   the show that the approximate relative error (or increase) 

in y in n times the relative error (or increase) in x where n and k are constants. 

Solution: The approximate relative error (or increase) in y by the equation (2) of 10.1.4 

is  
' 1( )

( )

n

n

f x knx x
x x n n

f x kx x

   
       

  
 relative error (or increase) in .x  

Hence the approximate relative error in ny kx  is n times the relative error in .x  
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5. Problem:  If an error of 0.01 cm is made in increasing the perimeter of a circle and the 

perimeter is measured as 44cm then find the approximate error and relative error in its 

area. 

Solution: Let , &r p A  be the radius, perimeter and area of the circle respectively. Given 

that 44 & 0.01p cm p   . We have to find the approximation of &
A

A
A


 . Note that

2A r  which is a function of .r As &p p  are given to transform 2A r  into the 

form ( )A f p . This can be achieved by using the relation, perimeter 2 r p  . 

   

2 2

2 4

p p
A 

 

 
  

 
 

Hence the approximate error in 
2

4 2

dA p p
A p p p

dp  
       

The approximation error in A  when 
44

44& 0.01 (0.01) 0.07
2

p p


      

The approximate relative error = 
2

2(0.01)2
. . 2 0.0004545

44

4

dA p

dp p
p p

A pp





   
            

 
 
 

. 

Exercise 11(a) 

1. Find &y dy  for the following functions for the values of &x x  which are 

shown against each of the functions. 

                         

2( ) 3 6, 10& 0.01i y x x x x     
 

                         ( ) , 5& 0.02xii y e x x x      

                          
2( ) 5 6 6, 2& 0.001iii y x x x x       

                          
1

( ) , 8& 0.02
2

iv y x x
x

   
  

                          ( ) cos( ), 60 & 1v y x x x     

2. Find the approximations of the following 
'3 3 4( ) 82 ( ) 65 ( ) 25.001 ( ) 7.8 ( ) sin(62 ) ( )cos(60 5 ) ( ) 17i ii iii iv v vi vii

 

3. If the increase in the side of a square is 4% then find the approximate 

percentage of increase in the area of the square. 
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4. The radius of a sphere is measured as 14cm. Later it was found that there is an 

error 0.02 cm in measuring the radius. Find the approximate error in surface 

area of the sphere. 

5. The diameter of a sphere is measured to be 40cm. IF an error of 0.02 cm is 

made in it, then find approximate errors in volume and surface area of the 

sphere. 

6. The time t  of a complete oscillation of a simple pendulum of length l is given 

by 2
l

t
g

  where g  is gravitational constant. Find the approximate 

percentage of error in t  when the percentage of error in l  is 1%. 

11.2 Geometrical interpretation of the derivative: 

 In this section we first recall the definition of tangent at a point to a curve. Then 

we give the geometrical interpretation of the derivative. 

11.2.1 Definition: Let P be a point on a curve (fig). Let Q be a neighbouring point P on 

the curve. The line through P and Q is a secant of the curve. The limiting position of the 

secant PQ as Q moves nearer to P along the curve is called the tangent to the curve at the 

point P. 

 

  P 

      Q 

 

11.2.2 Geometrical interpretation of derivative: Let APQ denote the curve ( )y f x

defined on an interval. Let P be a point on the curve and ( , ( ))P c f c    

If we let Q to be a neighbouring point of P on the curve (see fig), then Q can be taken as 

( , ( ))Q c c f c c    .Let the tangent at P to the curve which is not parallel to X-axis in 

general, meet the X-axis at T and make an angle   with X-axis. Let the chord drawn 

through P,Q meet X-axis in S and make an angle  . Let L, M be the feet of the 

perpendiculars drawn from P,Q respectively on the X-axis. Then 

( )& ( )PL f c QM f c c   . Since, PR is parallel to OM we have ˆQPR  .  

 Then,  tan
QR QM RM QM PL

PR OM OL OM OL


 
  

 
 

   =
( ) ( ) ( ) ( )f c c f c f c c f c

c c c c
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As the point Q approaches P, the limiting position of the chord PQ is the tangent PT at P, 

i.e.., if Q P  then 0, 0,QR PR      and chord PQ  approaches PT  

Therefore  '

0

( ) ( )
( ) lim lim lim tan tan

c Q P

f c c f c QR
f c

c PR  


 

  

 
     

Observe that tan  is the slope of the tangent PT. Thus, the summary of the above 

discussion is that the derivative of f(x) at c is the slope of the tangent to the curve y=f(x) 

at the point (c, f(c)) 

11.3 Equations of tangent and normal to a curve: 

 In the previous section 10.2 we have seen that 
dy

dx
 represents the slope of the 

tangent at a point (x, y) on the curve y=f(x). Using this concept, it is easy to find the 

equations of tangent and normal. 

11.3.1 Equation of tangent: Let y=f(x) be a curve and P (a, b) be a point on it. Then we 

know that the slope m of the tangent at P is  

  ( )m f a  or 
( , )a b

dy

dx
 

Therefore, the equation of the tangent to the curve at ( , )a b is  

   
'

( )

( )( )

y b m x a

y b f a x a

  

  
 

11.3.2 Definition: Let P be a point on curve C. The straight line passing through P and 

perpendicular to the tangent to the curve at P is called the normal to the curve C at P (see 

fig). 

Y                               Tangent 

     P            C 

                                                                Normal                                                                          

           O                                                                         X                                                                                                            

 

11.3.3 Equation of normal: Since, the slope of the tangent to the curve y=f(x) at P(a,b) 

is ( ),f a the slope of the normal at P is 
1

( )f a




 if ( )f a not equal to zero. If ( ) 0f a  the 

tangent to the curve at P is parallel to the X-axis and therefore the normal is parallel to 

the Y-axis. 
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 Thus the equation of the normal is  

  
1

( )
( )

y b x a
f a


  


 if ( ) 0f a    and 

   x a  if  ( ) 0f a   

11.3.4 Note: The curve y=f(x) is said to have a 

(i) Horizontal tangent at a point (a, f(a)) on the curve when ( )f a =0 

(ii) Vertical tangent at a point (a, f(a)) on the curve when  

 
0

( ) ( )
lim
h

f a h f a

h

 
   or   

11.3.5 Solved Problems: 

 1. Problem: Find the slope of the tangent to the following curves at the points as 

indicated. 

(i) 25y x  At (-1, 5)    (ii) 
1

( 1)
1

y x
x

 


 at 
1

3,
2

 
 
 

 

(iii) sec , tanx a y a    at 
6


     (iv) 2

n n
x y

a b

   
    

   
 at ( , )a b  

Solution:  

(i) 25y x  then 10.
dy

x
dx

  

Therefore the slope of the tangent at the given point is 
( 1,5)

10
dy

dx 

  . 

(ii) 
1

( 1)
1

y x
x

 


 then 
2

1

( 1)

dy

dx x





 

Therefore the slope of the tangent at 
1

3,
2

 
 
 

 is 
2

1(3, )
2

1 1

(3 1) 4

dy

dx

 
 


 

(iii) sec , tanx a y a     

 
2sec

cos
sec tan

dy

dy ad ec
dxdx a

d

 
 



 
 

   
 
 

 

Slope of the tangent of the point with 
6


   is  

  

6

cos 2
6

dy
ec

dx 
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(iv) 2

n n
x y

a b

   
    

   
 

Differentiating both sides w.r.t x, 

  

1 1
1 1

. . . 0

n n
x y dy

n n
a a b b dx

 

   
    

   
 

i.e..,  

1nn
dy b x

dx a y



  
    

   
 

 Slope of the tangent at (a, b ) 
( , )a b

dy

dx

b

a


 . 

2. Problem:  Find the equations of the tangent and the normal to the curve 45y x  at the 

point (1, 5). 

Solution: 45y x  implies that 320
dy

x
dx

  

Slope of the tangent to the curve at (1, 5) is 
(1,5)

320(1) 20
dy

dx
   

 The slope of the normal to the curve at (1, 5) is 
1

20


 

 Equations of the tangent and the normal to the curve at (1, 5) are   

 
1

5 20( 1) & 5 ( 1)
20

y x y x


       respectively. 

 i.e.., 20 15&20 101y x y x     respectively 

3. Problem: Find the equations of the tangents to the curve 2 33y x x  =0, where it 

meets the X- axis. 

Solution: Putting 2 33y x x  =0 , we get the points of intersection of the curve and X-

axis, i.e.., 0.y  They are given by  

  2 33 0x x   or 2(3 ) 0x x   i.e.., 0, 3.x x   

Thus the curve crosses the X axis at the points O (0, 0) and A (3, 0). 

    26 3
dy

x x
dx

   

that implies slope of the tangent at O(0, 0) to the curve is  
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(0,0)

0
dy

dx
  

Tangent at O (0, 0) is 0 0( 0)y x  
 

i.e.., X-axis is the tangent to the curve at (0, 0). 

Now the slope of the tangent at A(3, 0) to the curve is 2

(3,0)

6(3) 3(3) 9
dy

dx
     

Therefore the tangent at (3, 0) is 0 9( 3),y x    9 27.y x   

4. Problem: Find the points at which the curve y sinx  has horizontal tangents. 

Solution:    y sinx  

   cos
dy

x
dx

   

A tangent is horizontal if and only if its slope is zero. 

Therefore  cos 0x   

Hence   (2 1) ;
2

x n n Z


    

Hence the given curve has horizontal tangent at point  0 0( , )x y  

0 (2 1)
2

x n


    and 
0 ( 1)ny Z    (See fig) 

5. Problem:  Show that the tangent at any point   on the curve secx c  , tany c   is 

sin cosy x c    

Solution: Slope of the tangent at any point    (i.e..,  at ( sec , tanc c  )) on the curve is 

2sec
cos

sec tan

dy

dy cd
ec

dxdx c

d




 



 
 
   
 
 
 

 

Therefore the equation of the tangent is  

   tan cos ( sec )y c ec x c      

i.e..,  sin cosy x c    
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Exercise 11(b) 

1. Find the slope of the tangent to the curve 43 4y x x   at 4.x   

2. Find the slope of the tangent to the curve 
1

, 2
2

x
y x

y


 


 at 10.x   

3. Find the slope of the tangent to the curve 3 1y x x    at the point whose x

coordinate is 2. 

4. Find the slope of the tangent to the curve 3 3 2y x x    at the point whose x

coordinate is 3. 

5. Find the slope of the normal to the curve 3 3cos , sinx a y a    at 
4


  . 

6. Find the slope of the normal to the curve 
4


   at  

2


   

7. Find the points at which the tangents to the curve  3 23 9 7y x x x     are 

parallel to the x axis. 

8. Find a point on the curve 2( 2)y x   at which the tangent is parallel to the chord 

joining the points (2, 0) and (4, 4). 

9. Find the point on the curve 3 11 5y x x    at which the tangent is 11.y x   

10. Find the equation of tangent and normal to the following curves at the points 

indicated against: 

(i) 4 3 26 13 10 5y x x x x      at (0,5) 

(ii) 3y x  at (1,1) 

(iii) 2y x  at (0,0) 

(iv) cos , sinx t y t   at 
4

t


  

(v) 2 4 2y x x    at (4,2) 

(vi) 
2

1

1
y

x



 at (0,1) 

11.  Find the equations of tangent and normal to the curve xy=10 at (2, 5). 

12. Find the equation of tangent and normal to the curve 3 24y x x   at (-1, 3). 

13. If the slope of the tangent to the curve 3 2 4 0x xy y    at a point on it is 3/ 2 , 

then  find the equations of tangent and normal at that point. 

14. If the slope of the tangent to the curve logy x x  at a point on it is 3 / 2 , the find 

the equations of tangent and normal at the point. 

15. Find the tangent and normal to the curve 32
x

y e


  at the point where the curve 

meets the Y-axis. 

16. Show that the tangent at 1 1( , )P x y  on the curve x y a   is 

1 1 1

2 2 2
1 1yy xx a
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17. At what point on the curve 2 2 2x y   the slopes of tangents are equal to 2? 

18. Show that the curves 2 2 2 22&3 4x y x y x     have a common tangent at the 

point (1, 1). 

19. At a point 1 1( , )x y  on the curve 3 3 3x y axy   show that the tangent 

   2 2

1 1 1 1 1 1x ay x y ax y ax y     

20. Show that the tangent at the point P (2, -2) on the curve (1 ) .y x x  makes 

intercepts of equal length on the co-ordinates axes and the normal at P passes 

through the origin. 

21. If the tangent at any point on the curve 
2 2 2

3 3 3x y a   intercepts the coordinate 

axes in A and B then show that the length AB is constant. 

22. If the tangent at any point P on the curve ( 0)m n m nx y a mn   meets the 

coordinate axes in A, B then show that AP: BP is a constant. 

11.4 Lengths of tangent, normal, sub tangent and subnormal: 

 In this section we define the length of tangent, normal, sub tangent and sub 

normal and derive formulae to find these lengths. 

11.4.1 Definition: Suppose P=(a, f(a)) is a point on the curve y=f(x). Let the tangent and 

normal to the curve at P meet the X-axis in L and G respectively. Let M be the foot of the 

perpendicular drawn from P onto the X-axis. 

Then 

(i) PL is called the length of the tangent. 

(ii) PG is called the length of the normal 

(iii) LM is called the length of the sub tangent. 

(iv) MG is called the length of sub normal. 

If PLM    then, MPG    In general if , 0 &
2


    

We can find simple formulae for the above four lengths. 

(i) Length of the tangent = cosPL PM ec  

2( ) 1 ( ( ))
( )cos

( )

f a f a
f a ec

f a






  ( ( ) 0f a   as 0  ) 

(ii) Length of the normal = secPG PM   

    = 2( )sec ( ) 1 ( ( ))f a f a f a    

(iii) Length of the sub tangent =
( ) ( )

tan ( )

f a f a
LM

f a
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(iv) Length of the subnormal = ( ) tan ( ) ( )MG f a f a f a    

In case of implicit we write 
(0, ( ))f a

dy

dx

 
 
 

 instead of ( )f a  in the above formulae. 

In case of general point ( , )x y on a curve, the above formulae can be remembered as 

(i) Length of tangent = 
21 ( )y y

y




 

(ii) Length of normal =  21 ( )y y  

(iii) Length of sub tangent = 
y

y
 

(iv) Length of subnormal = yy  

11.4.2 Solved Problems: 

1. Problem: Show that the length of the subnormal at any point on the curve 2 4y ax  is 

a constant. 

Solution: Differentiating 2 4y ax  with respect to ,x  we have 

  
2

2 4y y
a

y a
y

      i.e.., 2yy a   

Therefore the length of the subnormal at any point ( , )x y on the curve   

  = 2yy a   , a constant. 

2. Problem:  Show that the length of the sub tangent at any point on the curve 

( 0)xy a a   is a constant. 

Solution: Differentiating xy a  w.r.t x, we have logxy a a   

Therefore the length of the sub tangent at any point ( , )x y on the curve is  

 = 
1

log log

x

x

y a

a ay a
    constant. 

3. Problem: Show that the square of the length of sub tangent at any point on the curve 
2 3( ) ( 0)by x a b    varies with the length of the subnormal at that point. 

Solution: Differentiating 2 3( )by x a   w.r.t ,x we get 22 3( )by x ay    
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The length of the subnormal at any point ( , )x y on the curve  

   = 23
( )

2
y x a

b
y       (1) 

The square of the length of the sub tangent  

 = 
2

2 2

'

y y

y y



 

 = 
2 3 2 2

2 42

( ) ( ) 4

9( )3( )

2

x a x a b y

b x ax a
b

by

   
 

 
 
 

 

 = 
3 3

2

4

( ) 4 ( ) 1

9 ( )

x a x a
b

b b x a

 
   


  ( 2 3( )by x a  ) 

 = 24
( )

9
x a     (2) 

Therefore the square of the length of sub tangent at any point on the curve varies with the 

length of the subnormal at that point. 

4. Problem: Find the value of k so that the length of the subnormal at any point on the 

curve 1 k ky a x  is constant. 

Solution: Differentiating 1 k ky a x  w.r.t ,x  we get  1 1k kxy ka     

Length of subnormal at any point P ( , )x y on the curve 

  =  1 1k ky y ay k x    

  =  1 1 1 2 2 1k k k k k kka x a x ka x      

  = 2 2 2 1k kka x   

In order to make these values a constant, we should have 
1

2 1 0
2

k k     

Exercise 11(c) 

1. Find the lengths of sub tangent and subnormal at a point on the curve sin
x

y b
a

  

2. Show that the length of the subnormal at any point on the curve 2xy a  varies as 

the cube of the ordinate of the point. 
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3. Show that at any point (x, y) on the curve 
x

ay be  , the length of the sub tangent 

is a constant and the length of the subnormal is 
2y

a
. 

4. Find the value of k so that the length of the subnormal at any point on the curve 
1k kxy a   is constant. 

5. At any point t on the curve ( sin ), (1 cos )x a t t y a t    , find the lengths of 

tangent , normal, sub tangent and sub normal. 

6. Find the lengths of normal and subnormal at a appoint on the curve 

2

x x

a a
a

y e e
 

  
 

 

7. Find the lengths of sub tangent , subnormal at a point t on the curve 

(cos sin )

(sin cos )

x a t t t

y a t t t

 

 
 

11.5 Angle between two curves and condition for orthogonality of 

curves: 

 If two curves 1 2&C C  intersect at a point P, then the angle between the tangents to 

the curves at P is called the angle between the curves at P (see fig). 

In general, there are two angles between these two tangents; if both of  these angles are 

not equal, then one is an acute angle and the other obtuse. 

It is customary to consider the acute angle to be the angle between the curves. 

Let y=f(x), y=g(x) denote the curves 1 2&C C  and let these two curves intercept at the 

point 
0, 0( )P x y . 

Let 1 2( ) | & ( ) |p pm f x m g x    be the slopes of tangents at P to curves 1 2&C C  

respectively. 

(i) In case 1 2m m , the curves have a common tangent at P. Then the angle 

between the curves is zero. In this case we say that the curves touch each other 

at P. This include 1 2m m =0 also. 

(ii) If 1 2 1m m    then the tangent at P to the curves are perpendicular. In this case 

the curves are said to cut each other orthogonally at P. 

(iii) 1 2 1 21&m m m m    and   is the acute angle between the curves at P,then 

 1 2

1 2

tan
1

m m

m m






. 
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(iv) If either of 
1 2m andm  say 

2 0m   , then the angle between the curves is 

1

1tan ( )m  . 

11.5.1 Solved Problems: 

1. Problem:  Find the angle between the curves  22& 4 0xy x y   . 

Solution: Let us first find the points of intersection of 22& 4 0xy x y    

Putting 
4

4

x
y


  in 2xy  , we get 3 8x    

 i.e..,  2x  
2

1
4

x
y


     

Therefore the point of intersection of the curves is P (-2, -1) 

  '

2

2
2xy y

x


    

  2 '4 0
2

x
x y y


     

Slope of the tangent to the curve 2xy  at P is 

  '

1 ( 2, 1) 2

2 1
|

( 2) 2
m y  

 
  


 

Slope of the tangent to the curve 2 4 0x y   at P is 

  
2 ( 2, 1)| 1

2

x
m  


   

Let   be the angle between the curves at P. Then 

 1 2

1 2

1
1

2tan 3
11

1 1
2

m m

m m


 


  
  

   
 

 

  Therefore  1tan 3  . 

2. Problem:  Find the angle between the curve 22
x

y e


  and Y – axis. 

Solution: Equation of Y axis is 0.x  The point of intersection of the curve  
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 22
x

y e


  and 0x  is 
1

0,
2

P
 
 
 

 

The angle   made by the tangent to the curve 22
x

y e


  at P with X axis is given by   

2

1 10, 0,
2 2

1 1
tan

4 4

x
dy

e
dx




   
      

 
    

Further if   is the angle between the Y axis and the tangent at P to the curve 22
x

y e


  

then we have 

  tan tan cot 4
2


  

 
    

 
 

Therefore the angle between the curve and the Y axis is 1tan 4 . 

3. Problem: Show that the condition for the orthogonality of the curve 

2 2 2 2

1 11& 1ax by a x b y     is 
1 1

1 1 1 1

a b a b
   . 

Solution:  Let the curves 2 2 2 2

1 11& 1ax by a x b y     intersect at 1 1( , )P x y  so that 

2 2

1 1 1ax ay   and 2 2

1 1 1a x b y  , 

 From which we get (by cross multiplication rule.) 

   
2 2

1 1

1 1 1 1

1x y

b b a a ab a b
 

  
     

 (1) 

Differentiating 2 2 1ax by   w.r.t ,x we get 

   
dy ax

dx by


  

Hence if 1m  is the slope of the tangent at 1 1( , )P x y  to the curve  

   2 2 1ax by   then  1
1

1

ax
m

by


  

Similarly the slope 2m  of the tangent at P to 2 2

1 1 1a x b y   is given by 

   1 1
2

1 1

a x
m

b y
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Since the curves cut orthogonally, we have 1 2 1m m    

i.e..,     
2

1 1

2

1 1

1
aa x

bb y
   or 

2

1 1

2

1 1

x bb

y aa


    (2) 

now from (1) and (2) the condition for the orthogonality of the given curves is  

  1 1

1 1

b b bb

a a aa

 



   or  1 1 1 1( ) ( )b a a b b a ab     or   1 1 1 1( ) ( )b a a b b a ab    

                                  Exercise 11(d) 

1. Find the angles between the curves given below 

(i) 2 22 0; 10 0x y x y y       

(ii) 2 2 24 ; 5y x x y    

(iii) 2 2 23 3; 25 0x y x y      

(iv) 2

2

8
2( 1);

4
x y y

x
  


 

(v) 2 22 9 0;3 4 0y x x y      ( in the (iv) ques) 

(vi) 2 2 28 ;4 32y x x y    

(vii) 2 24; ( 4) 8x y y x    

(viii) Show that the curves 2 2 26 5 2 0&4 8 3x x y x y      touch each other at  

1 1
,

2 2

 
 
 

 

11.6 Derivative as a rate of change: 

 In this section we learn how the derivative can be used to determine the rate of 

change of a variable. We also discuss their application to the physics and social studies 

11.6.1 Average rate of change: If   ( )y f x then the average rate of change in y

between 1 2&x x x x   is defined as 2 1

2 1

( ) ( )f x f xy

x x x




 
 

Geometrically the average rate of change of y  w.r.t x  is the slope of secant line joining 

1 1 2 2( , ( )) &( , ( ))x f x x f x  which are the points lying on the graph of ( ).y f x  

The units of average rate of change of a function are the units of y  per unit of the 

variable x. 

11.6.2 Instantaneous rate of change of a function f at 0x x :  If ( )y f x  then 

instantaneous rate of change of a function f  at 0x x  is defined as 
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0 0

0

( ) ( )
lim
x

f x x f x

x 

 


 which is equal to 0( )f x . i.e.., instantaneous rate of change of the 

function f at x  is ( ).f x  

11.6.3 Note:  Instantaneous rate of change of the function f  at x  is ( )f x  

11.6.4 Rectilinear motion: The motion of a particle in a line is called rectilinear motion. 

It is customary to represents the line of motion by a coordinate axis. We choose a 

reference point (origin), appositive direction (to the right of origin) and a unit of distance 

on the line. 

 The rectilinear motion is described by ( )s f t  where ( )f t is the rule connecting 

s and t. Here s is the coordinate of the particle for the amount of time t that elapsed since 

the motion began. 

 If a particle moves according to the rule ( )s f t  where s is the displacement of 

the particle at time t, then 
s

t




 is the average rate of change in s between t and t t . 

 i.e.., 
( ) ( )s f x t f t

t t

  


 
 

since   the rate of change o displacement in the velocity , we call 
s

t




 as the average 

velocity of the function ( )s f t  between the time t and t t . 

11.6.5 Note: If ( )s f t  then the average velocity between 1t t  and 2t t  is 

2 1

2 1

( ) ( )f t f t

t t




 

11.6.6 Instantaneous velocity: Suppose a taxi-car travelled 400kms in 8hours. Then its 

average velocity in 8hours is 50km/hr. The average velocity 50km/hr of the taxi-car does 

not imply that the car at each point of its travelled path has the velocity 50km/hr. The 

velocity of taxi-car at a given instant during movement of the car is shown on its 

speedometer. 

Expression for velocity 

 If ( )s f t  then instantaneous rate of change of function f or s at 0t t  is 

0

0

( ) ( )
lim

t

f t t f t

t 

 


 and it is equal to 0( )f t  or 

0

.
t t

ds

dt 

 The rate of change of 

displacement in a unit time is the velocity. Therefore 0( )f t  [or

0t t

ds

dt 

] represents the 



 

332 
 

instantaneous velocity of the particle at time  
0t t . Further ( )f t (or

ds

dt

 
 
 

) represents the 

instantaneous velocity at any time .t  

11.6.7 Note: The acceleration of a particle at time 0t t , moving with  ( )s f t  is given 

by 
2

2

d s

dt

 
 
 

 at 0t t  since the acceleration is the rate of change of velocity. 

11.6.8 Note: 1. The acceleration of a particle at any time ,t moving with ( )s f t  is given 

by 
2

2

d s

dt

 
 
 

. 

2. If ( )y f x  and x  and y  are functions of t  then ( )
dy dx

f x
dt dt

  

11.6.9 Solved Problems: 

1. Problem:   Find the average rate of change of 2( ) 2 3s f t t    between 2t  and 

4.t   

Solution: The average rate of change of s between 2t  and 4t  is  

   
(4) (2) 35 11

12
4 2 4 2

f  
 

 
 

2. Problem: Find the rate of change of area of a circle w.r.t radius when 5.r   

Solution: Let A  be the area of the circle with radius r. Then 2A r . Now the rate of 

change of area A  w.r.t r is given by 2
dA

r
dr

 . When 5r  cm, 10
dA

dr
  

Thus, the area of the circle is changing at the rate of 210 /cm cm . 

3. Problem: The volume of a cube is increasing at a rate of 9 cubic centimetres per 

second. How fast is the surface area increasing at a rate of the edge is 10 centimetres? 

Solution: Let x be the length of the edge of the cube, V be its volume and S be its surface 

area. Then 3 2& 6V x S x  . Given that rate of change of volume is 39 / seccm . 

Therefore , 39 / sec
dV

cm
dt

  

Now differentiating V w. r t  t   we get , 

  2 23 9 3
dV dx dx

x x
dt dt dt
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i.e..,   
2

3dx

dt x
  

Differentiating S w.r.t t  we get, 

  
2

3 36
12 12

dS dx
x x

dt dt x x
      

Hence, when x = 10cm, 236
3.6 / sec

10

dS
cm

dt
   

 

4. Problem: A particle is moving in a straight line so that after its distance is ‘s’ (in cms) 

from a fixed point on the line is given by 3( ) 8s f t t t   . Find (i) the velocity at time t 

= 2sec (ii) the initial velocity (iii) acceleration at t = 2sec. 

Solution:  The distance  s  and time  t   are connected by the relation 

   3( ) 8s f t t t    

Therefore, velocity is given by   28 3v t   

And the acceleration is given by  
2

2
6

d s
a t

dt
   

(i) The velocity at t = 2 is 8 + 3 (4) = 20cm/sec 

(ii) The initial velocity (t = 0) is 8cm/sec 

(iii) The acceleration at t = 2 is 6(2) =12cm/ 2sec . 

5. Problem: A container in the shape of an inverted cone has height 12cm and radius 

6cm at the top. If it is filled with water at the rate of 312 / seccm .,what is the rate of 

change in the height of water level when the tank is filled 8cm? 

Solution: Let OC be height o water level at ‘t’ sec (fig). The triangles OAB and OCD are 

similar triangles. Therefore 

  
CD OC

AB OA
  

Let OC=h and CD =r. Given that AB=6cm, OA=12cm. 

  
6 12

r h
   i.e.., 

2

h
r        (1) 

Volume of the cone V  is given by   
2

3

r h
V


     (2) 
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Using (1), we have   
3

12

rh
V        (3) 

Differentiating (3) w.r.t    t   we get  
2

.
4

dV h dh

dt dt


  

Hence   
2

4dh dV

dt h dt
  

When h = 8cm, the rate of rise of the water level (height) is 
8h

dh

dt 

 
 
 

 

i.e..,   
2

1 4 3
(12)

8 4 

 
 

 
cm/sec. 

Hence, the rate of the change of water level is 
3

4
cm/sec when the water level of the tank 

is 8cm. 

6. Problem: A particle is moving along a line according to 3 2( ) 4 3 5 1s f t t t t    

where s is measured in meters and t  is measured in seconds. Find the velocity and 

acceleration at time .t At what time the acceleration is zero. 

Solution:  since 3 2( ) 4 3 5 1s f t t t t     , the velocity at time t  is   

   212 6 5
ds

v t t
dt

     

And the acceleration at time t  is 
2

2
24 6

d s
a t

dt
    

The acceleration is 0 if 24 6 0t    

i.e..,  
1

4
t   

The acceleration of the particle is zero at 
1

4
t  sec. 

7. Problem: The total cost C (x) in rupees associated with production of x units of an 

item is given by 3 2( ) 0.005 0.02 30 500C x x x x    . Find the marginal cost when 3 

units are produced (marginal cost is the rate of change of total cost). 

Solution: Let M represent the marginal cost. Then  
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dC

M
dx

  

Hence,  3 2(0.005 0.02 30 500)
d

M x x x
dx

     

   = 20.005(3 ) 0.02(2 ) 30x x   

The marginal cost at 3x  is  

 3( ) 0.005(27) 0.02(2 ) 30xM x     

Hence the required marginal cost is Rs 30.02 to produce 3 units. 

8. Problem: The total revenue in rupees received from the sale of x units of a product is 

given by 2( ) 3 36 5R x x x   . Find the marginal revenue when 5x   (marginal revenue 

is the rate of change of total revenue). 

Solution: Let m denote the marginal revenue. Then  

   
dR

m
dx

  (since the total revenue is R(x)) 

Given that   2( ) 3 36 5R x x x    

  6 36m x    

The marginal revenue at 5x  is 
5

30 36 66
x

dR
m

dx 

 
    

 
. 

Hence the required marginal revenue is Rs.66 

                           Exercise 11(e) 

1. At time t the distance s of a particle moving in a straight line is given by  
24 2s t t    . Find the average velocity between 2t  sec and 8t  sec. 

2. If 4y x  then find the average rate of change of y between 2x  and 4x  . 

3. A particle moving along a straight line has the relation 3 2 3s t t    connecting 

the distance s described by the particle in time t. Find the velocity and acceleration 

of the particle at 4t  sec. 

4.  The distance time formula for the motion of a particle along a straight line is 
3 29 24 18s t t t    . Find when and where the velocity is zero. 

5. The displacement s of a particle travelling in a straight line in t seconds is given 

by 2 345 11s t t t   .Find the time when the particle comes to rest. 

6. The volume of a cube is increasing at the rate of 8 3 / seccm . How fast is the 

surface area increasing when the length of an edge is 12 2cm . 
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7. A stone is dropped into a quiet lake and ripples move in circles at the speed of 

5cm/sec. At the instant when the radius of circular ripple 8cm, how fast is the 

enclosed area increases? 

8. The radius of a circle is increasing at the rate of 0.7cm/sec. What is the rate o 

increase of its circumference? 

9.  A ballo0n which always remains spherical on inflation is being inflated by 

pumping in 900 cubic centimetres of gas per second. Find the rate at which the 

radius of balloon increases when the radius is 15cm. 

10.  The radius of an air bubble is increasing at the rate of ½ cm/sec. At what rate is 

the volume of the bubble increasing when the radius is 1cm? 

11. Assume that an object is launched upward at 980m/sec. Its position would be 

given by 24.9 980s t t   . Find the maximum height attained by the object. 

12. Let a kind of bacteria grow in such a way that t sec there are 
3

2t  bacteria. Find the 

rate of growth at time 4t  hours. 

13. Suppose we have a rectangular aquarium with dimensions of length 8cm, width 

4m and height 3m. Suppose we are filling the tank with water at the rate o 0.4
3 / secm . How fast is the height of water changing when the water level is 25m? 

14. A container is in the shape of an inverted cone has height 8m and radius 6m at the 

top. If it is filled with water, at the rate of 2 3 / minm ute , how fast is the height of 

water changing when the level is 4m? 

15. The total cost C(x) in rupees associated with the production of x units of an item is 

given by 3 2( ) 0.007 0.003 15 4000C x x x x    . Find the marginal cost when 17 

units are produced. 

16. The total revenue in rupees received from the sale of x units of a produce is given 

by 2( ) 13 26 15R x x x   .Find the marginal revenue when x=7. 

17. A point P is moving on the curve 22y x . The x coordinate of P is increasing at 

the rate of 4 units per second. Find the rate at which the y increasing when the 

point is at (2, 8). 

Key Concepts 

1. x  is small change in x . 

   y  is small change in y corresponding to x  in x when y = f(x).  

2. Differential of y is denoted by dy. 

3. If y is any variable then 

(iv) y  is called an absolute error in y 

(v) 
y

y


 is called a relative error in y. 
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(vi) 100
y

y


  is called percentage error in y. 

4. (i) the slope m of the tangent at P is ( )m f a  or 
( , )a b

dy

dx
 

(i) the equation of the tangent at P   ,a b is    y b m x a    

(ii) The equation of the normal is  
1

y b x a
m


     

(iii)   Length of the tangent 

2( ) 1 ( ( ))

( )

f a f a

f a





  ( ( ) 0f a  ) 

(iv) Length of the normal 2( ) 1 ( ( ))f a f a   

(v) Length of the sub tangent 
( )

( )

f a

f a



 

(vi) Length of the subnormal = ( ) ( )f a f a  

5. y=f(x), y=g(x) denote the curves 1 2&C C  and let these two curves intersecting at the 

point P . 

      Let 1 2( ) | & ( ) |p pm f a m g a    be the slopes of tangents at P to curves  

(v) In case 1 2m m , the curves have a common tangent at P. Then the angle 

between the curves is zero. In this case we say that the curves touch each other 

at P. This include 1 2m m =0 also. 

(vi) If 1 2 1m m    then the tangent at P to the curves are perpendicular. In this case 

the curves are said to cut each other orthogonally at P. 

(vii) 1 2 1 21&m m m m    and   is the acute angle between the curves at P ,then 

 1 2

1 2

tan
1

m m

m m






. 

(viii) If either of 1 2m andm  say 2 0m   , then the angle between the curves is 

 6. (i)

 

dy

dx
can be  viewed as the rate of change of y with respect to x.  

    (ii) Velocity v = 
ds

dt
  

    (iii) acceleration a = 
dv

dt
 = 

2

2

d s

dt
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                                             ANSWERS 

                                                  Exercise 11(a) 

       1 ( ) 0.2301, 0.23i y dy  
5 0.02 5( ) ( 1) 0.02, ( 1)0.02ii y e e dy e       

           ( ) 0.026005, 0.026iii y dy   ( ) 0.0001996, 0.0002iv y dy      

           ( ) 0.0152, 0.01516v y dy      

       
2 ( )9.056 ( )400208 ( )5.0001 ( )1.9834 ( ) 0.8834 ( )0.4987( )2.03125i ii iii iv v vi vii  

       
1

3. 8 4.7.04 5. 16 ,1.6 6.
2

   

                                                Exercise 11(b) 

1. 764        
1

2.
64


         3. 11        4. 24         5. 1          6.

2

a

b


          7. 3, 10 , 1,2   

 8. 3,1        9. 2, 9   10.( ) 10 5, 10 50 0i x y x y     ( ). 3 2 0, 3 4 0ii x y x y       

 ( ). 0, 0iii y x        ( ). 2 0,iv x y x y       ( ). 4 14 0, 4 12 0v x y x y       

 ( ). 1 0, 0vi y x      11. 5 2 20 0,2 5 21 0x y x y       

    12. 5 2 0, 5 16 0x y x y         
1

13.at 1, 3 2 2 0,4 6 7 0
2

x y x y
 

       
 

 

   
9

and at 3, 3 2 18 0,4 6 15 0
2

x y x y
 

      
 

14. 3 2 2 0,4 6 7 0x y e x y e       

15. 2 3 6 0,3 2 4 0x y x y     
2 2 2 2

17. 2 , , 2 ,
3 3 3 3

   
       

   
 

                                                      Exercise 11(c) 

2 2
1. tan , sin

2

x b x
a

a a a
       4. 2          

25. 2 sin ,2 sin tan , sin ,2 sin tan .
2 2 2 2 2

t t t t t
a a a t a        

2 2
6. cosh , sinh .

2

x a x
a

a a         7. (sin cos )cot , (sin cos ) tan .a t t t t a t t t t          

                                               Exercise 11(d) 

1 1
1.( ) tan

7
i     1( ) tan 3ii  1 22 6

( ) tan
69

iii 

  ( )
2

iv


 
1 9

( ) tan
13

v  1( ) tan 3vi  1 1
( ) tan

3
vii   
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                                            Exercise 11(e) 

1. 38units / sec        2.120          
23. 50units / sec,24units / sec        

4. 2sec, 2units, 4sec, 2unitst s t s             5. 9           
28

6. cm / sec
3        

27. 80 cm / sec
   

8. 1.4 cm / sec
   

1
9. cm / sec

      
310. 2 cm / sec  

11. 49000units       12. 180          

1
(13).

80      
2

14.
9        

15. 20.967  

 16. 208       17. 32units / sec  
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12. LOCUS 

12.1 Definition of Locus-Illustrations 

12.1.1 Definition: Locus is the set of points (and only those points) that satisfy the 

given condition(s). 

From the above definition, it follows that: 

(i) Every point satisfying the given condition(s) is a point on the locus. 

(ii) Every point on the locus satisfies the given condition(s). 

12.1.2 Examples 

1. Example: In a plane the locus of a point whose distance from a given point A is 4. 

                                                         

Any point which is at a distance 4 from A Lies on the circle of radius 4 with 

centre A. Conversely, every point on the circle is at a distance of 4 from A. Hence, the set 

of all points on the circle is the locus in this example.(See Fig. 12.1). 

i.e.,  locus = the circle, in the given plane, with centre at A and radius 4. 

2. Example: Locus of a point above the X-axis whose distance from the X-axis is 2. 

Let M be the point on the positive direction of the Y-axis with OM=2. Pis a point above 

the X-axis with PD=2, where PD is the distance of P from the X-axis (Fig.1.2).ODPM is a 

rectangle so that MP OX . Conversely, we can prove that any point P on the locus lies 

on the line parallel to X-axis 9above X-axis ) which passes through M.  Y             

 

 

                                                     M          P Locus 

 1 2  

                                                     O                 D 

 

 

Figure 12.2 

In view of the above examples, locus of a point in the plane is generally a curve in the 

plane. For simplicity, we call that curve itself as locus. The locus in example 1 is a circle, 

where as it is a straight line in Example 2. 
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12.1.3 Equation of Locus – Problems connected to it 

It is clear that, every point on the locus satisfies the given conditions and 

every point which satisfies the given conditions lies on the locus. 

Equation of the locus of a point is an algebraic equation in x and y satisfied 

by the points (x, y) on the locus alone(and by no other point). 

12.1.4 Solved Problems 

1. Problem: Find the equation of the locus of a point which is at a distance 5 from    

(-2,3) in the XOY Plane. 

Solution : Let the  given point be A=(-2,3) and P(x,y) be a point on the plane. 

The geometric condition to be satisfied by P to be on the locus is that  AP = 5 - (1) 

i.e., AP
2 
= 5 

i.e.,  2 2( 2) ( 3) 5x y     

i.e.,   2 24 4 6 9 25x x y y       

i.e.,   2 2 4 6 12 0x y x y        --------(2) 

Let Q(x1,y1) satisfy equation (2) 

Then 2 2

1 1 1 14 6 12 0x y x y        ----(3) 

Now the distance of A from Q is      AQ  = 2 2

1 1( 2) ( 3)x y    

                                  Therefore       AQ
2
  = 2 2

1 1 1 14 4 6 9x x y y             

                                                                = 2 2

1 1 1 1( 4 4 6 12) 25x x y y       

             = 25 (by using (3) 

Hence AQ = 5 

 This means that Q(x1,y1) satisfies the geometric condition (1). 

Therefore, the required equating of locus is 2 2 4 6 12 0x y x y     . 

2. Problem: Find the locus of the third vertex of a right angled triangle, the ends 

of whose hypotenuse are (4, 0) and (0, 4). 

Solution: Let A= (4, 0) and B = (0, 4). Let P (x, y) be point such that PA and PB 

are perpendicular. The PA
2
 +  PB

2
 = AB

2
.        ---------(1) 

 i.e., (x – 4)
2
 + y

2
 + x

2
 + (y – 4)

2
 = 16 + 16 
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i.e., 2x
2
 + 2y

2
 – 8x – 8y = 0 

i.e., x
2
 + y

2
 – 4x – 4y = 0             ---------( 2) 

 Let Q (x1, y1) satisfies equation (2) and Q different from A and B. 

Then x1
2
 + y1

2
 – 4x1 – 4y1 = 0 , (x1, y1)   (4, 0)  and (x1, y1)   ( 0, 4) -------(3) 

 Now QA
2
 + QB

2
 = (x1 – 4)

2
 + y1

2
+ x1

2 + (y1 – 4)
2 

                              = x1
2 - 8x1 + 16+ y1

2
 + x1

2 
 +  y1

2
 - 8y1 +16 

                               = 2(x1
2 + y1

2
 - 48x1 - 4y1) +32 

                            = 32    ( by using (3) ) 

                            = AB
2
 

Hence QA2 + QB
2 

=   = AB
2
, (Q  A and Q   B 

Q (x1, y1) satisfies equation (1). Therefore the required equation of locus is (2).   

3. Problem: Find the equation of the locus of P , if the ratio of the distance from P 

to A (5, -4) and B (7, 6) is 2 : 3. 

Solution: Let P (x, y) be any point on the locus. 

 The geometric condition to be satisfied by P is 
2

3

AP

PB
  -----(1) 

 i.e., 3AP = 2PB 

i.e., 3AP
2
 = 2PB

2 

i.e., 9[(x – 5)
2
 + (y + 4)

2
 ] = 4[(x – 7)

2
 + (y - 6)

2
 ] 

i.e.,9[x
2
 + 25 - 10x  + y

2
 + 16 + 8y ] = 0 (y + 4)

2
 ] =4[ x

2
 + 49 - 14x  + y

2
 + 36 -

12y] 

i.e., 5x
2
 + 5y

2
 - 34x + 120 y +29 =0   ----------------(2) 

Let Q (x1, y1) satisfy (2). Then 5 x1
2 + 5y1

2
  - 34x1 + 120 y1 +29 =0   

 Now 9AQ
2
 =  9[ x1

2 + 25 -10x1 +  y1
2
  +16 + 8y1 ] 

                   = 5 x1
2 + 5y1

2
  - 34x1 + 120 y1 +29 +4 x1

2 +   4y1
2
   -56 x1  - 48y1 + + 340 

                     = 4 [ x1
2 + y1

2
  - 14x1 -12 y1 +49 + 36 ] 

                     = 4[(x1 – 7)
2
 + (y1 - 6)

2
 ] = 4QB

2 

Thus 3 AQ = 2 QB. Thus Q (x1, y1) satisfy (1).  

 Hence the required equation of locus is 5x
2
 + 5y

2
 - 34x + 120 y +29 =0    



 

343 
 

Exercise 12(a) 

Short Answer Questions 

1. Find the equation of a point which is at a distance 5 from A(4, –3). 

2. Find the equation of Locus of a point which equidistant from the points A(–3, 2) 

and B(0, 4). 

3. Find the equation of locus of a point equidistant from A (2, 0) and the Y – axis. 

4. Find the equation of Locus of a point P such that the distance of P from the origin 

is twice the distance of P from A(1,2). 

5. Find the equation of Locus of a point P, the square of whose distance from the 

origin is 4 times its Y-coordinate. 

6. Find the equation of Locus of a point P such that PA
2
 + PB

2
 = 2c

2
, where A = (a, 

0), B = (–a, 0) and 0 < a  < c . 

Essay Type Questions 

1. Find the equation of Locus P, if the line segment joining (2, 3) and (–1, 5) 

subtends a right angle at P. 

2. Find the equation of the Locus of P, if A = (4, 0) B = (–4, 0) and   PA PB = 4 

3. Find the equation of the Locus of P, if A = (2, 3) B = (2, –3) and  PA + PB = 8 . 

4. A (5, 3) and B(3, –2) are two fixed points. Find the equation of the Locus of P, so 

that the area of triangle is 9. 

5. If the distance from P to the points (2, 3) and (2, –3) is in the ratio 2:3, then find 

the equation of the Locus of P. 

6. A(1,2) B(2, –3) and C(–2, 3) are three points, a point P moves such that PA
2
 + PB

2
 

= 2PC
2
. Show that the equation of the Locus of P is 7x – 7y + 4 = 0. 

 

Key Concepts 

1. Locus is the set of points (and only those points) that satisfy the given consistent 

geometric condition(s). 

2. An equation of a locus is an algebraic description of the locus. This can be obtained in 

the following way. 

(i)        Consider a point P (x, y) on the locus. 

(ii) Write the geometric condition(s) to be satisfied by P in terms of an equation 

or in equation in symbols. 

(iii) Apply the proper formula of  coordinate geometry and translate the geometric 

condition(s) into an algebraic condition. 

(iv) Simplify the equation so that it is free from radicals. 

(v) Verify that if  Q (x1, y1) satisfies the equation, then Q satisfies the geometric 

condition. 

The equation thus obtained is the required equation of locus. 
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Answers 

Exercise 1(a) 

Short Answer Questions 

1. 2 2 8 6 0x y x y      

2. 6 4 3x y    

3. 2 4 4 0y x     

4. 2 23 3 8 16 20 0x y x y       

5. 2 2 4 0x y y     

6. 2 2 2 2x y c a     

Essay Type Questions 

1. 2 2 8 13 0;( , ) (2,3) &( , ) ( 1,5)x y x y x y x y          

2. 
2 2

1
4 12

x y
    

3. 2 216 7 64 48 0x y x     i.e., 
2 2( 2)

1
7 16

x y
   

4. (5 2 37)(5 2 1) 0x y x y       

5. 2 25 5 20 78 65 0x y x y       
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13 TRANSFORMATIONS OF AXES 
 

13.1 Translation of axes – Rules and simple problems 
 Transformation of axes, sometimes proves to be advantageous in solving some 

problems. Translation of axes is discussed in this section. 

 13.1.1. Definition (Translation of axes) 

        The transformation obtained, by shifting the origin to a given different points in the 

plane without the direction of coordinate axes therein is called a Translation of axes. 

13.1.2.Changes in the coordinates by translation of axes : 

Let OX
����

 and OY
����

 be the given coordinate axes. Suppose the origin O is shifted to  O′ = (h, 

k) by the translation of axes OX
����

 and OY
����

 . Let   O X′ ′
������

 and  O Y′ ′
�����

 be the new axes as 

shown in Fig.13.1. Then with reference to / /
O X
������

 and  / /
O Y
�����

  the point O′ has the 

coordinates ( 0, 0). 

 

 Y Y
1 

     P(x, y) 

              P(x
1
 , y

1
) 

 

 X
1 

                                      O
1 M 

  k y 

 h 

 O               L                        N                                        X 

Fig.13.1 Translation of axes 
 

Let P be a point with coordinates (x, y) in the system OX
����

 and OY
����

;  and with the 

coordinates (x′, y′) in the new system O X′ ′
������

 and  O Y′ ′
�����

.  

Then O′L = k  and OL = h 

Now x = ON = OL + LN 

            = OL+ O′M 

            = h +  x′ 

And y = PN = PM + MN 

           = PM + O′L 

           =  y′ + k  

Thus     ,      ;         ,      –  x x h y y k or x x h y y k= ′ + = ′ + ′ = − ′ = . 

13.1.3. Note:  If the origin is shifted to (h, k) by translation of axes, the   
(i) the  coordinates of point P (x, y) are transformed  as   ,  –  (  ).P x h y k−  and  

(ii)  the equation ( ),    0f x y =  of the curve is transformed as

   ,       0 .( )f x h y k′ + ′ + =  . 

13.1.4 Examples  

1. Example:  When the origin is shifted to ( -2,3) by translation of axes, let us find the 

coordinates of ( 1,2 ) with respect to new axes. 

 Solution:  Here (h, k) = (-2, 3), Let (x, y) = (1, 2) be shifted to  ,  ( )x y′ ′  by the 

translation of axes. Then = ( ) ,       ,   –( )  x y x h y k′ ′ = −  = ( 1 – (-2), 2 -3 ) = (3, -1). 

2. Example:, Find the transformed equation of  2x
2
 + 4xy + 5y

2
 = 0, when  the origin is 

shifted to ( 3,4) by the translation of axes. 
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 Solution:  Here (h, k0 = (3, 4). On substituting     3      4x x and y y= ′ + = ′ +  in the given 

equation, we get  ( ) ( )( ) ( )
2 2

2   30  4   3   4   5    4  0x x y y′ + + ′ + ′ + + ′ + =  

Simplifying this equation , we get 

   2 22  4   5   28   52    146  0x x y y x y′ + ′ ′+ ′ + ′ + ′ + =  

The transformed equation is    2 22  4   5   28   52   146  0x xy y x y+ + + + + =  

 

 13.2 Rotation of axes – Rules and simple problems 
The present section is intended to discuss another transformation, namely rotation of axes. 

13.2.1. Definition (Rotation of Axes) 

The transformation obtained, by rotating both the coordinate axes in the plane by an equal 

angle, without changing the position of the origin is called a Rotation of axes.                  

13.2.2 Changes in the coordinates when the axes are rotated through an angle 

‘θ ’  

Let P = (x, y) with reference to the axes  OX
����

 and OY
����

 . Let the axes be rotated through 

an angleθ  in the positive direction about the origin O, to get the new system OX ′
�����

 and  

OY ′
�����

 as shown in Fig.2.2. With reference to the new axes OX ′
�����

 and  OY ′
�����

, let P  = (x′, y′) . 

Since the angle of rotation is θ , we have XOX ′  = YOY ′  = θ . 

 Y                   P(x,y),(x
1
,y

1
)         X

1 

            Y
1                                              N                                M 

 

                       O   θ        θ                                           

                                                       L         Q                 X 

 

 

Let L, M be the feet of the perpendiculars drawn from p upon axes  OX
����

 and OX ′
�����

.The 

angle between the two straight lines is equal to o the angle between their perpendiculars. 

Hence LPM  = XOX ′  = θ . 

Let N be the foot of the perpendicular from M to PL . 

Now x = OL = OQ  - LQ 

= OQ – NM 

    OM cos PM sinθ θ= −  

=      x cos y sinθ θ′ − ′  ----------(1) 

 Also y = PL = PN + NL 
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= PN + MQ 

=     PM cos OM sinθ θ+  

=      y cos x sinθ θ′ + ′  --------(2) 

Therefore                .x x cos y sin and y y cos x sinθ θ θ θ= = ′ − ′ = ′ + ′  -----------(3) 

From the above equations, the value of x′ and   y′ can be found as 

                x x cos y sin and y x sin y cosθ θ θ θ′= + ′= − +   ------------(4) 

The results in (3) and (4) can be remembered by the following table, 

 x′ y′ 

x cosθ  -sinθ  

y sinθ  cosθ  

13.2.3. Note: When the axes are rotated to through an angle θ , then 

(i) the coordinates of a point P (x, y) are transformed as                                                 

,         ,    (   ,( ) )P x y P x cos y sin x sin y cosθ θ ϑ θ′ ′ = + − + , and  

(ii) the equation ( ),  f x y  = 0 0f the curve is transformed as                                            

     ,        0)  (f x cos y sin x sin y cosθ θ θ θ′ − ′ ′ + ′ =  

13.2.4. Examples 

1. Example: Find the coordinates of P (1, 2) with reference to the new axes, when the 

axes are rotated through an angle of 30
0
 . 

 Solution: Let P (x, y) = (1, 2) and (x′, y′)be the coordinates of P in the new system. 

  0 0(              1 30 ) ( ) 2. 30x cos sin′ = +   =  
3

2
 + 2. 

1

2
 =  

3 2

2

+
 

            0 0( )  1 30   2 ( 3  )0y sin cos′=− +       =   
1

2

−
  +  2. 

3

2
 = 

1 2 3

2

− +
 

  Therefore, the new coordinates of P are  (
3 2

2

+
 , 

1 2 3

2

− +
 ) 

13.2.5 Note:  If the origin is shifted to (h, k) and then axes are rotated t through an angle

θ , then   

(i) the coordinates of a point ( ),  P x y  are transformed as                                                 

,        (   ,         ,) ( )P x y x cos y sin h x sin y cos kθ θ θ θ′ ′ = + − − + −  and                                                    

      (ii)  the equation ( ),    0f x y =  of the curve is transformed as                                                            

      ,         ) (f x cos y sin h x sin y cos kθ θ θ θ′ − ′ + ′ + ′ +    
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Exercise 13(a) 

Short Answer Questions 

1. When the origin is shifted to ( )4, 5−  by transformation of axes, let us find the 

co-ordinates of the following with reference to. new axes.  

(i) ( ) ( ) ( )( )                2,4                         4, 5i ii− −  

2. When the origin is shifted to (2, 3) by translation of axes, the co-ordinates of a        

point  P are changed as follows, find the coordinates of P in the original 

system.  

(i) ( )4,5                    (ii)  ( ) 4, 3− −  

3. Find the point to which the origin is to be shifted so that the point (3, 0) may    

change to (2, –3). 

4. Find the point to which the origin is to be shifted so as to remove the first 

degree terms from the equation, 2 24 9 8 36 4 0 .x y x y+ − + + = . 

5. The point to which the origin is shifted and the transformed equation are given 

below. Find the  original equation. 

(i) ( ) 2 23, 4  ;    4      x y− + =        (ii)  ( ) 2 21,2  ;   2   16 0      x y− + + =       

6. When the axes are rotated through an angle 30
o
, find the new coordinates of        

(i)  (0, 5), (ii) (–2, 4) and  (iii) (0, 0). 

7. When the axes are rotated through an angle 60
o
, find the original co-ordinates 

of (i) (3, 4),  (ii0 (–7, 2) and  (iii) (2, 0). 

8 .Find the angle through which the axes are to be rotated so as to remove the xy 

term in the equation 2 24 2 2 6 0 .x xy y x y+ − − + − = . 

Essay Type Questions: 

1. When the origin is shifted to the point (2, 3), the transformed equation of a 

curve is 2 2 23 2 17 7 11 0x xy y y x y+ − − + − − =  . Find the original equation of 

the curve. 

2. When the origin is shifted to (–1, 2) by the translation of axes, find the 

transformed equation to 2 2 2 4 1 0x y x y+ + − + =  

3. When the axes are rotated through an angle 45
o
 , find the original equation of 

the curve 2 217 16 17 225x xy y− + =  

4. When  the  axes  are  rotated  through  an  angle 
4

π
find  the  transformed  

equation     2 2   3 10 3  9x xy y+ + =  

 

Key Concepts 

1.If the origin ( )0,  0  is shifted to ( ),  h k  by translation of axes, the   

(i) the  coordinates of point P (x, y) are transformed  as ( )  ,  –   .P x h y k−  and  

(ii)  the equation ( ),    0f x y =  of the curve is transformed as 

( )   ,       0 .f x h y k′ + ′ + = . 

  2. If the axes are rotated to through an angleθ , then 
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               (i) the coordinates of a point ( ) ,  P x y  are transformed as                                                                    

               ( ),         ,       ( )P x y P x cos y sin x sin y cosθ θ θ θ′ ′ = + − + , and                                        

              (ii) the equation ( ),    0f x y =  of the curve is transformed as                                             

    ,       0.( )f x cos y sin x sin y cosθ θ θ θ′ − ′ ′ + ′ =  

3.If the origin is shifted to ( ),  h k  and then axes are rotated t through an angle  θ , then   

(i) the coordinates of a point ( ) ,  P x y are transformed as                                                 

( ),          ,    (     ) ,P x y x cos y sin h x sin y cos kθ θ θ θ′ ′ = + − − + − , and                                                    

      (ii)  the equation ( ),    0f x y = of the curve is transformed as                                                            

       ,         ) (f x cos y sin h x sin y cos kθ θ θ θ′ − ′ + ′ + ′ +   

                                         Answers 

                                     Exercise 13(a) 

Short Answer Questions 

     1.       (i) (-6,9)           (ii)  ( 0,0 ) 

2.     (i) (6,8)           (ii)  ( -2,6 ) 

3.   (1,3 ) 

4.    (1,-2) 

5.    (i) 2 2 6 8 21 0x y x y+ − + + =   (ii) 
2 22 2 8 25 0x y x y+ + − + =  

6.   (i) 
5 5 3

,
2 2

 
  
 

                 (ii) ( )2 3,1 2 3− +                  (iii) 0 

7.(i) 
3 4 3 3 3 4

,
2 2

 − +
  
 

    (ii) 
7 2 3 2 7 3

,
2 2

 − − −
  
 

       (iii) (1, 3)  

8. 45�  

Essay Type Questions 

1. 2 23 2 4 20 0x xy y x y+ − + − − =   

2. 2 2 4 0x y+ − =   

3. 2 225 9 225x y+ =   

4. 2 28 2 9x y− =   
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14 THE STRAIGHT LINE    
 

14.1 Equation of Straight line – various forms – Illustrations - simple 

problems 

In this section we discuss some basic concepts of coordinate geometry that are 

covered in lower classes. 

14.1.1. Horizontal lines and Vertical lines 

  Generally the lines drawn parallel to X- axis are called horizontal lines and the 

lines drawn parallel to Y-axis are called vertical lines. The y- coordinate of every point on 

X-axis is zero. i.e., every point on X-axis satisfies the equation y= 0. Conversely, if any 

point has its y-coordinate is zero, then the point lies on X-axis. Therefore the equation of 

X-axis is  y= 0. Similarly the equation of Y-axis is x= 0. 

 The equation y= k is the equation of horizontal line which is at a distance  k units 

from the X- axis and lying above the X-axis.(Fig.14.1)  

 

 Y 

                                               2      Horizontal line y=2 

 

X
I            1        X-axis y= 0 

                                              O X 

                                               1           Horizontal line y = -2 

                                               2 

 

 Y
I 

 Figure 14.1 

The equation y= - k is the equation of horizontal line which is at a distance  k units 

from the X- axis and lying below the X-axis. (Fig.14.1) 

In a similar way, it can be observed that the equation of the vertical line passing 

through the point (x0, 0) on X-axis is x = x0 9 Here the distance of this line from Y-axis is 

| x0|). Also the line lies to the right of the Y-axis  if x0 > 0 and to the left of the Y-axis if             
x0 <0.( . (Fig.14.2) 

14.1.2. The slope of a straight line. 

Definition: If a non-vertical line L makes an angle θ with X-axis measured counter clock 

wise direction from the positive direction of the X-axis, the tan θ s called its slope of the 

line L. The slope of the non vertical line is generally denoted by m. 

14.1.3.Note 

(i). A vertical line makes aright angle with the X-axis and therefore the slope the line is 

not defined. 

(ii). If a straight line parallel to X-axis, then θ= 0 and  therefore the slope of the a 

horizontal line is 0 
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(iii) If θ is acute, tan θ is positive and if θ is obtuse then tan θ is negative. 

(iv) The variation of θ is in the interval  0≤ θ < . 

(v) If L1 and L2 are two non vertical lines with slopes m1 and  m2  and if θ 1 and  θ 2  are the  

       angles in 1 1  2 20        [ )  such that m tan and m tan   2                                                

         1 1 2|       | then L L       

                         1 2     tan tan    

                          1 2    m m     

And L1 and are perpendicular L2 then  
 

1 2  1  m m     

(vi) If anon vertical straight line passes through the points    1, 1 2, 2  x y and x y  then its 

slope is 1 2

1 2

y y

x x




. 

14.1.4 Intercepts 

Definition: If a starlight line L intersects X-axis at A(a, 0) AND y-axis at B(0, b) then a 

and b are respectively called X-intercept and Y-intercept of the line L. Depending on the 

values of a and b the position of the line AB  ia as given Fig . 14. 
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                      Y                                                                                                         Y                       

                                                                                                                            L 

 B(0,b) 

                L          B(0,b) 

 

 

   A(a,0) A(a,0) 

   X
|
                                                       X          X

|
                                                         

X 

 O    O 

 a >0,b > 0 a <0,b > 0 

    Y
|
Y

|
 Y 

                                         Y 

 

 L A(a,0)                                                                                      A(a,0) L 

  X 
|
                                                                  X         X 

|
                                                                

X   

 O O 

  

 a <0,b < 0 B(0,b) B(0,b) a >0,b < 0 

 Y
|
Y

|
 

 

 

 

14.1.5 Note 

1. A straight line passes through origin if and only if the X-intercept and Y-intercept of 

the  

     straight line are both equal to zero. 

2. The X-intercept of a horizontal line is not defined. 

3. The Y-intercept of a vertical line is not defined. 

14.1.6 The equation of a straight line in slope-intercept form 

Theorem: The equation of the straight line with slope m and cutting off Y-intercept c is  

    .y mx c  .              
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Y 

 

                         B(0.c) 

 
P(x, y)

 

 

    A 

 X
|
         O X 

  L 

 

                                                                 Y
|
      

 
14.1.7 Note:   The straight line     .y mx c  passes through the origin if c= 0. Thus the 

equation of the non vertical straight line passing through the origin and having slope m is        

y = m x. 

 
14.1.8 Example:  Find the equation of the straight line making an angle 60

0
 with the 

positive direction of the X-axis  and passing through the point ( 0, -2). 

 Solution : Slope of the line 0 60  m tan  3   and Y- intercept  of the line c = -2. 

Hence the equation of the line using slope- intercept form is   .3 –  2y x  

 

14.1.9 The equation of a straight line  in intercept form 

 
 Theorem :The equation of the Straight line which cuts off non –zero intercepts a and b 

on the X- axis and Y-axis respectively is 
x

a
 + 

y

b
 = 1 

14.1.8 Example :  Find the equation of the straight line which makes intercepts whose 

sum 5 and product 6. 

 Solution : If a and b are the intercepts of the line on the axes of coordinated then  a + b = 

5 and ab = 6.Solving these we get a = 2, b =3 or a =3 , b = 2 . 

If a = 2, b =3 ; the equation of the line is 
2

x
 + 

3

y
 = 1. 

If a =3 , b = 2 ; the equation of the line is 
3

x
 + 

2

y
 = 1. 

14.1.11 The equation of a straight line in point – slope form  

 
 Theorem: The equation of a straight line with slope m and passing through the point              

    1 1 1 1 ,             .x y is y y m x x    
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Y 

 

                           L 

 P( x1 , y1 ) 

 θ 

                                                       X
|
            O                                       X    

  

   

 

                                                                 Y
|
      

 

 

 
14.1.12 Example :  Find the equation of the straight line making an angle135

0
 with the 

positive direction of the X-axis  and passing through the point ( -3, 2). 

 

 Solution: Slope of the line m= tan135
0
 = -1 and   the point is ( -2, 3). Hence the equation 

of the line using the point- slope form is  

       2  1     3        1  0.y x or x y        

14.1.13. The equation of a straight line - Two point form 

Theorem: The equation of the straight line passing through the points  

   1 1 2 2 ,    ,x y and x y     is       1 1 2 1 1 2 
         –  .x x y y y y x x      

 

 

                                           L              Y 

 

                                                     A( x1,  y1 ) 

                B( x2,  y2 )   

                                                                                                                   

  

                                                       X
|
            O                                       X    

  

   

                                                                        Y
|
      

 

 

 
14.1.14 Note 

1. Three points A( x1,  y1 ) ,B ( x2,  y2 )   and C ( x3,  y3 )   are collinear if and only if  the 

point C lies on the line  AB  . Hence   x1 (y1 -  y3 ) +   x2 (y3 -  y1 ) +  x3 (y1 -  y2 )  = 0 . 
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i.e.,  

1 1

2 2

3 3

1

1

1

x y

x y

x y

 = 0  

2. The equation of a straight line containing ( x1,  y1 ) and ( x2,  y2 )    can also be written 

as      

           1 1

2 2

1

1

1

x y

x y

x y

 = 0 

14.1.15 Example: Find the equation of the straight line passing through the points ( 1, 2)  

and (3, - 5). 

 Solution:  The straight line passing through the points (1, 2) and (3, - 5) is  

   (x – 1) (2 + 5) = (y – 2) (1 – 3) (or) 7x + 2y - 3 = 0 

14.1.16 Solved Problems  

1. Find the equation of the straight line passing through the point (2, 3) and making non- 

zero intercepts n the coordinate axes whose sum is zero. 

 Solution: Let the intercepts made by the straight line on the coordinate axes be a, -a (a 

not equal to 0). Then the equation of the straight line is 1
x x

a a
 


 (i.e.)  x – y = a . 

If this line passes through (2, 3) then a = 2 – 3 = -1. 

Hence, equation of the required line is 1 0x y   . 

2. Find the equation of the straight line passing through the points 2 2

1 1 2 2( ,2 ) &( ,2 )at at at at . 

Solution: The equation of the straight line containing the points 2 2

1 1 2 2( ,2 ) &( ,2 )at at at at  is  

    2 2 2

1 1 2 1 1 2( )(2 2 ) ( 2 )( )x at at at y at at at      

i.e..,    2

1 1 1 22( ) ( 2 )( )x at y at t t     

i.e...,    1 2 1 22 ( ) 2 0x t t y at t     

 

Exercise 14 (a) 

 

Short Answer Questions : - 

1. Find the slopes of the lines   0x y   and   0x y   

2. Find the equation of the line containing the points (1,2) and 1,-2) 

3. . Find the angle which the straight line   3   4y x   makes with the y-axis. 

4. Write the equations of the straight lines parallel to X-axis and (i) at a distance of 3 
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units above the X-axis and (ii) at a distance of 4 units below the X-axis. 

5. Write the equations of the straight lines parallel to Y-axis and (i) at a distance of 2 

units from the Y-axis  to the right of it, (ii) at a distance of 5 units from the  Y-axis 

to the left of it. 

6.  Find the slopes of the straight lines passing through the following pair of points.              

            3,8  ,  10,5                        8,1 ,  1,7i ii   

7. . Find the value of y if the line joining the points    3,    2,  7y and  is parallel to the 

line joining the points    –1,  4   0,  6 .and . 

8. Find the slopes of the lines (i) parallel and (ii) perpendicular to the line passing 

through    6,  3   –4,  5 .and  

9. Find the equations of the staright lines which makes the following angles with the 

positive X –axis in the positive direction and which pass through the the points given 

below.                                                                                                                                     

(i)
4


 and   0,  0          (ii) 

3


 and  1,  2       

10. Find the equations of the straight lines passing through the origin and making equal 

angles with the coordinate axes. 

11. The angle made by  a straight line with the positive X –axis in the positive direction 

and  the Y-intercept cut off by it are given below. Find the equation of the straight 

lines.                      0 1 150 ,  2 
2

    ,  3.
3

Tai ii n  
 
 

 

12. Find the equation of the straight line passing through  –4,  5  and cutting at equal 

non zero intercepts in the coordinate axes. 

13.  Find the equation of the straight line passing through  –2,  4  and making non-zero 

intercepts whose sum is zero.  

14. Find the sum of the squares of the intercepts of the line 4  –  3   12x y   on the axes 

of coordinates. 

15. Find the angle made by the straight line   3   3y x   with positive direction of the X-

axis measured in the counter- clock wise direction. 

16.  The intercepts of a straight line on the axes of coordinates are a and b. If P is the 

length of the perpendicular drawn from the origin to this line, write the value of P in 

terms of a and b. 

17. Find the equations of the straight lines in the symmetric form, given the slope and a 

point on the line in each pat of the equation. 

                     ,  2,  3              ,  2,  0             1, ,
3

 1
1

3  1i ii iii           

   18. Transform the following equations into (a) slope – intercept form (b) intercept 

form 

(c) normal form.                                                                                                                                          

(i) 3  4  5x y      (ii) 4 3 12 0        x y                    

(iii) 3   4x y      (iv) 2 0.x y     
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19. A line L has intercepts a and b on the coordinate axes. When the axes are 

rotated to through a given angle keeping the origin fixed, the same line L has 

intercepts p and q on the transformed equations. Prove that 
2 2 2 2

1 1 1 1

a b p q
    

20. Transform the equation x/a + y/b = 1 into normal form where a > 0 and b > 0. If 

the perpendicular distance of the straight line from the origin is P then deduce 

that 
2 2 2

1 1 1

p a b
  . 

Essay Type Questions 

1. Find the equation of the straight line passing through the points (4, -3) and 

perpendicular to the line passing through the points (1, 1) and 2,3). 

2. Show that the following sets of points are collinear and find the equation of the 

line L containing them.                                                                                                            

(i) (-5, 1), (5, 5), (10, 7)                                      (ii) (1, 3), (-2,-6), (2,6) 

3. A(10,4), B(-4, 9) and C( -2, -1) are the vertices of a triangle. Find the equation of                                                                                                                                  

(i) AB                                            (ii) the median through to  A                      (iii) 

the  altitude through b            (iv) the perpendicular bisector of the side AB    

4. Find the points on the line 3 4  1 =0x y   which are at a distance 5 units from the 

point (3,2) 

 

14.2 Intersection of two straight lines 
 In this section, we find the point of intersection of two intersecting lines and we 

also discuss the two half – planes partitioned by a straight line in the coordinate plane. 

14.2.1 Theorem: 

 If 1 1 1 1 0L a x b y c     and 2 2 2 2 0L a x b y c    represents two intersecting 

lines, then their point of intersection is 1 2 2 1 1 2 2 1

1 2 2 1 1 2 2 1

,
b c b c c a c a

a b a b a b a b

  
 

  
. 

Proof: Consider the straight lines 1 1 1 1 0L a x b y c        (1) 

       

      2 2 2 2 0L a x b y c       

 (2) 

Since the lines intersect, we must have 1 2 2 1a b a b  

If 0 0( , )P x y  is the point of intersection of lines (1) and (2), then P satisfies both the 

equations (1) and (2) and so, 

    1 0 1 0 1 0a x b y c         

 (3) 

    2 0 2 0 2 0a x b y c         

 (4) 

By applying the rule of cross multiplication to (3) and (4) we obtain 

   0 0 1 2 2 1 1 2 2 1 1 2 2 1: :1 ( ) : ( ) : ( )x y bc b c c a c a a b a b     
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Therefore  1 2 2 1
0

1 2 2 1

b c b c
x

a b a b





 and 1 2 2 1

0

1 2 2 1

c a c a
y

a b a b





 

And the point of intersection of the lines (1) and (2) is 1 2 2 1 1 2 2 1

1 2 2 1 1 2 2 1

,
b c b c c a c a

P
a b a b a b a b

  
  

  
 

Note that, if the straight lines (1) and (2) are parallel, then 1 2 2 1a b a b  and in this case, the 

equations (3) and (4) cannot be solved for 0 0&x y . As such, the point of the lines doesn’t 

exist. 

 
14.2.2 Example: 

 Find the point of intersection of the straight lines 1
x y

a b
   and 1( )

x y
a b

b a
    . 

Solution: Let 
0 0( , )P x y  be the point of intersection of the straight lines 1

x y

a b
   and 

1
x y

b a
  . 

  Then,  0 0 1
x y

a b
   and  0 0 1

x y

b a
  . From this  

 We obtain   
0 0

1 1 1 1
0x y

a b b a

   
      

   
   (i.e.., 0 0x y ) 

 But   0 0 1
x y

a b
   and 0 0x y

0 0

ab
x y

a b
  


 

Therefore  ,
ab ab

P
a b a b

 
 

  
 is the point of intersection of the given lines. 

 
14.2.3 Half – Planes: 

 A straight line divides the coordinate plane into three mutually disjoint sets of 

points,   

             namely  

(i) The set of points on the straight line 

(ii) The set of points on one side of the straight line 

(iii) The set of points on the other side of the straight line. 

 

Notation: 

(i) The linear expression ax by c   is denoted by L. then the general form of 

the equation of a straight line is 0ax by c   or, briefly, L = 0 

(ii) We denote 1 1ax by c   by 11L  and 2 2ax by c   by 22L . If the point 

1 1( , )A x y  lies on the straight line L = 0, then the expression 11L  equals zero. 

If the point A does not lie on the line L = 0, then 11L  does not equal to 

equal and hence, 11L  is either positive or negative. As such, the points of 

the plane are divided into three parts as 

(a) The set of points for which L = 0 

(b) The set of points for which L > 0 

(c) The set of points for which L < 0. 
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In what follows, we find that the classification of points 1 1( , )x y on either side of a given 

straight line is based on whether 
11L  is positive or negative 

14.2.4 Theorem: 

 The ratio in which the straight line 0L ax by c     divides the line segment 

joining the points 1 1( , )A x y  and 2 2( , )B x y  is 11 22:L L . 

Proof: Let the straight line divide the line segment AB  in the ratio :l m  at P. Then 

 2 1 2 1,
lx mx ly my

P
l m l m

  
  

  
 is a point on the straight line L = 0 and therefore, 

  2 1 2 1 0
lx mx ly my

a b c
l m l m

    
     

    
              L=0                m     2 2( , )B x y  

         l             P               1 1( , )A x y  

          

(i.e.,)  2 1 2 1( ) ( ) ( ) 0a lx mx b ly my c l m       or  2 2 1 1( ) ( ) 0l ax by c m ax by c       

Hence 1 1 2 2 11 22: ( ) : ( ) :l m ax by c ax by c L L         

14.2.5 Note: 

1. The points A, B are on opposite sides of the line L = 0  

    P divides AB  internally (see fig)                               L = 0 

 11 22: : 0l m L L           

   11 22&L L  Have opposite signs         P 

2. The points A, B lie on the same side of the line L = 0                   2 2( , )B x y  

   P divides AB  externally (see fig)  1 1( , )A x y   

 11 22: : 0l m L L    

    11 22&L L  Have the same sign. 

3. X –axis divides AB  in the ratio 1 2:y y  (since the equation of the X – axis is y = 0 and

11 1 22 2,L y L y  ). Similarly the Y – axis divides AB  in the ratio 1 2:x x . 
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14.2.6 Examples: 

1. Find the ratio in which the straight line 2 3 20 0x y    divides the join of the points 

(2, 3) and (2, 10). 

Solution: Here 112 3 20, 2(2) 3(3) 20 7L x y L         and 

22 2(2) 3(10) 20 14L      

So the straight line L = 0 divides the given line segment in the ratio 

11 22: 7 :14 1: 2L L    and the division is internal. 

2. State whether (3, 2) and (-4, -3) are on the same side or on opposite sides of the straight 

line 2 3 4 0x y   . 

Solution: If 2 3 4L x y   , then 11 2(3) 3(2) 4 4L      and 22 2( 4) 3( 3) 4 5L        

As 11 22&L L  have the same sign, the two points, lie on the same side of the given line L = 

0. 

3. Find the ratios in which (i) the X – axis and (ii) the Y – axis divide the line segment 

AB  joining A (2, -3) and B (3, -6). 

Solution:  

(i) X – axis divides AB  in the ratio 1 2: 3:6 1: 2y y      

(ii) Y – axis divides AB  in the ratio 1 2: 2 :3x x    

So both the axes of coordinates divide the line segment AB  externally. 

14.3 Family of straight lines - Concurrent lines 
 A set of straight lines having a common property is also known as a family of straight 

lines. In this section, we discuss (i) the family of straight lines parallel to a given line and 

(ii) the family of straight lines concurrent with two given intersecting lines. 

14.3.1 Theorem: 

Let 1 1 1 1 0L a x b y c     and 2 2 2 2 0L a x b y c     represent a pair of parallel straight 

lines. Then the straight line represented by 1 1 2 2 0L L    is parallel to each of the 

straight lines 1 20& 0L L  . 

Proof: The straight lines 1 20& 0L L   are parallel only if 1 2 2 1a b a b  

But then, 1 1 2 2 1 1 1 1 2 2 2 2( ) ( )L L a x b y c a x b y c           

                               1 1 2 2 1 1 2 2 1 1 2 2( ) ( ) ( )a a x b b y c c            
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And 1 1 1 2 2 1 1 1 2 2 2 1 2 2 1( ) ( ) ( ) 0a b b b a a a b a b          . So the straight line represented 

by 1 1 2 2 0L L    is parallel to the straight line 
1 0L   and hence, also to the line 2 0L  . 

14.3.2 Theorem: 

Let 1 1 1 1 0L a x b y c     and 2 2 2 2 0L a x b y c     represent two intersecting lines. 

Then 

(i) The equation 1 1 2 2 0L L    for parametric values of 1 2&   with 2 2

1 2 0  

, represents a family of straight lines passing through the point of intersection 

of the lines 1 20& 0L L  . 

(ii) Conversely the equation of any straight line passing through the point of 

intersection of the given straight lines is of the form 1 1 2 2 0L L    for some 

real 1 2&   such that 2 2

1 2 0   . 

Proof: Let 1 1( , )P x y  be the point of intersection of the given pair of intersecting lines

1 20& 0L L  . Then 1 2 1 1 1 0a x b y c   and 2 1 2 1 2 0a x b y c   . Observe that 1 2 2 1a b a b , 

since 1 2&L L  intersect. 

(i) If 2 2

1 2 0   , then at least of 1 2&   is different from zero and since 

1 2 2 1a b a b , it follows that the two numbers 1 1 2 2 1 1 2 2&a a b b      cannot be 

both equal to zero. 

Hence the equation 1 1 2 2 1 1 1 1 2 2 2 2( ) ( ) 0L L a x b y c a x b y c            (i.e.) 

1 1 2 2 1 1 2 2 1 1 2 2( ) ( ) ( ) 0a a x b b y c c           represents a straight line. Also 

1 1 1 1 1 1 2 2 1 2 1 2( ) ( ) 0a x b y c a x b y c       . Therefore the above line passes 

through 1 1( , )P x y . 

               Hence, for parametric values of 1 2&   with 2 2

1 2 0   , the equation 

1 1 2 2 0L L   represents a family of straight lines passing through 1 1( , )P x y  (see fig). 

     1 0L                              2 0L                                                                  

2 0L   

 

                                                                                                                          

L 

                            P  

                                                                                                                       

1 0L   
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(ii) Let 0L px qy r     be a straight line passing through 1 1( , )P x y  (see fig). 

Then 1 1 0px qy r   . Since (p, q) not equal to (0, 0) and 1 2 2 1a b a b  

The equations   

 1 1 2 2a a p    

                                                  1 1 2 2b b q    

Have unique solution for 1 2&   such that 1 2( , ) (0,0)   . 

From (1),       1 1 1 1 2 2 1 1 1 2 2 1( ) ( )r px qy a a x b b y            

                        = 1 1 1 1 1 2 2 1 2 1 1 1 2 2( ) ( )a x b y a x b y c c          

1 1 2 2 1 1 2 2 1 1 2 2 1 1 2 2( ) ( ) ( )px qy r a a x b b y c c L L                   

Thus, the equation of any straight line passing through the point of intersection of the 

lines 1 20& 0L L   can be expressed in the form 1 1 2 2 0L L    for some real numbers 

1 2&   with 2 2

1 2 0   . 

14.3.3 Note: 

1. The equation 1 1 2 2 0L L    represents 1L  if 2 10( 0)    and 2L  if 1 20( 0)   . 

The equation of any straight line different from 1L  and 2L  and passing through the point 

of intersection of these two lines can hence be written in the form either 1 2 0L L   or 

2 1 0L L   for some 0& 0   . 

2. Suppose 1 1 1 1 0L a x b y c     and 1 2 2 2 0L a x b y c     represent a pair of lines 

intersecting at P. 

If L is a straight line in the plane of 1 20& 0L L   is a straight line passing through P 

and parallel to L, then by the above theorem, the equation of 'L is of the form 

1 1 2 2 0L L    for 1 2( , ) (0,0)    and hence, the equation of L is of the form 

1 1 2 2 3L L     for constant 3 . 

14.3.4 Example: 

Find the equation of the straight line passing through the point of intersection of the lines 

1 0&2 5 0x y x y       and containing the point (5, -2). 
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Solution: Clearly the line 2 5 0x y    does not contain the point (5, -2). So the 

equation of any straight line (other than the above line) passing through the point o 

intersection of the given lines is of the form ( 1) (2 5) 0x y x y      . 

           This line passing through (5, -2) only if 4 (17) 0   or if 
4

17
   . 

           Therefore, the equation of the required line is 17( 1) 4(2 5) 0x y x y       

                   (i.e.)     9 21 3 0x y    or 3 7 1 0x y   . 

14.4 Condition for Concurrent lines 

  Given three straight lines in the XY – plane, we first obtain a necessary and 

sufficient condition for concurrency of these lines. This is followed by a sufficient 

condition for concurrency of three lines. 

14.4.1 Theorem: 

 Let 1 1 1 1 2 2 2 20, 0L a x b y c L a x b y c         and 3 3 3 3 0L a x b y c     be 

three straight lines, no two of which are parallel. Then these lines are concurrent if and 

only if 1 2 3 3 2 1 2 3 3 2 1 2 3 3 2( ) ( ) ( ) 0a b c b c b c a c a c a b a b      . 

Proof: By theorem 3.5.1, the point of intersection of the lines 1 20& 0L L   is  

  1 2 2 1 1 2 2 1

1 2 2 1 1 2 2 1

,
b c b c c a c a

p
a b a b a b a b

  
 

  
 

The given straight lines are concurrent  

  the point P lies on the line 3 0L   

1 2 2 1 1 2 2 1
3 3 3

1 2 2 1 1 2 2 1

0
b c b c c a c a

a b c
a b a b a b a b

    
      

    
 

3 1 2 2 1 3 1 2 2 1 3 1 2 2 1( ) ( ) ( ) 0a bc b c b c a c a c a b a b        

1 2 3 3 2( ) 0a b c b c    

14.4.2 Note: 

The above necessary and sufficient condition for concurrency of three straight lines 

can also be expressed in the determination form as 

1 1 1

2 2 2

3 3 3

0

a b c

a b c

a b c
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14.4.3 Theorem (A sufficient condition for concurrency of three straight lines) 

If 1 1 1 1 2 2 2 2 3 3 3 30, 0, 0L a x b y c L a x b y c L a x b y c             are three 

straight lines, no two of which are parallel and if non zero real numbers 1 2 3, &    exist 

such that 1 1 2 2 3 3 0L L L     , then the straight lines 1 2 30, 0& 0L L L    are 

concurrent. 

Proof: If 0 0( , )P x y  is the point intersection of the lines 1 20, 0L L  , then  

  1 0 1 0 1 2 0 2 0 20& 0a x b y c a x b y c       

Since   1 2
3 1 2

3 3

L L L
 

 

    
    
   

, we have 

  1 2
3 0 3 0 3 1 0 1 0 1 2 0 2 0 2

3 3

( ) ( ) 0a x b y c a x b y c a x b y c
 

 

    
           

   
 

0 0( , )P x y  lies on the straight line 3 0L   and accordingly, the lines 

1 2 30, 0& 0L L L    are concurrent at P. 

14.4.4 Solved Examples: 

1. Find the value of k, if the lines 2 3 0,3 4 13 0&8 11 33 0x y k x y x y          are 

concurrent. 

Solution: Let 1 2 2, ,L L L  be the straight lines whose equations are respectively 

   2 3 0x y k       (1) 

   3 4 13 0x y       (2) 

   8 11 33 0x y       (3) 

Solving (2) and (3) for x and y, we obtain (by applying the rule of cross – multiplication) 

   
1

132 142 104 99 33 32

x y
 

    
 

And this gives x = 1 and y = 5. 

Therefore, point of intersection of the lines (2) and (3) is (11, 5) 

Since 1 2 3, ,L L L  are concurrent, 1L  contains (11, 5) and therefore, 2 (11) – 3 (5) + k = 0 

(i.e.) k = -7. 
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2. If the straight lines 0, 0, 0ax by c bx cy a cx ay b          are concurrent, then 

prove that 3 3 3 3a b c abc   . 

Solution: Let 1 2 3, ,L L L  be the straight lines whose equation are respectively 

   0ax by c         (1) 

   0bx cy a         (2) 

   0cx ay b         (3) 

Solving the equations (1) and (2), we obtain 

   
2 2 2

1x y

ab c bc a ca b
 

  
 

Therefore, the point of intersection of 1L  and 2L  is 
2 2

2 2
,

ab c bc a

ca b ca b

  
 

  
 

If the lines 1 2 3, ,L L L  are concurrent, 3L  contains the above point of intersection of 1L  and 

2L . 

Hence,  
2 2

2 2
0

ab c bc a
c a b

ca b ca b

    
     

    
 

  i.e.., 2 2 2( ) ( ) ( ) 0c ab c a bc a b ca b       

  i.e.., 3 3 3 3a b c abc    

3. A variable straight line drawn through the point of intersection of the straight lines 

1
x y

a b
   and 1

x y

b a
   meets the coordinate axes at A and B. Show that the locus of the 

midpoint of AB  is 2( ) ( )a b xy ab x y   . 

Solution: The straight lines 1
x y

a b
   and 1

x y

b a
   intersect at P whose coordinates are 

,
ab ab

a b a b

 
 

  
 (see example) 

  0 0( , )Q x y  is a point on the given locus 

 The straight line with x – intercept 02x  and y – intercept 02y  passes through P. 

  P lies on the straight line
0 0

1
2 2

x y

x y
  . 
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0 0

1 1
1

2 2

ab

x y a b

  
    

  
 

0 0 0 02( ) ( )a b x y ab x y     

0 0( , )Q x y  lies on the locus 2( ) ( )a b xy ab x y    

5. If a, b, c are in arithmetic progression, then show that the equation 0ax by c    

represents a family of concurrent lines and find the point of concurrency. 

Solution: If a, b, c are in arithmetic progression, then 2b a c   or 2 0a b c   . 

Therefore, each member of the family of straight lines given by 0ax by c    passes 

through the fixed point (1, -2). Hence, the set of lines 0ax by c    for parametric 

values of a, b, c is a family of concurrent lines and the point of concurrency is (1, -2). 

Exercise 14 (b) 

Short Answer Questions: 

 

1. Find the ratio in which the following straight lines divides the line segment joining 

the given points. State whether the points lie on the same side or on either side of 

the straight-line.                                                                                                                             

(i)    3 4   7 :  2,  7   1,  3  x y and        (ii). 

   3 4  6 :  2,  1   1,  1x y and    

2. Find the point of intersection of the following lines.                                                                        

(i)  4   8  1  0 ,  2     1  0x y x y        (ii) 7    3  0,      0x y x y      

3. Find the value of p if the following straight lines are concurrent. 

(i)   0 ,   2  0  3   2  5  0x p y and x y         

(ii)    3   4   0,  2  3   0,    4   6x y x y px y       

(iii) 4  –  3  –  7  0,  2     2  0,  6   5  –  1  0x y x py x y       

4. Find the area of the triangles formed by the following straight lines and the 

coordinate axes.                                                                                                                                               

     4   2  0                                                 3  4   12  0.i x y ii x y       

5.  A straight line meets the coordinate axes in A and B . Find the the equation of the 

straight line, when                                                                                                                    

(i) AB  is divided in the ratio 2 :  3  5,  2(at                                                                                         

(ii) AB  is divided in the ratio   1:  2   5,  4 .at  . 

6. A straight line forms a triangle of area 24 sq.units with the coordinate axes in the 

first quadrant find the equation of the line if it passes through  3,  4 .  

7. Find the equation of the straight line passing through the points  1,  2 .  and 

 5,  -1 .and also find the area of the triangle formed by it with the axes of 

coordinates. 

8. A straight line with slope 1 passes through Q (-3 , 5) and meets the straight line 
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   6  0x y    at P. Find the distance PQ. 

9. Show that the lines 2    –  3  0,  3   2  –  2  0  2  –  3  23 0x y x y and x y       

are concurrent also find the point of concurrence.  

10. If the straight lines 0 , 0 , 0ax by c bx cy a cx ay b          are concurrent, 

then prove that 3 3 3 3a b c abc    . 

11. Determine whether or not the four straight lines with the equations 

  2   3  0x y    ,             

3   4  –  7  0 2   3  –  4  0  4   5  –  6  0x y x y and x y      0 are concurrent. 

12. If 3   2   4   0a b c    then show that the equation       0ax by c    represents 

a family of concurrent starlight lines and fin the point of concurrency. 

Essay Type questions: 

1. Find the point on the starlight line 3     4 0x y    which is equidistant from the 

points   ( -5, 6 ) and (3, 2). 

2. Find the area of the triangle formed by the starlight lines 

2  –   5  0,   5   11 0x y x y      =0 and    1  0x y    

3. A straight line through Q ( 3 , 2) makes an angle of ∏/6 with x-axis in positive 

direction if the straight line intersects the line 3  –  4   8x y   = 0 at P. Find the 

distance PQ. 

4. Show that the straight lines  

    0,  3    –  4  0    3  –  4  0x y x y and x y      forms an isosceles triangle. 

14.5 Angle between two lines 
 In this section, we first obtain a formula for the angle between two straight lines 

and then deduce the conditions for two lines to be parallel and perpendicular. 

 
14.5.1 Theorem: 

 The angle between the straight lines 1 1 1 1 0L a x b y c     and 

2 2 2 2 0L a x b y c     is 
1 2 1 21

2 2 2 2

1 1 2 2

cos
( )( )

a a b b

a b a b


 
 
   

 

Proof: Let &OA OB  be the straight lines passing through the origin and parallel to the 

given lines 1 20& 0L L   (see fig). Then the equations &OA OB  are 1 1 0a x b y   and 

2 2 0a x b y   respectively. 

 If 2XOB   , then the measure of 1 2| |   that lies in the interval of 0,
2

 
 
 

 is 

the angle between the lines 1 20& 0L L  . Clearly, 1 1( , )P b a  and 2 2( , )Q b a  are points 

on the lines &OA OB  respectively. Therefore, 

   1
1

2 2

1 1

cos
b

a b
 


                                                             

   1
1

2 2

1 1

sin
a

a b
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   2
2

2 2

2 2

cos
b

a b
 


                                                                                                                                                                                      

And     2
2

2 2

2 2

sin
a

a b






 

Hence, 1 2 1 2 1 2cos( ) cos cos sin sin         

    = 

  
1 2 1 2

2 1
2 2 2 2

1 1 2 2

cos( )
a a bb

a b a b
 


 

 
 

Thus, if   is the angle between 1 20& 0L L  , then 0,
2




 
 
 

 and so, cos 0  . 

   

  
1 2 1 2

2 2 2 2

1 1 2 2

| |
cos

a a b b

a b a b



 

 
 

Or    

  
1 1 2 1 2

2 2 2 2

1 1 2 2

| |
cos

a a b b

a b a b
  


 
 

 
14.5.2 Note: 

1. A necessary and sufficient condition for the lines 1 2&L L  with equations 

1 1 1 0a x b y c    and 2 2 2 0a x b y c    to be perpendicular is that 1 2 1 2 0a a bb   

(since 90  ). Hence the equation of a straight line perpendicular to the straight 

line 0ax by c    is of the formbx ay k  . 

2. By theorem, the straight lines 1 1 1 0a x b y c    and 2 2 2 0a x b y c    are parallel 

iff 1 2 2 1a b a b . Therefore the equation of any straight line parallel to the straight 

line 0ax by c    is of the form ax by k  . 

3. The straight line containing the points 1 1 2 2( , ), ( , )A x y B x y  is 

1 2 1 2( )( ) ( )( )x x y y y y x x     . Similarly the straight line containing the points 

3 3 4 4( , ) & ( , )C x y D x y  is 3 3 4 3 3 4( )( ) ( )( )x x y y y y x x     . 

Therefore, by the above note (1), the lines &AB CD  are perpendicular if and only 

if 1 2 3 4 1 2 3 4( )( ) ( )( ) 0x x x x y y y y      . 

14.5.3 Corollary: 

 If 1 2&L L  are non – vertical straight lines with slopes 1 2&m m  respectively, then 

the angle between them is 
1 1 2

1 21

m m
Tan

m m

 


 if 1 2 1m m    and 

2


 if 1 2 1m m   . 

Proof: Let 1 1 1 0a x b y c    and 2 2 2 0a x b y c    be the equations of 1 2&L L  

respectively. Then 1
1

1

a
m

b


  and 2

2

2

a
m

b


  

Now     1 2 1 2 1 2 0L L a a bb     
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     1 2

1 2

1 0
a a

b b
    (since 1 2 0bb  ) 

     1 2 1 0m m    

     1 2 1m m   

 

Therefore, angle between 1 2&L L  is 
2


 if 1 2 1m m   . However if 1 2 1m m   , then the 

angel 

 between 1 2&L L  

     = 

  
1 1 2 1 2

2 2 2 2

1 1 2 2

cos
a a b b

a b a b

 

 
 

     = 

1 2

1 21

2 2

1 2

2 2

1 2

1

cos

1 1

a a

b b

a a

b b





  
   

  

 

     = 
1 11 2 1 2

2 2
1 21 2

1
cos

1(1 )(1 )

m m m m
Tan

m mm m

  


 
 

Thus, the angle between two non perpendicular, non vertical lines with slopes 1 2&m m  is 

1 1 2

1 21

m m
Tan

m m

 


. 

14.5.4 Example: Find the angle between the lines 2 4 0x y    and 3 7y x   

Solution: The angle between the given lines = 1 | 6 1|
cos

5 10

  


 

        = 1 15 1
cos cos

45 2 2

    
    

   
 

14.5.5 Example: Find the angle between the lines 3 1 0x y    3 1 0x y    and 

1 0x  . 

Solution: The slope of the straight line 3 1 0x y     is 3 . Therefore this line makes 

an angle 60  with the X – axis and 30  with the Y – axis. 
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   But the equation 1 0x   represents a vertical line. 

   Hence, the angle between the given lines = 30  

14.6 Length of the perpendicular from a point to a line 
 In this section, we obtain formulas for the perpendicular distance of a point from a 

given straight line. 

14.6.1 Theorem: 

 The length of the perpendicular from the point 0 0( , )P x y  to the straight line 

0ax by c    is 0 0

2 2

ax by c

a b

 


.                                   Y 

 

                                                        y                    B 

                                                                                             M 

 

                                      'X                                        X 

 

                                                                            P ( 0 0,x y ) 

                        

                                                 'x                                          

 

 

 

Proof:  Let AB  be the straight line 0ax by c    

If the axes of coordinates are translated to the new origin 0 0( , )P x y  then the coordinates 

of a point (x, y) will be changed to (X, Y) where 0x X x   and 0y Y y   (See fig). 

Then the equation of AB  w.r.t  P as the origin is 

     0 0( ) ( ) 0a X x b Y y c      

     0 0( ) 0aX bY ax by c      

Therefore, the perpendicular distance of AB  from the origin P w.r.t the new axes is 

 
0 0

2 2

ax by c
PM

a b

 



 (See note 2) 

14.6.2 Example: 

 Find the perpendicular distances from the point (-3, 4) to the straight line

5 12 2x y  . 

Solution: The perpendicular distance of the point (-3, 4) from the line 5 12 2x y   is 

equal to  
2 2

5( 3) 12(4) 2 65
5

135 12

  
 


. 

 

14.7 Distance between two parallel lines 

In this section, we obtain formulas for the distance between two parallel lines. 

14.7.1 Theorem: 

The distance between the parallel straight lines 1 0ax by c    and 
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2 0ax by c    is 
1 2

2 2

c c

a b




. 

 

Proof: Let 
0 0( , )P x y  be a point on the straight line 1 1: 0L ax by c   . Let 

2L  be the 

other line. Then 0 0 1ax by c        (1) 

Now the distance between the parallel lines 1 2&L L  is equal to PM where PM is 

perpendicular distance of P from 2L  (See fig)                  Y 

                                                                                                                   P 

                                                                                                   M             1L                          

Therefore, 0 0 2

2 2

ax by c
PM

a b

 



 (by theorem 14.9.1)                                  2L                                           

  0 0 1 2 1 1 2

2 2 2 2

( ) ( )ax by c c c c c

a b a b

    


 
 (From 1)   'X         O                        X                                                 

                                                                                       'Y  

14.7.2 Example                                                                  
 Find the distance between the parallel straight lines 3 4 3 0x y    and

6 8 1 0x y   . 

Solution: The equations of the given straight lines can be taken as 6 8 6 0x y    and 

6 8 1 0x y   . 

 Hence by theorem 14.3.1, the perpendicular distance between these parallel lines 

 
2 2

| 6 1| 5 1

10 26 8

 
 


 

14.7.3 Theorem: 

 If ( , )Q h k  is the foot of the perpendicular from 1 1( , )P x y  on the straight line 

0ax by c   , then 2 2

1 1 1 1( ) : ( ) : ( ) : ( )h x a k y b ax by c a b        . 

Proof: Equation PQ  which is normal to the straight line : 0L ax by c   (see fig) is 

1 1bx ay bx ay   , since Q PQ  , we have              L                     1 1( , )P x y  

   1 1bh ak bx ay    

(i.e.)   1 1( ) ( )b h x a k y                                                       ( , )Q h k  
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Or   1 1( ) : ( ) :h x a k y b    

But, this implies that 1h a x   and 1k b y   for some R . 

Since Q (h, k) is a point on L, we have 1 1( ) ( ) 0a a x b b y c       

i.e..,    1 1

2 2

( )

( )

ax by c

a b


 
 


 

Therefore,   2 2

1 1 1 1( ) : ( ) : ( ) : ( )h x a k y b ax by c a b        . 

14.7.4 Example: 

 Find the root of the perpendicular from (-1, 3) on the straight line5 18 0x y   . 

Solution: (h, k) is the foot of the perpendicular from (-1, 3) on the line 5 18 0x y  

 
2 2

( 1) 3 ( 5 3 18)
1

5 1 5 1

h k     
    

 
 

    1 5& 3 1h k       

    ( , ) (4,2)h k   

14.7.5 Theorem: 

 If ( , )Q h k  is the image of the point 1 2( , )P x x  w.r.t the straight line 0ax by c   , 

then 2 2

1 1 1 1( ) : ( ) : 2( ) : ( )h x a k y b ax by c a b         

Proof: Q (h , k ) is the  image of the point 1 1( , )P x y  w.r.t the line : 0L ax by c   (see 

fig). 

 1 1,
2 2

x h y k  
  

 
  Is the foot of the perpendicular from P on the line L 

 2 21 1
1 1 1 1: : ( ) : ( )

2 2

x h y k
x a y b ax by c a b

    
           

   
 (from theorem 

3.10.3)                               

1 1( , )P x y  

2 2

1 1 1 1( ) : 2 ( ) : 2 ( ) : ( )h x a k y b ax by c a b          

2 2

1 1 1 1( ) : ( ) : 2( ) : ( )h x a k y b ax by c a b                 ( , )Q h k  

            

 L 

14.5.6Example: find the image of (1,-2) w.r.t the line 2 3 5 0x y    
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1 3 2(2 6 5)

2
2 3 4 9

h k    
    

 
 

  3, 4h k    

Therefore (-3, 4) is the image of (1, -2) in the line 2 3 5 0x y   . 

14.5.7 Solved problems: 

1. Find the value of k, if the angle between the straight line 

4 7 0& 5 9 0x y kx y       is 45 . 

Solution:  

    
1 11 2 1 2

2 2 2 2 2

1 1 2 2

| | 4 5 |
cos cos

417 25

a a b b k

a b a b k

 

 
    

    
 

 

    

 2

| 4 5 | 1

217 25

k

k


 


 

    2 22(4 5) 17( 25)k k     

    215 80 375 0k k     

    ( 3)(3 25) 0k k     

    3k   or 
25

3


. 

2. Find the equations of the straight lines passing through 0 0( , )x y  and  

(i)  Parallel  

(ii) Perpendicular to the straight line 0ax by c   . 

Solution:  

(i) The equation of the straight line parallel to the line 0ax by c    and passing 

through  0 0( , )x y  is ax by k   where 0 0k ax by   (i.e.) 

0 0( ) ( ) 0a x x b y y    . 

(ii) The equation of the straight line perpendicular to the line 0ax by c    and 

containing the point 0 0( , )x y  is bx ay k   where 0 0k bx ay   (i.e.) 

0 0( ) ( ) 0b x x a y y    . 

3. Find the equation of the straight line perpendicular to the line 5 2 7x y   and passing 

through the point of intersection of the lines 2 3 1&3 4 6x y x y    . 

Solution: Clearly neither of the straight lines 2 3 1&3 4 6x y x y     is perpendicular to 

the straight line 5 2 7x y  . Therefore the equation of the required line is of the form 
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(2 3 1) (3 4 6) 0x y x y       for some ( 0) R   . This line is perpendicular to the 

line 5 2 7x y   if and only if (2 3 )5 (3 4 )( 2) 0       

    (i.e.) iff 
4

7



  

So the equation of the required line is 7(2 3 1) 4(3 4 6) 0x y x y       i.e.., 

2 5 17 0x y   . 

4. If 2 3 5 0x y    is the perpendicular bisector of the line segment joining (3, -4) 

and ( , )  . Find  . 

Solution: ( , )   is the reflection of (3, -4) in the line 2 3 5 0x y    and therefore,

 
3 4 2(6 12 5)

2
2 3 13

     
   


 

 So 1, 2     and 1   . 

5. A line is such that its segment between the lines 5 4 0x y    and 3 4 4 0x y    

is bisected at the point (1, 5). Obtain its equation. 

Solution: Let the required line meet 3 4 4 0x y    at A and 5 4 0x y    at B, so that 

AB is the segment between the given lines, with its mid point at C = (1, 5). 

 The equation 5 4 0x y    can be written as 5 4y x   so that any point on BX  

is ( ,5 4)t t   for all real t. 

Therefore  ( ,5 4)B t t   for some t. Since (1, 5) is the mid – point of AB ,  

   [2 ,10 (5 4)] [2 ,6 5 ]A t t t t                       Y  5 4 0x y    

Since A lies on 3 4 4 0x y   , 3(2 ) 4(6 5 ) 4 0t t            B           C(1,5)           A 

    
26

23 26 0
23

t t      

Therefore, 
26 26 20 8

2 ,6 5 ,
23 23 23 23

A
    

       
    

                     3 4 4 0x y                   X 

Since slope of AB  is 

8
5

10723
20 3

1
23







 

Equation of AB  is 
107

5 ( 1) 3 15 107 107 107 3 92 0
3

y x y x x y           . 

6. An equilateral triangle has its centre at the origin and one side as 2 0x y   . 

Find the vertex opposite to 2 0x y   . 

Solution: Let ABC be the equilateral triangle and 2 0x y    represent the side BC  
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Since O is the incentre of the triangle, AD  is the bisector of BAC . Since the triangle is 

equilateral, AD  is the perpendicular bisector of BC . 

 Since O is also the centriod, : 2 :1AO OD  . [The centriod, circumcentre incentre 

and orthocentre coincide] 

Let D = (h ,k ). Since D is the foot of the perpendicular from O onto BC , D is given by 

 
0 0 ( 2)

1 1 2

h k   
        A 

Therefore h = 1 and k = 1, D = (1, 1) 

Let 1 1( , )A x y            

 1 12 2
(0,0) ,

3 3

x y  
   

 
 

 1 12, 2x y     

 ( 2, 2)A    , the required vertex.  

              

                                                                                                  B                  D                C 

                                                                                              2 0x y    

 

 

Exercise 14(c) 
Short Answer Questions: 

 

1. Find the angle between the lines                                                                                                    

(i) 2     4  0   –  3   7x y and y x    (ii)    3     1  0    1  0.x y and x      

2.  Find the length of the perpendicular drawn from the point given against the 

following   straight lines. (i)  5  –  2   4  0 ;    2,   3  x y     (ii) 

 3  –  4   10  0  :  3,  4 .x y    

3. Find the equation of the straight line parallel to the line 2   3   7  0x y    and 

passing through (5, 4). 

4. Find the equation of the straight line perpendicular to the line 5  –  3   1  0x y    

and passing through (4, –3). 

5. Find the value of K, if the straight lines 

6  –  10   3  0   –  5   8  0x y and kx y     are parallel. 

6. Find the value of P, if the straight lines 3   7  –1  0  7  –    3  0x y and x py     

are mutually perpendicular. 

7. Find the value of k if the straight lines
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    3   4  0  2 1  –  8  –  1  – 6 0y kx and k x k y      are perpendicular. 

8. Find the equations of the straight lines passing through (1,3 ) and (i) parallel to (ii) 

perpendicular to the line passing through the points     3,  5    6,  1 .and  . 

9.  Find the equation of the straight line perpendicular to the line 3   4   6  0x y    

and making an intercept – 4 on X – axis. 

10. Find the foot of the perpendicular drawn from (4, 1) upon the straight line                 

3   4  12  0x y     

11. Find the foot of the perpendicular drawn from( 3, 0) upon the straight line                    

5   12  41  0x y     

12. x 3  5  0y    is the perpendicular bisector of the line segment joining the 

points A , B. If A = (-1, -3), find the coordinates of the point B. 

13. Find the image of the point (1, 2) in the straight line 3   4  –  1  0.x y  . 

14.  Show that the distance of the point (6, -2) from the line 4   3   12x y   is half the 

distance of the point (3, 4) from the line 4x – 3y = 12. 

15. Find the locus of the foot of the perpendicular from the origin to a variable straight 

line which always passes through a fixed point (a, b). 

  

                     Essay Type questions 

 
1. Show that the lines 

 7  22  0,  3   4   9  0  7    54  0x y x y and x y          form a right 

angled isosceles triangle. 

2. Find the equations of the straight lines passing through the point ( -3,2) and 

making tan angle of 45
0
 with the straight line 3  –    4  0.x y   . 

3. Prove that the feet of the perpendiculars from origin to the lines 

    4 ,    5   26x y x y     and 15  –  27   424x y   are collinear. 

4. Find the equation of the straight line passing through the point of intersection of  

the lines 

 3   2   4 0 ,  2   5   1      2,  1   2.x y x y and whose distance from is      . 

5. Find the area of the parallelogram whose sides are 

3   4   5  0,  3   4  2  0x y x y       , 

2   3   1 0  2   3  7 0.x y and x y      . 

6. Find the angles of the triangle whose sides are    4 0,  2    6 0x y x y       

and 5  3  15  0.x y    

 

 

14.8 Concurrent lines - Properties related to a triangle. 

 There are various triads of concurrent straight lines associated with a triangle, viz. 

medians, altitudes, angular bisector, perpendicular bisectors of the sides etc. Geometric 

proofs for the concurrency of the each of the triads are already learnt in lower classes. In 

what follows, we give the analytical proofs for the concurrency of such triads of lines. 

Recall the vectorial proofs of these also. 
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Concurrency of the medians of a triangle 

14.8.1 Theorem: The medians of a triangle are concurrent. 

Proof: Let 1 1 2 2 3 3( , ), ( , ), ( , )A x y B x y C x y  be the vertices of the triangle ABC and 

  

 1 1 1 1 0L a x b y c     

  2 2 2 2 0L a x b y c                        

  3 3 3 3 0L a x b y c      

be respectively the sides , &BC CA AB  (see fig). 

Then 0r r r r r ra x b y c      for r = 1, 2, 3 and 0r s r s sa x b y c    for r, s = 1, 2,3 and 

r s . 

 Suppose D, E, F are the mid points of the sides , ,BC CA AB  respectively. Then the 

equation of the median AD  is 3 2 0L L   where ( 0)   is given by    (1) 

  2 3 2 3 2 3 2 3
3 3 3 2 2 2 0

2 2 2 2

x x y y x x y y
a b c a b c
              

               
          

 

Or  3 2 0    

Eliminating   from (1) and (2), we obtain the equation of AD  as 2 3 3 2 0L L    

Similarly the equation of BE  is 3 1 1 3 0L L    

 And the equation of CF  is 1 2 2 1 0L L   . 

Since 1 2 3 3 2 2 3 1 1 3 3 1 2 2 1( ) ( ) ( ) 0L L L L L L               and 1 2 3 0    , by theorem, it 

follows that the median AD , BE  and CF  are concurrent. 

Note that G is the centroid of triangle ABC. 
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Concurrency of the altitudes of a triangle 

14.8.2 Theorem: The altitudes of a triangle are concurrent 

Proof:  Let , &AD BE CF  be the altitudes of triangle ABC drawn from the vertices A, B 

and C respectively. Let the altitudes ,AD BE  intersect at ‘O’ (see fig). Choose ‘O’ as the 

origin of coordinates and a pair of perpendicular straight lines through O (not shown in 

fig) as the axes of coordinates w.r.t these axes, let 1 1 2 2 3 3( , ), ( , ) & ( , )A x y B x y C x y  . 

Then 1 2 3 1 2 3( 0)( ) ( 0)( ) 0AD BC x x x y y y         (by note 3) 

  1 2 3 1 2 3( ) ( ) 0x x x y y y      

Similarly 2 3 1 2 3 1( ) ( ) 0BE CA x x x y y y       

                       

From (1) and (2), we obtain 3 2 1 3 2 1( ) ( ) 0x x x y y y     

(i.e.)  3 2 1 3 2 1( 0)( ) ( 1)( ) 0x x x y y y       

This shows that &CO AB  are perpendicular. But CF  is the altitude drawn to AB  from 

the vertex C. 

Hence CF  passes through O. Accordingly, the altitudes , &AD BE CF  are concurrent at 

‘O’. 

Note that ‘O’ is the orthocentre of triangle ABC. 

Concurrency of the internal bisectors of the angles of a triangle 

14.8.3 Theorem: The internal bisectors of the angle of a triangle are concurrent. 

Proof: Let 1 1 2 2 3 3( , ), ( , ) & ( , )A x y B x y C x y be the vertices of the triangle ABC and 

0r r r rL a x b y c     (r = 1, 2, 3) be respectively the sides , &BC CA AB . 
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Then 0r r r r r ra x b y c      (r = 1, 2, 3)                      

And  0( , 1,2,3& )r s r s ra x b y c r s r s      

Suppose , &AD BE CF  are the internal bisectors of the angles A, B, C respectively. With 

the usual notation in triangle ABC, we write , ,a BC b CA c AB    (see fig). Then D 

divides BC  internally in the ratio : :AB AC c b . And so  2 3 2 3,
bx cx by cy

D
b c b c

  
  

  
 

Equation of the bisector AD  is 3 2 0L L       (1) 

Where ( 0)   is given by  

2 3 2 3 2 3 2 3
3 3 3 2 2 2 0

bx cx by cy bx cx by cy
a b c a b c

b c b c b c b c


              
               

             
 

(i.e.) 3 2( ) 0c b           (2) 

Eliminating   from (1) and (2), we obtain the equation of the internal bisector AD  of 

angle A as 1 2 3 3 2( ) ( ) 0u b L c L     

Similarly the other bisectors &BE CF  are given by  

    2 3 1 1 3( ) ( ) 0u c L a L     And 

    3 1 2 2 1( ) ( ) 0u a L b L     Respectively. 

Writing 1 1 2 2 3 3, ,k a k b k c     , we observe that 1 2 3 0k k k   and 1 1 2 2 3 3 0k u k u k u    

Hence by theorem, it follows that the bisectors , &AD BE CF  are concurrent. The point 

of concurrency is called the incentre of triangle ABC, usually denoted by I (see fig) 

Concurrency of the perpendicular bisectors of the sides of a triangle 

14.8.4 Theorem: The perpendicular bisectors of the sides of a triangle are concurrent. 

Proof: Let D, E, F be the mid points of the sides , ,BC CA AB  respectively of triangle 

ABC; and let the perpendicular bisectors of the sides ,BC CA  at O (See fig). Choose O as 
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the origin of the coordinates and a pair of perpendicular lines through O as the axes of 

coordinates (not shown in the fig). 

 Let      1 1 2 2 3 3, , , & ,x y x y x y  be the coordinates of the vertices A, B, C 

respectively w.r.t these axes of coordinates. 

Then 2 3 2 3,
2 2

x x y y
D

  
  
 

; 3 1 3 1,
2 2

x x y y
E

  
  
 

 and 1 2 1 2,
2 2

x x y y
F

  
  
 

 

Also       

  

    2 2 2 22 3 2 3
2 3 2 3 2 3 2 3( ) ( ) 0 0

2 2

x x y y
OD BC x x y y x x y y

    
             

   
... (1) 

   2 2 2 23 1 3 1
3 1 3 1 3 1 3 1( ) ( ) 0 0

2 2

x x y y
OE CA x x y y x x y y

    
             

   
 .... (2) 

From (1) and (2) we obtain  

   2 2 2 2

2 1 2 1 0x x y y     i.e.., 2 1 2 1
2 1 2 1( ) ( ) 0

2 2

x x y y
x x y y

    
      

   
 

But, this implies that OF AB  

Since F is the mid point of &OF AB  is therefore the perpendicular bisector of AB . Thus 

the perpendicular bisectors of the sides are concurrent. The point of concurrence O is the 

circumcentre of the triangle ABC. 

Solved problems: 

1. If the equation of the sides of the triangle are 

7 10 0, 2 5 0, 2 0x y x y x y         . Find the orthocenter of the triangle. 

Solution: Let the given triangle be ABC with the side , ,AB BC AC  represented by  

     7 10 0x y         (1) 
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     2 5 0x y         (2) 

     2 0x y   (see fig)     (3) 

Let &AD BE  be the altitudes drawn from A and B respectively to the sides &AD BE . 

 Solving the equations (1) and (3) we obtain A = (-3, 1) 

Since AD BC  the equation of AD  is 7 3 7 10x y        (4) 

Solving the equation (1) and (2)  we obtain B = (1, 3) 

Since BE AC  the equation of BE  is 1 3 2x y       (5) 

Point of intersection of the lines (4) and (5) is 
2 4

,
3 3

H
 

 
 

, which is the orthocentre of the 

triangle ABC  

2. Find the circumcentre of the triangle whose vertices are (1, 3), (-3, 5) and (5, -1). 

Solution: Let the vertices of the triangle be A (1, 3) , B(-3, 5) and C (5, -1) (see fig) 

The midpoints of the sides &BC CA  are respectively D (1, 2) and E (3, 1) 

Let S be the point of intersection of the perpendicular bisectors of the sides &BC CA . 

 Slope of BC = 
5 1 3

3 5 4

 


 
 

Slope of 
4

3
SD  and so the equation of SD  is 4 3 4 6 2x y       (1) 

Slope of 
3 1

1
1 5

AC


  


 

Slope of SE  is 1 and so, we obtain of SE  is 3 1 2x y     

Solving the equations (1) and (2) we obtain S = (-8, -10) which is the circumcentre of the 

triangle ABC. 

3. Find the circumcentre of the triangle whose sides are 

3 5 0, 2 4 0,5 3 1 0x y x y x y         . 

Solution: Let the given equations represent the sides , &BC CA AB  repectively of 

triangle ABC (See fig). 

Solving the above equations by taking two at a time, we obtain the vertices      A (-2, 3), 

B(1, -2) and C (2, 1) of the given triangle. 



 

382 
 

 The mid points of the sides &BC CA  are respectively 
3 1

, & (0,2)
2 2

D E
 

 
 

 

Equations of SD , the perpendicular bisector of BC  is 3 0x y   and that of SE , the 

perpendicular bisector of CA  is 2 2 0x y   . 

Solving these two equations we obtain the point of intersection of the lines &SD SE  

which is therefore, 
6 2

,
7 7

S
 

  
 

, the circumcentre of the triangle ABC. 

4. Find the incentre of the triangle formed by the straight lines 

3 , 3 & 3y x y x y    . 

Solution: The straight lines 3 , 3y x y x    makes angles 60 &120 respectively, 

with OX in the anti – clock wise sense (See fig). Since y = 3 is a horizontal line, the 

triangle formed by the three given lines is equilateral. So its incentre is same as the 

centroid which will be at a distance of 2 units from the origin (the vertex of the triangle) 

on the positive Y – axis (which is a median). 

Therefore Incentre of the triangle is I = (0, 2). 

       

Exercise 14 (d) 

1. Find the incentre of the triangle whose vertices are (1, 3),(2,0) &(0,0)  

2. Find the orthocenter of the triangle whose sides are given by 

10 0, 2 0,2 7 0x y x y x y          

3. Find the orthocenter of the triangle whose sides are given by 

4 7 10 0, 5&7 4 15x y x y x y       . 

4. Find the circumcentre of the triangle whose sides are 1, 1& 1x y x y    . 

5. Find the incentre of the triangle formed by the lines 1, 1& 1x y x y    . 

6. Find the circumcentre of the triangle whose vertices are (1,0),( 1,2) &(3,2)  

7. Find the values of k, if the angle between the straight lines 

9 0&3 4 0kx y x y       is 
4


. 

8. Find the equation of the straight line passing through the origin and also through 

the point of intersection of the lines 2 5 0x y    and 1 0x y   . 

9. Find the equation of the straight line parallel to the line 3 4 7x y   and passing 

through the point of intersection of the lines 2 3 0& 3 6 0x y x y      . 

10. Find the equations of the straight line perpendicular to the line 2 3 0x y   and 

passing through the point of intersection of the lines 3 1 0& 2 4 0x y x y     

. 

11. Find the equations of the straight line making non – zero equal intercepts on the 

coordinate axes and passing through the point of intersection of the lines 

2 5 1 0& 3 4 0x y x y      . 

12. Find the length of the perpendicular drawn from the point of intersection of the 
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lines 3 2 4 0&2 5 1 0x y x y       to the straight line 7 24 15 0x y    

13. Find the value of ‘a’ if the distances of the points (2, 3) and (-4, a) from the 

straight line 3 4 8 0x y    are equal. 

14. Find the circumcentre of the triangle formed by the straight lines 

0,2 5 0, 2x y x y x y       . 

15. If   is the angle between the lines 1
x y

a b
   and 1

x y

b a
  . Find the value of  

sin  when a > b. 

Essays 

1. Find the equations of  the straight lines passing through the point (-10, 4) and 

making an angle   with the line 2 10x y   such that tan 2  . 

2. Find the equations of the straight lines passing through the point (1, 2) and making 

an angle of 60  with the line 3 2 0x y   . 

3. The base of an equilateral triangle is 2 0x y    and the opposite vertex is (2, -

1). Find the equations of the remaining sides. 

4. Find the orthocentre of the triangle with the following vertices 

(i) ( 2, 1),(6, 1)&(2,5)    

(ii) (5, 2),( 1,2) &(1,4)   

5. Find the circumcentre of the triangle whose vertices are given below 

(i) ( 2,3),(2, 1) &(4,0)   

(ii) (1,3),(0, 2),( 3,1)   

6. Let PS  be the median of the triangle with the vertices (2,2), (6, 1), (7,3)P Q R . 

Find the equation of the straight line passing through (1, -1) and parallel to the 

median PS . 

7. Find the orthocentre of the triangle formed by the lines 2 0,4 3 5 0x y x y      

and 3 0x y  . 

8. Find the circumcentre of the triangle whose sides are given by 

2 0,5 2 0, 2 5 0x y x y x y         . 

9. Find the equations of the straight lines passing through (1, 1) and which are at a 

distance of 3 units from (-2, 3) 

10. If ‘p’ and ‘q’ are the lengths of the perpendiculars from the origin to the straight 

lines sec cosx y ec a    and cos sin cos2x y a    . Prove that
2 2 24p q a  . 

11. Two adjacent sides of a parallelogram are given 4 5 0&7 2 0x y x y     and one 

diagonal is11 7 9x y  . Find the equations of the remaining sides and the other 

diagonal. 

12. Find the incentre of the triangle formed by the following straight lines 

(i) 1 0,3 4 5&5 12 27x x y x y       

(ii) 7 0, 1 0, 3 5 0x y x y x y          

13. A triangle is formed by the lines 0, 0, 0ax by c lx my n px qy r         . 

Given that the triangle is not right angled, show that the straight line 

ax by c lx my n

ap bq lp mq

   


 
 passes through the orthocentre of the triangle. 

14. The Cartesian equations of the sides , ,BC CA AB  of a triangle are respectively



 

384 
 

0, 1,2,3r r r ru a x b y c r     . Show that the equation of the straight line 

passing through A and bisecting the side BC  is 3 2

3 1 1 3 1 2 2 1

u u

a b a b a b a b


 
. 

Key Concepts 
 
1. Slope of a non vertical straight line passes through the points (x1, y1 ) and (x2, y2 ) is

1 2

1 2

y y

x x




2. A straight line passes through origin if and only if the X-intercept and Y-

intercept of the  

     straight line are both equal to zero. 

3 The X-intercept of a horizontal line is not defined. 

4. The Y-intercept of a vertical line is not defined. 

5. The equation of the straight line with slope m and cutting off Y-intercept c is  y = mx + 

c 

 6.The equation of the non vertical straight line passing through the origin and having 

slope m        

    is y = m x. 

 
7.The equation of the Straight line which cuts off non –zero intercepts a and b on the X- 

axis and Y-axis respectively is 
x

a
 + 

y

b
 = 1 

 8. The equation of a straight line with slope m and passing through the point   1 , y1 ) is               

      y - y1 =  m ( x - x1).  

 

9. The equation of the straight line passing through the points  ( x1 ,y1) and ( x2 ,y2)    is               

   ( x - x1)(y1  - y2)  =  (y - y1)( x1 – x2 ).  
10. Three points A( x1,  y1 ) ,B ( x2,  y2 )   and C ( x3,  y3 )   are collinear if and only if  the 

point C lies on the line  AB  . Hence   x1 (y1 -  y3 ) +   x2 (y3 -  y1 ) +  x3 (y1 -  y2 )  = 0 . 

i.e.,  

1 1

2 2

3 3

1

1

1

x y

x y

x y

 = 0  

11. The equation of a straight line containing ( x1,  y1 ) and ( x2,  y2 )    can also be written 

as      

           1 1

2 2

1

1

1

x y

x y

x y

 = 0 

12.Point of intersection of the lines 1 1 1 1 0L a x b y c     and 2 2 2 2 0L a x b y c     is  
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       1 2 2 1 1 2 2 1

1 2 2 1 1 2 2 1

,
b c b c c a c a

a b a b a b a b

  
 

  
. 

13. 

(i) The linear expression ax by c   is denoted by L. then the general form of 

the equation of a straight line is 0ax by c   or, briefly, L = 0 

(ii) We denote 
1 1ax by c   by 

11L  and 2 2ax by c   by 
22L . If the point 

1 1( , )A x y  lies on the straight line L = 0, then the expression 
11L  equals zero. 

If the point A does not lie on the line L = 0, then 
11L  does not equal to 

equal and hence, 
11L  is either positive or negative. As such, the points of 

the plane are divided into three parts as 

(a) The set of points for which L = 0 

(b) The set of points for which L > 0 

(c) The set of points for which L < 0. 

we can find that the classification of points 1 1( , )x y on either side of a given straight line is 

based on whether 11L  is positive or negative 

14. The ratio in which the straight line 0L ax by c     divides the line segment 

joining the points 1 1( , )A x y  and 2 2( , )B x y  is 11 22:L L . 

15.Let 1 1 1 1 0L a x b y c     and 2 2 2 2 0L a x b y c     represent a pair of parallel 

straight lines. Then the straight line represented by 1 1 2 2 0L L    is parallel to each of 

the straight lines 1 20& 0L L  . 

16.Let 1 1 1 1 0L a x b y c     and 2 2 2 2 0L a x b y c     represent two intersecting lines. 

Then 

(i) The equation 1 1 2 2 0L L    for parametric values of 1 2&   with 2 2

1 2 0  

, represents a family of straight lines passing through the point of intersection 

of the lines 1 20& 0L L  . 

(ii) Conversely the equation of any straight line passing through the point of 

intersection of the given straight lines is of the form 1 1 2 2 0L L    for some 

real 1 2&   such that 2 2

1 2 0   . 

17.. The equation 1 1 2 2 0L L    represents 1L  if 2 10( 0)    and 2L  if 1 20( 0)   . 

The equation of any straight line different from 1L  and 2L  and passing through the point 

of intersection of these two lines can hence be written in the form either 1 2 0L L   or 

2 1 0L L   for some 0& 0   . 

18.. If 1 1 1 1 0L a x b y c     and 1 2 2 2 0L a x b y c     represent a pair of lines 

intersecting at P.If L is a straight line in the plane of 1 20& 0L L   is a straight line 

passing through P and parallel to L, then by the above theorem, the equation of 'L is of the 
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form 1 1 2 2 0L L    for 1 2( , ) (0,0)    and hence, the equation of L is of the form 

1 1 2 2 3L L     for constant 
3 . 

 

18.Let 1 1 1 1 2 2 2 20, 0L a x b y c L a x b y c         and 3 3 3 3 0L a x b y c     be three 

straight lines, no two of which are parallel. Then these lines are concurrent if and only if 

1 2 3 3 2 1 2 3 3 2 1 2 3 3 2( ) ( ) ( ) 0a b c b c b c a c a c a b a b      . 

19.The above necessary and sufficient condition for concurrency of three straight lines 

can also be expressed in the determination form as 

1 1 1

2 2 2

3 3 3

0

a b c

a b c

a b c

  

20.The angle between the straight lines 1 1 1 1 0L a x b y c     and 2 2 2 2 0L a x b y c     

is 
1 2 1 21

2 2 2 2

1 1 2 2

cos
( )( )

a a b b

a b a b


 
 
   

 

 
21. A necessary and sufficient condition for the lines 1 2&L L  with equations 

1 1 1 0a x b y c    and 2 2 2 0a x b y c    to be perpendicular is that 1 2 1 2 0a a bb   

(since 90  ). Hence the equation of a straight line perpendicular to the straight line 

0ax by c    is of the form bx ay k  . 

22. By theorem, the straight lines 1 1 1 0a x b y c    and 2 2 2 0a x b y c    are parallel iff 

1 2 2 1a b a b . Therefore the equation of any straight line parallel to the straight line 

0ax by c    is of the form ax by k  . 

23. The straight line containing the points 1 1 2 2( , ), ( , )A x y B x y  is 

1 2 1 2( )( ) ( )( )x x y y y y x x     . Similarly the straight line containing the points 

3 3 4 4( , ) & ( , )C x y D x y  is 3 3 4 3 3 4( )( ) ( )( )x x y y y y x x     . 

Therefore, by the above note (1), the lines &AB CD  are perpendicular if and only 

if 1 2 3 4 1 2 3 4( )( ) ( )( ) 0x x x x y y y y      . 

24. If 1 2&L L  are non – vertical straight lines with slopes 1 2&m m  respectively, then the 

angle between them is 
1 1 2

1 21

m m
Tan

m m

 


 if 1 2 1m m    and 

2


 if 1 2 1m m   . 

25.The length of the perpendicular from the point 0 0( , )P x y  to the straight line 

0ax by c    is 0 0

2 2

ax by c

a b

 


.                                    
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26. The distance between the parallel straight lines 
1 0ax by c    and 2 0ax by c    

is 1 2

2 2

c c

a b




. 

27.If ( , )Q h k  is the foot of the perpendicular from 1 1( , )P x y  on the straight line 

0ax by c   , then 2 2

1 1 1 1( ) : ( ) : ( ) : ( )h x a k y b ax by c a b        . 

28.If ( , )Q h k  is the image of the point 1 2( , )P x x  w.r.t the straight line 0ax by c   , 

then 2 2

1 1 1 1( ) : ( ) : 2( ) : ( )h x a k y b ax by c a b         

29. The medians of a triangle are concurrent. 

30. The altitudes of a triangle are concurrent 

31. The internal bisectors of the angle of a triangle are concurrent. 

32. The perpendicular bisectors of the sides of a triangle are concurrent. 

Answers 

Exercise 14 (a) 

1. -1, 1 

2. x – 1 = 0 

3. 
6


 

4.  (i) y – 3 = 0,      (ii) y + 4 = 0 

5. (i) x – 2 = 0,       (ii) x + 5 =0 

6. (i) 
3

13


   (ii) 

5

2


 

7. y = 9 

8. (i) – 1/5   (ii) 5 

9. (i) y = x   (ii) 3 (2 3) 0x y     

10. x = y , x = - y  

11. (i) 3 2 3 0x y    (ii) 2 3 9 0x y    

12. 1 0x y    

13. 6 0x y    

14.  25 

15. 
2

3


 

16. 
2 2

| |ab

a b
 

17. (i) 
2 3

cos sin
3 3

x y

 

 
   (ii) 

2

5 5
cos sin

6 6

x y

 


   (iii) 

1 1

3 3
cos sin

4 4

x y
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18. (i) 13 5 4
, 1, cos sin 1

4 4 (5 / 3) (5 / 4) 3

x y
y x x y Tan      
          
   

 

(ii) 
14 12 3

4, 1, cos sin
3 3 4 5 4

x y
y x x y Tan       
          

   
 

(iii) 3 4, 1, cos sin 2
4 6 6(4 / 3)

x y
y x x y

    
         

   
 

(iv) 2, 1, cos sin 2
2 2 4 4

x y
y x x y

 
      

 
 

            20. 
2 2 2 2 2 2

b a ab
x y

a b a b a b

   
    

     
 

Essays 

1. 2 2 0x y    

2. (i) 3 0x y     (ii) x y a b c     

3. (i) 5 14 106 0x y     (ii) 4y     (iii) 12 5 3 0x y     

(iv) 28 10 19 0x y    

 

4. (7, 5) and (- 1, - 1) 

Exercise 14 (b) 

1. (i) 27 : 22 ; opposite sides    (ii) 4 : 1 ; opposite sides 

2. 
7 3

,
20 10

 
 
         (ii) 

1 1
,

2 2

 
 
 

 

3. (i) 
1

3
    (ii) 2   (iii) 4 

4. (i) 
1

2
    (ii) 6 

5. (i) 3 5 25 0x y     (ii) 8 5 60 0x y    

6.  4 3 24 0x y    

7. 
9

2 3 0,
4

x y    

8. 2 2  
9. (4, -5) 

11.Not concurrent 

12. 
3 1

,
4 2

 
 
 

 

Essays 

1. (-2, 2) 

2. 9 
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3. 6 

Exercise 14 (c) 

1. (i) 
4


     (ii) 

1 1
cos

170

  
 
 

 

2. (i) 0     (ii) 3/5 

3. 2 3 22 0x y    

4. 3 5 3 0x y    

5. 3 
6. 3 
7. -1 or 1/6 
8. (i) 2 3 11 0x y       (ii) 3 2 3 0x y    

9. 4 3 16 0x y    

10. 
8 21

,
5 5

 
 
 

 

11. 
49 24

,
13 13

 
 
 

 

12. 
8 6

,
5 5

 
  
 

 

13. 
7 6

,
5 5

 
  
 

 

15. 2 2 0x y ax by     

Essays 

2. 2 7 0,2 4 0x y x y       

4. 1,4 3 5 0y x y     

5. 56  

6. 1 1 14 13 3
cos ,cos & cos

17 170 10
       
     

     
 

 

Exercise 14 (d) 

1. 
1

1,
3

 
 
 

 

2. (- 4, - 6) 

3. (1, 2) 
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4. 
1 1

,
2 2

 
 
 

 

5. 
1 1

,
2 2

 
 
 

 

6. (1, 2) 

7. 
1

2,
2

  

8. 2 0x y   

9. 3 4 15 0x y    

10. 3 2 8 0x y    

11. 32 0x y    

12. 
1

5
 

13. 
15

2
 or 

5

2
 

14. (-3, 1) 

15. 
2 2

2 2

a b

a b




 

Essays 

1. 3 4 14 0, 10 0x y x      

2. 2, 2 3( 1)y y x     

3. 1 (2 3)( 2)y x     

4. (i) 
5

2,
3

 
 
 

    (ii) 
1 14

,
5 5

 
 
 

 

5. (i) 
3 5

,
2 2

 
 
 

    (ii) 
1 2

,
3 3

 
 
 

 

6. 2 9 7 0x y    

7. (-4, -3) 

8. 
1 2

,
3 3

 
 
 

 

9. 5 12 7 0, 1x y x     

11. 7 2 9,4 5 9, 0x y x y x y       

     12.(i) 
1 2

,
3 3

 
 
 

    (ii) (3,1 5)  
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15.  PAIR OF STRAIGHT LINES (18 HOURS) 
 

     

Introduction  
 Given the equations of two straight lines, the methods of finding their point of 

intersection and the angle between them were discussed in chapter 3. In this chapter we 

shall find the conditions under which a second degree equation in x and y represents a 

pair of straight lines. 

15.1Equations of a pair of lines passing through the origin, Angle 

between a pair of lines 

 In this section, we find the nature of the combined equation of  a pair of straight 

lines passing  through the origin. 

15.1.1 Combined equation of a pair of straight lines: 

 Let 1 2&L L  denote two straight lines and let their equations be 1 1 1 0a x b y c+ + =  

and 2 2 2 0a x b y c+ + = , i.e.., which are linear in x and y (i.e.., 1 1&a b  are not both zero and 

2 2&a b  are not both zero. 

Consider the equation ( )( )1 1 1 2 2 2
0a x b y c a x b y c+ + + + = .    (1) 

Now ( , )P α β  is a point on the locus represented by (1) 

  ( )( )1 1 1 2 2 2 0a b c a b cα β α β⇔ + + + + =  

  1 1 1 0a b cα β⇔ + + =  or 2 2 2 0a b cα β+ + =  

That implies that P lies on 1L  or P lies on 2L . 

We therefore, conclude that the locus or the graph of the equation (1) is the pair of 

straight lines 1 2&L L . We say that (1) is the combined equation or simply the equation of 

1 2&L L . 

15.1.2 Example: 

The equation 2 26 11 10 0x xy y+ − =  represents the pair of straight lines 3 2 0x y− =  and 

2 5 0x y+ = , since 2 2(3 2 )(2 5 ) 6 11 10x y x y x xy y− + ≡ + −     (i) 

  Similarly, since  2 2(3 2 1)(2 3 1) 6 5 6 5 1x y x y x xy y x y+ − − + ≡ − − + + −

 (ii) 
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The equation 2 26 5 6 5 1 0x xy y x y− − + + − =  represents the pair of straight lines 

3 2 1x y+ −  and 2 3 1x y− + . 

15.1.3 Definition: 

If a, b, h are real numbers, not all zero, then 2 22 0H ax hxy by≡ + + =  is called a 

homogeneous equation of second degree in x and y; and 
2 22 2 2 0S ax hxy by gx fy c≡ + + + + + =  is called a general equation of second degree in x 

and y. 

 The equation (1)  in 4.1.1 and the combined equations (i) and (ii) of example 4.1.2 

are second degree equations in x any y. 

 We shall now investigate the conditions under which the above two equations 

represent a pair of straight lines 

15.1.4 Theorem: 

If a, b, h are not all zero and the locus of the equation 
2 22 2 2 0S ax hxy by gx fy c≡ + + + + + =  contains a straight line L, then S can be written 

as the product of two linear factors in x and y (with real coefficient). 

Proof: Let 
0 0( , )P x y  be a point on the straight line L. By translating the origin to the 

point and the rotating the axes of coordinated through a suitable angle θ  about the new 

origin, the equation of the straight line L can be transformed into the X-axis in the new 

coordinate system. Let a point (x, y) have coordinate     (X, Y) w.r.t the new system of 

coordinate axes. 

 Then 
0 cos sinx x X Yθ θ= + −  and 

0 sin cosy y X Yθ θ= + −  

From these equations, we obtain 

 
0 0( ) cos ( )sinX x x y yθ θ= − + −  and 

0 0( ) cos ( )sinY y y x xθ − θ= − −  

Writing the given equation S = 0 in the new coordinates X and Y, we find the equation 

changes to the form 2 22 2 2 0S AX HXY BY GX FY C≡ + + + + + =  which is a second 

degree equation in X and Y. (we note that A, B, H are not all zero, since 
2 2,a b A B ab h AB H+ = + − = − and a, b, h are not all zero). 

 Since the locus of S = 0 contains the straight line L whose equation is Y = 0 in the 

new coordinate system, every point on the line Y = 0 satisfies the equation S = 0 and 

hence, 

  2 2 0AX GX C+ + =  for all real numbers X. 
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Since the equation is satisfied by more than two values of X, we must have 

0A G C= = = . Hence  

   2 2 2 ( 2 2 )S BY HXY FY Y BY HX F≡ + + = + +  

That is S can be expressed as a product of two linear factors in X and Y. But X and Y are 

linear in x and y; and so using (i) and (ii), S can be factorised as a product o two real 

linear factors in x and y. 

15.1.5 Note: 

1. If the locus of a second degree equation in x and y contains a straight line, then the 

equation represents a pair of straight lines. 

2. If the locus of a second degree equation S = 0 in the two variables x and y is a pair 

of straight lines, then we can write  

  
1 1 1 2 2 2( )( )S l x m y n l x m y n≡ + + + +  

 Where  
1 1 1l x m y n+ +  and 

2 2 2l x m y n+ +  are linear in x and y. 

We now find the condition under which a homogeneous equation of second degree in x 

and y represents a pair of straight lines. 

15.1.6 Theorem: 

If a, b, h are not all zero, then the equation 2 22 0H ax hxy by≡ + + =  represents a pair of 

straight lines if and only if 2h ab≥ . 

Proof: Suppose that H = 0 represents a pair of straight lines. Then by note 4.1.5 (2), we 

can write  

  1 1 1 2 2 2( )( )H l x m y n l x m y n≡ + + + +  

Here  1 1 1l x m y n+ +  and 2 2 2l x m y n+ +  are linear in x and y. 

Since (0, 0) is a point on the locus of 2 22 0ax hxy by+ + = , it follows that (0, 0) is a point 

on the line 1 1 1l x m y n+ +  = 0 or on the line 2 2 2l x m y n+ + = 0. 

Hence 1 0n =  or 2 0n = , say 1 0n = . Then 

2 2

1 1 1 2 2 22 ( )( )ax hxy by l x m y n l x m y n+ + ≡ + + + +  so that 1 2 1 20l n m n= = . Since 1 1&l m  are 

not both zero, we get 2 0n = . Hence 

2 2

1 1 1 2 2 22 ( )( )ax hxy by l x m y n l x m y n+ + ≡ + + + + . Therefore 1 2 1 2,l l a m m b= =  and 

1 2 2 1 2l m l m h+ = . 
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Hence 

2 2

2 1 2 2 1 1 2 2 1
1 2 1 2 0

2 2

l m l m l m l m
h ab l l m m

+ −   
− = − = ≥   

   
 so that 2

h ab≥  

Conversely, suppose that 2h ab≥ . 

Case (i): Let 0a ≠ . Then 2 22ax hxy by+ +  

  = ( )2 2 21
2a x ahxy aby

a
+ +  

  = 2 2 2 2 2 21
( ) 2( )( )ax ax hy h y aby h y

a
 + + + −   

  = 2 2 21
( ) ( )ax hy h ab y

a
 + − −   

  = 2 21
( )(ax hy h aby ax hy h ab y

a
 + + − + − −
 

 since 2h ab≥  

  = 2 21
( ) ( )ax h h ab y ax h h ab y

a
   + + − + − −
   

 

Therefore the equation H = 0 represents the pair of straight lines. 2( ) 0ax h h ab y+ + − =  

and 2( ) 0ax h h ab y+ − − =  

Observe that each of these lines passes through the origin. 

Case (ii) Let a = 0. Then  22 (2 )H hxy by y hx by≡ + ≡ +  and so, in this case, the equation 

H =0 represents the straight lines y = 0 and 2 0hx by+ =  (since h and b are not both zero), 

each of which passes through the origin. 

15.1.7 Note: 

If 2h ab= , we observe that the lines represented by H = 0 are coincident 

If 2h ab≥ , then we can write 1 1 2 2( )( )H l x m y l x m y≡ + + so that 1 2 1 2,l l a m m b= =  and 

1 2 2 1 2l m l m h+ = . Also 1 1 2 20 & 0l x m y l x m y+ = + =  are the straight lines represented by H 

= 0. If H = 0 represents a pair of a straight lines and 0b ≠ , then these lines are non – 

vertical (prove). If 1 2&m m  are the slopes of these lines, then  

  2 2

1 22 ( )( )ax hxy by b y m x y m x+ + ≡ − −  

So that  
1 2 1 2

2
&

h a
m m m m

b b

−
+ = =  
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When the equations of two straight lines are given separately, finding the angle between 

them was discussed in 3.8. The following theorem aims at finding the angle between a 

pair of straight lines when their combined equation is given. 

15.1.8 Theorem: 

 Let the equation 2 22 0ax hxy by+ + =  represent a pair of straight lines. Then the 

angle θ  between the lines is given b y 
2 2

| |
cos

( ) 4

a b

a b h
θ

+
=

− +
 

Proof: It is obvious that 2 2( ) 4 0a b h− + >  

Let 2 2

1 1 2 22 ( )( )H ax hxy by l x m y l x m y≡ + + = + + . Then the lines represented by the given 

equations are
1 1 2 20 & 0l x m y l x m y+ = + = . Further 

1 2 1 2 1 2 2 1, & 2l l a m m b l m l m h= = + = . 

Therefore the angle θ  between these lines is given by 

  1 2 1 2

2 2 2 2

1 1 1 1

| |
cos

( )( )

l l m m

l m l m
θ

+
=

+ +
 

  1 2 1 2

2 2

1 2 1 2 1 2 1 2

| |

( ) ( )

l l m m

l l m m l m m l

+
=

− + −
 

Therefore   
2 2

| |
cos

( ) 4

a b

a b h
θ

+
=

− +
 

15.2 Condition for perpendicular and coincident lines, bisectors of 

angles 

 It is already observed in 4.1.7 that the equation H = =0 represents a pair of 

coincident lines if 2h ab= . 

Now the lines given by H = 0 are perpendicular 

   cos 0θ⇔ =  

   0a b⇔ + =  

Sum of the coefficient of 2 2&x y  in H = 0 is zero. 

If 0a b+ ≠ , then the lines represented by H = 0 are not perpendicular and in such a 

situation, the angle θ  between the lines is also given by the formula 

  
22

tan
| |

h ab

a b
θ

−
=

+
 because 

2 2

| |
cos

( ) 4

a b

a b h
θ

+
=

− +
 gives  
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2

2 2

2
sin

( ) 4

h ab

a b h
θ

−
=

− +
 

15.2.1 Example : 

Let us find the angle between the straight lines represented by the equation 
2 22 3 6 0x xy y− − = . 

Comparing this equation with 2 22 0ax hxy by+ + = , we find a = 2, b = -6 and 
3

2
h

−
= . 

Therefore angle θ  between the given pair of lines is given by 

 
2

9
2 12

2 574
tan

| | | 2 6 | 4

h ab

a b
θ

+
−

= = =
+ −

 

Hence the angle between the lines is 1 57
tan

4

−
 
  
 

 

15.2.2 Theorem: 

Let the equations of two intersecting lines be 1 1 1 1 0L a x b y c≡ + + =  and 

2 2 2 2 0L a x b y c≡ + + = . Then the equations of the angles (angle and its supplement) 

between 
1 20 & 0L L= =  are 1 1 1 2 2 2

2 2 2 2

1 1 2 2

a x b y c a x b y c

a b a b

+ + + +
= ±

+ +
 

Proof: The locus of the points equidistant from 
1 2&L L  is the pair of lines bisecting the 

angles between
1 2&L L . Let PM, PN be the perpendicular distances of a point 

1 1( , )P x y  

from the lines 
1 2&L L  respectively (see fig) 

Then P is a point on the given locus PM PM⇔ =  

  1 1 1 1 1 2 1 2 1 2

2 2 2 2

1 1 2 2

a x b y c a x b y c

a b a b

+ + + +
⇔ =

+ +
 

  1 1 1 1 1 2 1 2 1 2

2 2 2 2

1 1 2 2

a x b y c a x b y c

a b a b

+ + + +
⇔ = ±

+ +
 

Note: The equations of the lines bisecting the angles between 1 2&L L  are also written as  

  1 1 1 1 1 2 1 2 1 2

2 2 2 2

1 1 2 2

0
a x b y c a x b y c

a b a b

+ + + +
= ± =

+ +
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15.2.3 Examples: 

1) Let us find the equations of the straight lines bisecting the angles between the 

lines 7 3 0 & 1 0x y x y+ + = − + = . By theorem 4.2.2 the equations of the straight 

lines bisecting the angles between the given lines are  

7 3 1
0

50 2

x y x y+ + − +   
± =   
  

 

  That is (7 3) 5( 1) 0x y x y+ + ± − + =  or 3 1 0 & 3 2 0x y x y+ − = − + =  

2) Let us prove that the internal bisectors of the angles of a triangle are concurrent. 

Proof: Let 1 1 2 2 3 3( , ), ( , ), ( , )A x y B x y C x y be the vertices of a given triangle ABC (see 

fig) whose sides are , ,BC CA AB
���� ���� ����

 are represented by the equations                  A 

   1 1 1 1 0L a x b y c≡ + + =  

   2 2 2 2 0L a x b y c≡ + + =
                           3 0L =

                           

2 0L =  

   3 3 3 3 0L a x b y c≡ + + =
                             B                                      C 

                                                                                                                 1 0L =  

Without loss of generality, we can assume that the non zero numbers r r r r ra x b y c+ +  

(r= 1, 2, 3) are positive (that is, if necessary, we write the equation so that these 

numbers are positive). 

Also 0r s r s ra x b y c+ + = for r s≠  and r, s=1, 2, 3. 

Now the equation  3 3 32 2 2
1

2 2 2 2

2 2 3 3

a x b y ca x b y c
u

a b a b

+ ++ +
≡ −

+ +
 

Or   31
1

2 2 2 2

2 2 3 3

0
LL

u
a b a b

≡ − =
+ +

  

Represents one of the bisectors of the angle BAC. 

Since 
3 2 3 2 3 2 3 2 3 2 0a x b y c a x b y c+ + = + + =  we have  

  3 2 3 2 32 2 2 2 2

2 2 2 2

2 2 3 3

0
a x b y ca x b y c

a b a b

+ ++ +
− >

+ +
 and 
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  2 3 2 3 2 3 3 3 3 3

2 2 2 2

2 2 3 3

0
a x b y c a x b y c

a b a b

+ + + +
− <

+ +
 

Hence the vertices 2 2 3 3( , ) & ( , )B x y C x y lie on either side of the bisector 1 0u =  and 

accordingly, it is the internal bisector o angle A of triangle ABC. 

Similarly the internal bisectors of the angles B and C of the triangle are respectively 

   3 1
2

2 3 2 2

3 3 1 1

0
L L

u
a b a b

≡ − =
+ +

 

And   1 2
3

2 3 2 2

1 1 2 2

0
L L

u
a b a b

≡ − =
+ +

 

Now letting 1 2 3 1k k k= = = , we observe that 1 1 2 2 3 3 0k u k u k u+ + ≡  and therefore, by 

theorem 3.7.3, the bisectors 1 2 30, 0 & 0u u u= = =  are concurrent. 

15.3 Pair of bisectors of angles 

15.3.1 Theorem:  

 If the equation 2 22 0ax hxy by+ + =  represents a pair of intersecting lines the 

combined equation of the pair of bisection of the angles between these lines 
2 2( ) ( )h x y a b xy− = − . 

15.3.2 Note: 

 The sum of the coordinates of 2 2&x y  in the bisectors equation is zero, which 

verified perpendicularly. 

15.3.3. Example: 

 Let us find the combined equation of the pair of bisectors of the angles between 

that of straight lines represented by 2 26 11 3 0x xy y+ + = . 

 Comparing the given equation with 2 22 0ax hxy by+ + = , we observe that a = 6, b 

= 3 and h. 

Therefore the equation of the pair of bisectors of the angles between the given pair of 

linear 2 2( ) ( )h x y a b xy− = − . 

That is 2 211
( ) (6 3)

2
x y xy− = −  or 2 211( ) 6 0x y xy− − =  
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15.3.4 Solved problem: 

    1. Does the equation 2 2 0x xy y+ + =  represent a pair of lines? 

Solution: No. For, a = b = 1, 
1

2
h =  and 2 1

1 0
4

h ab− = − < , that is, 2
h ab< . 

     2. Find the nature of the triangle formed by the lines 2 23 0x y− =  and x = 2. 

Solution: The lines 2 23 0x y− = , that is 
1 1

,
3 3

y x y x= = −  are equally inclined to the x  

- axis, the inclination being 30�  

  Further 60OAB OBA∠ = ∠ = �  

  Hence the triangle is equilateral. 

3.  Find the centriod of the triangle formed by the lines 2 212 20 7 0x xy y− + =  and 

2 3 4 0x y− + = . 

Solution: The pair of straight lines 2 212 20 7 0x xy y− + =  intersects the straight line 

2 3 4 0x y− + =  in the points A and B whose coordinates are given by the equation 

2 23(3 4) 10 (3 4) 7 0y y y y− − − + =  (eliminate of x from the above equations) 

That is  2 8 12 0y y− + =  or ( 2)( 6) 0y y− − =  and so, y = 2 or 6 and correspondingly x = 

1 or 7. 

 Therefore, the points of intersection are A (1, 2) and B (7, 6). Accordingly, the 

triangle OAB formed by the given triad of lines has its centriod at 
8 8

,
3 3

 
 
 

. 

4. Prove that the lines represented by the equations 2 24 0x xy y− + =  and 3x y+ =  

form an equilateral triangle. 

Solution: The slope of the line 3 0L x y≡ + − =  is -1 and hence it makes an angle of 45�  

with the negative direction of the x- axis. Therefore, no straight line which makes an 

angle of 60�  with L is vertical. Let the equation of a line passing through the origin and 

making an angle of  60� with L be y = mx. Then                                         Y 

 

 
1

3 tan 60
1

m

m

+
= =

−

�

      

        
2y m x=

  
2L  
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So that 2 2( 1) 3( 1)m m+ = −  or 2 4 1 0m m− + =                                                            

1y m x=                                                                                           

                                                                                              

Whose roots are 1 2&m m  are real and distinct. Therefore, there are two lines 1 2&L L  

passing through the origin each making an angle of  60�  with L. Their equations are 

1 2&y m x y m x= =  where 1 2 1 24, 1m m m m+ = = . 

The combined equation of 1 2&L L  is 1 2( )( ) 0y m x y m x− − =  

i.e..,  2 2

1 2 1 2( ) 0y m m xy m m x− + + =  

i.e.., 2 24 0y xy x− + = , which is same as the given pair of lines 

Hence L, 1 2&L L  form an equilateral triangle. 

5. Show that the product of the perpendicular distances from a point ( , )α β  to the 

pair of straight lines 2 22 0ax hxy by+ + =  is 

2 2

2 2

2

( ) 4

a h b

a b h

α αβ β+ +

− +
. 

Solution: Let 2 2

1 1 2 22 ( )( )ax hxy by l x m y l x m y+ + ≡ + +  

Then the lines represented by the equation are 1 1l x m y+ =0 and 2 2 0l x m y+ =  

Further 1 2 1 2 1 2 2 1; & 2l l a m m b l m l m h= = + = . 

1d  = length of the perpendicular from ( , )α β  to 1 1 0l x m y+ =  

   = 
1 1

2 2

1 1

l m

l m

α β+

+
 

2d  = length of the perpendicular from ( , )α β  to 2 2 0l x m y+ =  

   = 
2 2

2 2

2 2

l m

l m

α β+

+
 

Then, the product of the lengths of the perpendiculars from ( , )α β  to the given pair of 

lines = 

2 2

1 1 2 2

1 2
2 2 2 2 2 2

1 1 2 2

2( )( )

( )( ) ( ) 4

a h bl m l m
d d

l m l m a b h

α αβ βα β α β + ++ +
= =

+ + − +
 

6. Let 2 22 0ax hxy by+ + =  represent a pair of straight lines. Then show that the 

equation of the pair of straight lines. 
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(i) Passing through 0 0( , )x y  and parallel to the given pair of lines is 

2 2

0 0 0 0( ) 2 ( )( ) ( ) 0a x x h x x y y b y y− + − − + − =  and 

(ii) Passing through 0 0( , )x y  and perpendicular to the given pair of lines is

2 2

0 0 0 0( ) 2 ( )( ) ( ) 0b x x h x x y y a y y− − − − + − = . 

Solution: Let 2 2

1 1 2 22 0 ( )( )ax hxy by l x m y l x m y+ + = ≡ + +  

Then the equations of the lines are 1 1 1 2 2 20, 0L l x m y L l x m y≡ + = ≡ + =  

Further 1 2 1 2 1 2 2 1, & 2l l a m m b l m l m h= = + =  

(i) Now the equations of the straight lines passing through 0 0( , )x y  and parallel to  

1 2&L L  respectively are  

1 0 1 0( ) ( ) 0l x x m y y− + − =  And 2 0 2 0( ) ( ) 0l x x m y y− + − =  

Therefore their combined equation  1 0 1 0 2 0 2 0[ ( ) ( )][ ( ) ( )] 0l x x m y y l x x m y y− + − − + − =  or 

2 2

0 0 0 0( ) 2 ( )( ) ( ) 0a x x h x x y y b y y− + − − + − =  

(ii) The straight lines passing through 0 0( , )x y  and perpendicular to the pair 

1 2&L L  are respective 1 1 1 0 1 0m x l y m x l y− = −  or 1 0 1 0( ) ( ) 0m x x l y y− − − =  and

2 0 2 0( ) ( ) 0m x x l y y− − − = . 

Hence their combined equation is 1 0 1 0 2 0 2 0[ ( ) ( )][ ( ) ( )] 0m x x l y y m x x l y y− − − − − − = . 

That is 2 2

0 0 0 0( ) 2 ( )( ) ( ) 0b x x h x x y y a y y− − − − + − =  

Note: The pair of lines passing through the origin and perpendicular to the pair of lines 

given by 2 22 0ax hxy by+ + =  is 2 22 0bx hxy ay+ + =  

7. Show that the area of the triangle formed by the lines 2 22 0ax hxy by+ + = , 

0lx my n+ + =  is 
2 2

2 22

n h ab

am hlm bl

−

− +
 

Solution: Let ,OA OB
���� ����

 be the pair of straight lines represented by the equation 

2 22ax hxy by+ +  ( see fig) and AB
����

 be the line 0lx my n+ + = . 

Let 2 2

1 1 2 22 ( )( )ax hxy by l x m y l x m y+ + ≡ + +  and ,OA OB
���� ����

 be the lines 

1 1 2 20 & 0l x m y l x m y+ = + =  respectively. 
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Let 1 1 2 2( , ), ( , )A x y B x y= = . Then since A lies on OA
����

 and AB
����

, 

1 1 2 20 & 0l x m y l x m y+ = + =  

Since, by hypothesis the given three lines form a triangle, 1 1 2 20 & 0l m lm l m lm− ≠ − ≠  

So, by the rule of cross-multiplication, we obtain  

  1 1

1 1 1 1

1x y

m n nl l m lm
= =

− −
 and hence 

  1 1
1 1

1 1 1 1

;
m n nl

x y
l m lm l m lm

−
= =

− −
 

Similarly  2 2
2 1

2 2 2 2

;
m n nl

x y
l m lm l m lm

−
= =

− −
                            Y

 

Therefore area of triangle OAB                                                                                A 

= 
1 2 2 1

1

2
x y x y−

                                                                                                              
 

   = 
2

1 2 2 1

1 1 2 2

(1

2 ( )( )

n l m l m

l m lm l m lm

−

− −
                                                               B

 

'X                                                                 X 

        O 

                                                                                                     'Y  

 

2 2 2 2 2
1 2 2 1 1 2 1 2

2 2 2 2 2 2

1 2 1 2 2 1 1 2

( ) 41 1 4 4

2 ( ) 2 2 2

n l m l m l l m m n h ab n h ab

l l m lm l m l m m m l am hlm bl am hlm bl

+ − − −
= =

− + + − + − +
 

(since 1 2 1 2,l l a m m b= =  and 1 2 2 1 2l m l m h+ = ) 

Exercise 15 (a) 

1. Find the acute angle between the pair of lines represented by the following 

equations. 

(i) 2 27 12 0x xy y− + =  

(ii) 2 26 0y xy x− − =  

(iii) 2 2 2 2( cos sin ) ( )sinx y x yα α α− = +  

(iv) 2 22 cot 0x xy yα+ − =  
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2. Show that the following pairs of straight lines have the same set of angular 

bisectors (that is they are equally inclined to each other). 

(i) 2 2 2 22 6 0,4 18 0x xy y x xy y+ + = + + =  

(ii) 2 2 2 2 2 22 ( ) ; 2 0; 0a x h a b xy b y ax hxy by a b+ + + + + = + ≠  

(iii) 
2 2 2 2

2 2

2 ( ) 0;( )

2 0

ax hxy by x y R

ax hxy by

λ λ+ + + + = ∈

+ + =
 

3. Find the value of ‘h’ if the slope of the lines represented by 2 26 2 0x hxy y+ + =  

are in the ratio 1 : 2. 

4. If 2 22 0ax hxy by+ =  represents two straight lines such that the slope of one line is 

twice the slope of the other, prove that 28 9h ab=  

5. Show that the equation of the pair of straight lines passing through the origin and 

making an angle of 30�  with the line 3 1 0x y− − =  is 2 213 12 3 0x xy y+ − =  

6. Find the equation of the pair of straight lines passing through the origin and 

making an acute angle α  with the straight line 5 0x y+ + =  

7. Show that the straight lines represented by 2 2( 2 ) 3 0x a y+ − =  and x = a form an 

equilateral triangle. 

8. Show that the pair of bisectors of the angles between the straight lines 
2 2( ) ( ) , 0ax by c bx ay c+ = − >  are parallel and perpendicular to the line

0ax by k+ + = . 

9. The adjacent sides of a parallelogram are 2 22 5 3 0x xy y− + =  and one diagonal is 

2 0x y+ + = . Find the other vertices and the other diagonal. 

10. Find the centriod and the area of the triangle formed by the following lines  

(i) 2 22 6 0, 4 0y xy x x y− − = + + =  

(ii) 2 23 4 0, 2 6x xy y x y− + = − =  

11. Find the equations of the pair of lines intersecting at (-2, -1) and  

(i) Perpendicular to the pair of 2 26 13 5 0x xy y− − =  and 

(ii) Parallel to the pair 2 26 13 5 0x xy y− − =  

12. Find the equation of the bisector of the acute angle between the lines

3 4 7 0 &12 5 2 0x y x y− + = + − = . 

13. Find the equation of the bisector of the obtuse angle between the lines 

5 0 & 7 7 0x y x y+ − = − + =  

14. Show that the lines represented by 2 2( ) 3( ) 0lx my mx ly+ − − =  and 0lx my n+ + =  

form an equilateral triangle with area 
2

2 23( )

n

l m+
 

15. Show that the straight lines represented by 2 23 48 23 0x xy y+ + =  and 

3 2 13 0x y− + =  form equilateral triangle of area 
13

3
 sq.units. 
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16. Show that the equation of the pair of lines bisecting the angles between the pair of 

bisectors of angles between the pair of lines 2 22 0ax hxy by+ + =  is 

2 2( )( ) 4 0a b x y hxy− − + =  

17. If one line of the pair of lines 2 22 0ax hxy by+ + =  bisects the angle between the 

coordinate axis. Prove that 2 2( ) 4a b h+ =  

18. If ( , )α β  is the centriod of the triangle formed by the lines 2 22 0ax hxy by+ + =  

and 1lx my+ = . Prove that 
2 2

2

3( 2 )bl hm am hl bl hlm am

α β
= =

− − − +
 

19. Prove that the distance from the origin to the orthocentre of the triangle formed by 

the line 1
x y

α β
+ =  and 2 22 0ax hxy by+ + =  is ( )

1
2 2 2

2 2

( )

2

a b

a h b

αβ
α β

α αβ β

+
+

− +
 

20. The straight line 0lx my n+ + =  bisects an angle between the pair of lines o which 

one is 0px qy r+ + = . Show that the other side is 

2 2( )( ) 2( )( ) 0px qy r l m lp mq lx my n+ + + − + + + =  

15.4 Pair of lines – Second degree general equation 

 We now obtain conditions for a general equation of second degree in x and y to 

represent a pair of lines. 

15.4.1Theorem: 

 If the second degree equation 2 22 2 2 0S ax hxy by gx fy c≡ + + + + + =  in the two 

variables x and y represents a pair of straight lines, then  

(i) 2 2 22 0abc fgh af bg ch+ − − − =  and 

(ii) 2 2 2, ,h ab g ac f bc≥ ≥ ≥  

15.4.2 Note: 

 Both the above sets of conditions are necessary for the equation S = 0 to represent 

a pair of straight lines. That is S = 0 cannot represent a pair of lines if any of the above 

conditions fails. 

 For example in the equation 2 2 2 1 0x y xy+ + + = , we have a = b = c = h = 1; f = g 

= 0 and therefore 2 2 22 0abc fgh af bg ch+ − − − = . But this equation which is the same as 

2( ) 1 0x y+ + =  does not represent a pair of straight lines. Infact the locus of this equation 

is the empty set. 

 Similarly in the equation 2 2 0x y+ = , we have a = b = 1; c = f = g = h = 0 and so 

2 2 2 2 22 0; ,abc fgh af bg ch f bc g ac+ − − − = = = . But 2h ab< , and once again this 
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equation does not represent a pair of straight lines. The locus of the equation 2 2 0x y+ =  

is the origin. 

The equation of second degree in x and y, 2 2 2 2 22 0S ax hxy by af bg ch≡ + + − − − =  

represents a pair of straight lines if 2 2 22 0abc fgh af bg ch∆ ≡ + − − − =  and 
2

h ab≥ ,

2 2

&g ac f bc≥ ≥ . 

(This proof of this is beyond the scope of the book) 

From 4.15.1theorem and 4.4.2 Note (2) we have 

 2 22 2 2 0S ax hxy by gx fy c≡ + + + + + =  Represents a pair of straight lines  

 2 2 22 0abc fgh af bg ch⇔ ∆ ≡ + − − − = ,
2

h ab≥ ,
2 2

&g ac f bc≥ ≥  

15.4.3 Theorem: 

 If the equation 2 22 2 2 0ax hxy by gx fy c+ + + + + =  represents two straight lines, 

then the equation 2 22ax hxy by+ +  represents a pair of lines passing through the origin 

and parallel to the former pair of lines. 

15.5 Conditions for parallel lines – Distance between them, Point of intersection of 

pair of lines: 

 In this section we find the condition for two lines to be parallel and to find the 

distance between two parallel lines. We will also find the intersection of two lines when 

their combined equation is given. 

 2 22 2 2 0S ax hxy by gx fy c≡ + + + + + =  Represents a pair of straight lines. The 

angle between this pair of lines is the same as the angle between the pair of lines 

represented by 2 22 0H ax hxy by≡ + + = . Hence the angle between the pair of lines S = 0 

is  
1

2 2
cos

( ) 4

a b

a b h

−
 +
 
 − +  .

 

 = 
2

1 2
tan

h ab

a b

−
 −
 
 + 

   if (a + b) >0 

 = 
2

1 2
tan

( )

h ab

a b

−
 −
 
 − + 

   if (a – b) <0 

 = 
2

π
     if a + b = 0 
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Therefore, the lines represented by S = 0 are parallel if 2
h ab= , perpendicular if a + b = 0 

and intersecting if 2h ab> . 

15.5.1 Theorem: 

 If the equation 2 22 2 2 0S ax hxy by gx hy c≡ + + + + + =  represents a pair of 

parallel straight lines, then  

(i) 2h ab=  

(ii) 2 2
af bg=  and 

(iii) The distance between the parallel lines = 
2 2

2 2
( ) ( )

g ac f bc

a a b b a b

− −
=

+ +
 

15.5.2 Theorem: 

 If the equation 2 22 2 2 0S ax hxy by gx fy c≡ + + + + + =  represents a pair of 

straight lines intersecting at the origin, then g = f = c = 0. 

15.5.3 Theorem: 

If the equation 2 22 2 2 0S ax hxy by gx fy c≡ + + + + + =  represents a pair of intersecting 

straight lines, then their point of intersection is 
2 2

,
hf bg gh af

ab h ab h

− − 
 

− − 
 

15.5.4 Note: 

 If 2h ab> , then the point of intersection of the pair of lines S = 0 satisfies the 

three equations 0, 0 & 0ax hy h hx by f gx fy c+ + = + + = + + = . 

 Observe that the eliminant of  
0 0,x y  from the equations (1), (2) and (3) above is 

0

a h g

h b f

g f c

 
 

= 
 
 

 which is the same as one of the necessary conditions given in the 

theorem 4.15.1for the equations S = 0 to represent a pair of straight lines. 

15.5.5 Example: 

 Let us find the point of intersection of the pair of straight lines represented by 
2 24 3 4 10 3 0x xy y x y+ + − − + = . 

Comparing this equation with the general equation of second degree in x and y, we get     

a = 1;  f = - 5 

  b = 3;  g = -2 
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  c = 3;  h = 2 

Therefore the point of intersection of the lines is  

   
2 2

10 6 4 5
, , (4, 1)

3 4 3 4

hf bg gh af

ab h ab h

− − − + − +   
= = −   

− − − −   
 

The point of intersection can also be obtained by solving the equations 

  0ax hy g+ + =  That is,  2 2 0x y+ − =  

  0hx by f+ + =  That is, 2 3 5 0x y+ − =  

15.5.6 Solved Problems: 

1. Find the angle between the straight lines represented by 
2 22 5 2 5 7 3 0x xy y x y+ + − − + = . 

Solution: Here a = 2, 2h = 5 and b = 2 and  

  
1 1 1

2 2 2

4 4
cos cos cos

5( ) (2 ) 0 5

a b

a b h
θ − − −+  

= = =  
 − + +

 

2. Find the equation of the pair of lines passing through the origin and parallel to the pair 

of lines 2 22 3 2 5 5 3 0x xy y x y+ − − + − =  

Solution: Equation of the pair of lines passing through the origin and parallel to the lines 

represented by 2 22 2 2 0ax hxy by gx fy c+ + + + + =  is 2 22 0ax hxy by+ + = . Hence the 

required equation is 2 22 3 2 0x xy y+ − = . 

3. Find the equation of the pair of lines passing through the origin and perpendicular to 

the pair of lines 2 22 2 2 0ax hxy by gx fy c+ + + + + =  

Solution: The equation of the lines passing through the origin and parallel to the given 

pair of lines is 2 22 0ax hxy by+ + = . Hence their equation is 2 22 0bx hxy ay− + =  

4. If 2 22 4 0x xy y x y k+ − + − + =  represents a pair of straight lines, find k. 

Solution: Since the given equation represents a pair of lines, 
2 2 22 0abc fgh af bg ch+ − − − =  

Here, 
1 1

1, 2, , , 2,
2 2

a b c k f g h= = − = = − = = . Hence k = 3. 

5. Prove that the equation 2 22 6 7 2 0x xy y y+ − + − =  represents a pair of straight lines. 

Solution: Here a = 2, b = -6, c = -2, f = 7/2, g = 0,h = ½. 
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Hence 

2 2

2 2 2 7 1 7 1
2 2( 6)( 2) 2. .0. 2 ( 6).0 ( 2)

2 2 2 2
abc fgh af bg ch

   
+ − − − = − − + − − − − −   

   
 

  
49 1 1

24 (48 49 1) 0
2 2 2

= − + = − + =  

  2 21
12 0, 0 (2)( 2) 4 0

4
h ab g ac− = + > − = − − = >  

  2 49 49 1
( 6)( 2) 12 0

4 4 4
f bc− = − − − = − = >  

Therefore, 2 2 2, ,h ab g ac f bc> > > . Hence the given equation represents a pair of 

straight lines. 

6. Prove that the equation 2 22 3 2 3 1 0x xy y x y+ − − + − =  represents a pair of 

perpendicular straight lines. 

Solution: a = 2, b = -2, c = -1, h = 3/2, g = -1/2, f = 3/2 

Hence 2 2 2 3 1 3 9 1 9
2 4 2. 2. ( 2) ( 1).

2 2 2 4 4 4
abc fgh af bg ch

 
+ − − − = + − − − − − − 

 
 

     = 
9 9 1 9

4 0
4 2 2 4

− − + + =  

   2 2 29 1 9 1
4 0, 2 0, 2 0

4 4 4 4
h ab g ac f bc− = + > − = + > − = − = >  

a + b = 2 – 2 = 0. Hence the given equation represents a pair of perpendicular lines. 

7. Show that the equation 2 22 13 7 23 6 0x xy y x y− − + + − =  represents a pair of straight 

lines. Also find the angle between them and the coordinates of the point of intersection of 

the lines. 

Solution: Let 3 22 13 7 23 6S x xy y x y≡ − − + + −  

 Now 3 22 13 7 ( 7 )(2 )x xy y x y x y− − = − +  

Let us see whether we can find 1 2&C C  such that 1 2 1 2 1 22 1, 7 23, 6C C C C C C+ = − = = − . 

From the first two, we get 1 22, 3C C= = − . These values satisfy 1 2 6C C = − . Hence there 

exist 1 2&C C  such that 

   1 2( 7 )(2 ) ( 7 2)(2 3)S x y C x y C x y x y≡ − + + + = − + + −  

Therefore the given equation represents the straight lines 2 3 0 & 7 2 0x y x y+ − = − + =  
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Angle between the lines = 
1 1

1
2

7tan tan 3
2

1
7

− −

+

=

−

 

Solving the equations 2 3 0 & 7 2 0x y x y+ − = − + = , we obtain the point of intersection of 

the given pair of lines which is 
19 7

,
15 15

 
 
 

. 

8. Find the value of λ  for which the equation 2 210 12 5 16 3 0x xy y x yλ − + + − − =  which 

represents a pair of straight lines. 

Solution: A necessary condition for the given equation to represent a pair of lines is 

2 2 22 0abc fgh af bg ch+ − − − =  where 
5

, 12, 3, 5, , 8
2

a b c h g fλ= = = − = − = = −  

Therefore, 

2

2 25 5
36 2 8 5 ( 8) 12 ( 3)( 5) 0

2 2
λ λ

 
− + × − × × − − − − − − =  

 

This gives   2 aλ = =  

Now    2 25 24 1 0h ab− = − = >  

   2 25 49
6 0

4 4
g ac− = + = >  

   2 64 36 100 0f bc− = + = >  

That is,   2 2 2, ,h ab g ac f bc> > >  

Therefore, the given equation represents a pair of lines for 2λ =  

8. Show that the pairs of straight lines 2 26 5 6 0x xy y− − =  and 

2 26 5 6 5 1 0x xy y x y− − + + − =  form a square. 

Solution:  2 26 5 6 (3 2 )(2 3 )H x xy y x y x y≡ − − = + −  and  

  2 26 5 6 5 1 (3 2 1)(2 3 1)S x xy y x y x y x y≡ − − + + − = + − − +  

Clearly, H = 0 represents a pair of perpendicular lines and S = 0 also represents a pair of 

perpendicular lines. Further the lines represented by H = 0 are parallel to the lines 

represented by S= 0. Therefore, the four lines form a triangle. 

 But the distance of each of the lines 3 2 1 0, 2 3 1 0x y x y+ − = − + =  from the origin 

is 
1

13
. Hence the rectangle is a square. 
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Aliter 

 Since the second degree terms in both the equations are identical, they form a 

parallelogram. Also, since the sum of the coefficients of 2 2&x y  is zero, the 

parallelogram becomes the rectangle. 

 If OABC represents the rectangle, then 2 26 5 6 5 1 0x xy y x y− − + + − = ...... (1) 

represents the combined equation of &AB BC
���� ����

. 

 Comparing the equation (1) with 2 22 2 2 0ax hxy by gx fy c+ + + + + = , we get 

5 1 5
6, 6, , ,

2 2 2
a b h g f= = − = − = =  

Since   
2 2

1 5
, ,

13 13

hf bg gh af
B

ab h ab h

− −   
= =   

− −   
 

Therefore, slope of OB
����

 is 5. 

Since the equation AC
����

 is 5 1 0x y+ − = , its slope is 
1

5
− . 

Clearly, AC
����

 is perpendicular to OB
����

. OABC is thus a square. 

9. Show that the equation 2 28 24 18 6 9 5 0x xy y x y− + − + − =  represents a pair of 

parallel straight lines and find the distance between them. 

Solution:  2 28 24 18 6 9 5S x xy y x y≡ − + − + −  

  22(2 3 ) 3(2 3 ) 5x y x y= − − − −  

  [2(2 3 ) 5][(2 3 ) 1]x y x y= − − − +  

  = (4 6 5)(2 3 1)x y x y− − − +  

Therefore, the equation S = 0 represents the straight lines 4 6 5 0x y− − =  and 

2 3 1 0x y− + =  which are clearly a pair of parallel lines. 

 Distance between them
2 2

2 5 7

524 6

+
=

+
. 

Note: This problem can also be solved by using the result of 4.5.1 theorem. 

10. If the pairs of lines represented by 2 22 0ax hxy by+ + =  and 

2 22 2 2 0ax hxy by gx fy c+ + + + + =  form a rhombus, prove that

2 2( ) ( ) 0a b fg f g− + − = . 
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Solution: Let ,OA OB
���� ����

 be the pair of straight lines given by 2 22 0H ax hxy by≡ + + =  and 

,AC BC
���� ����

 be the pair of lines given by 2 22 2 2 0S ax hxy by gx fy c≡ + + + + + = . We know 

that the lines represented by H = 0 are parallel to the lines represented by S = 0 that is, 

figure OACB (see fig) is a parallelogram C, the point of intersection of lines S = 0

2 2
,

hf bg gh af

ab h ab h

− − 
 

− − 
. 

 Since O and C are distinct points, hf – bg and gh – af are not both zero. Now the 

equation of the diagonal OC is ( ) ( ) 0gh af x hf bg y− − − = . 

 Since A is a point on the locus H = 0 as well as on the locus S = 0, coordinates of 

A satisfy the equation S – H = 0. Similarly the coordinates of B also satisfy the equation. 

Now 2 2 0S H gx fy c− ≡ + + = , being linear in x and y represents a straight line, (note 

that g and f are not both zero). Hence S – H = 0 is the equation of the diagonal AB. Since 

by hypothesis, figure OACB is a rhombus, the diagonals OC and AB are perpendicular to 

each other. Hence ( )2 ( )2 0gf af g hf bg f− − − =  that is 2 2( ) ( ) 0a b fg h f g− + − = . 

11. If two of the sides of a parallelogram are represented by 2 22 0ax hxy by+ + =  and 

1px qy+ = is one of its diagonals, prove that the other diagonal is 

( ) ( )y bp hq x aq hp− = − . 

Solution: Let OACB be the parallelogram two of whose sides ,OA OB
���� ����

 are represented by 

the equation 2 22 0H ax hxy by≡ + + =  (see fig). Since the other pair of sides AC and BC 

are respectively parallel to &OB OA
���� ����

 their combined equation will be of the form 
2 22 2 2 0S ax hxy by gx fy c≡ + + + + + =  

 Then the equation of the diagonal AB is 2 2 0gx fy c+ + =  (see solved 

problem11). But this line is given to be  

  1px qy+ =  or 0pcx qcy c− − + = , since 0c ≠ . 

Therefore, 2 , 2g pc f qc= − = −  

The vertex C of the parallelogram =
2 2

,
hf bg gh af

ab h ab h

− − 
 

− − 
. Therefore, the equation of the 

diagonal OC
����

 is ( ) ( )gh af x hf bg y− = −  that is, ( ) ( )c ph aq x c hq bp y− + = − +  (using (1)) 

  Or ( ) ( )aq hp x bp hq y− = − , since 0c ≠ . 

 

 



 

412 

 

Exercise 15(b) 

1. Find the angle between the lines represented by 2 22 6 7 2 0x xy y y+ − + − =  

2. Prove that the equation 2 22 3 2 3 1 0x xy y x y+ − + + + =  represents a pair of 

perpendicular lines. 

3. Prove that the equation 2 23 7 2 5 5 2 0x xy y x y+ + + + + =  represents a pair of 

straight lines and find the coordinates of the point of intersection. 

4. Find the value of k, if the equation 2 22 6 3 1 0x kxy y x y+ − + + + = represents a pair 

of straight lines. Find the point of intersection of the lines and the angle between 

the straight lines for this value of k. 

5. Show that the equation 2 2 3 2 0x y x y− − + − =  represents a pair of perpendicular 

lines, and find their equations. 

6. Show that the lines 2 22 35 4 44 12 0x xy y x y+ − − + − =  and 5 2 8 0x y+ − =  are 

concurrent. 

7. Find the distances between the following pairs of parallel straight lines : 

(i) 2 29 6 18 6 8 0x xy y x y− + + − + =  

(ii) 2 22 3 3 3 3 3 4 0x xy y x y+ + − − − =  

8. Show that the two pairs of lines 2 23 8 3 0x xy y+ − =  and 

2 23 8 3 2 4 1 0x xy y x y+ − + − − =  form a square. 

9. Find the product of the lengths of the perpendiculars drawn from (2, 1) upon the 

lines 2 212 25 12 10 11 2 0x xy y x y+ + + + + =  

10. Show that the straight lines 2 4 3 0y y− + =  and 2 24 4 5 10 4 0x xy y x y+ + + + + =  

form a parallelogram and find the lengths of its sides. 

11. Show that the product of the perpendicular distances from the origin to the pair of 

straight lines represented by 2 22 2 2 0ax hxy by gx fy c+ + + + + =  is 

2 2

| |

( ) 4

c

a b h− +
 

12. If the equation 2 22 2 2 0ax hxy by gx fy c+ + + + + =  represents a pair of 

intersecting lines, then show that the square of the distance of their point of 

intersection from the origin is
2 2

2

( )c a b f g

ab h

+ − −

−
. Also show that the square of this 

distance is 
2 2

2 2

f g

h b

+

+
 if the given lines are perpendicular. 

Key Concepts 
 

     

1.If a, b, h are not all zero, then the equation 2 22 0H ax hxy by≡ + + =  represents a pair of 

straight lines if and only if 2h ab≥ . 
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2. If 2
h ab= , the lines represented by H = 0 are coincident 

3.If 2
h ab≥ , then we can write 1 1 2 2( )( )H l x m y l x m y≡ + + so that 1 2 1 2,l l a m m b= =  and 

1 2 2 1 2l m l m h+ = . Also 1 1 2 20 & 0l x m y l x m y+ = + =  are the straight lines represented by H 

= 0. If H = 0 represents a pair of a straight lines and 0b ≠ , then these lines are non – 

vertical . If 1 2&m m  are the slopes of these lines, then  

2 2

1 22 ( )( )ax hxy by b y m x y m x+ + ≡ − −  

So that 
1 2 1 2

2
&

h a
m m m m

b b

−
+ = =  

4. Let the equation 2 22 0ax hxy by+ + =  represent a pair of straight lines. Then the angle 

θ  between the lines is given b y 
2 2

| |
cos

( ) 4

a b

a b h
θ

+
=

− +
 

5. The equation H = =0 represents a pair of coincident lines if 2
h ab= . 

6. The lines given by H = 0 are perpendicular 

   cos 0θ⇔ =  

   0a b⇔ + =  

Sum of the coefficient of 2 2&x y  in H = 0 is zero. 

7.If 0a b+ ≠ , then the lines represented by H = 0 are not perpendicular and in such a 

situation, the angle θ  between the lines is also given by the formula 

 
22

tan
| |

h ab

a b
θ

−
=

+
 because 

2 2

| |
cos

( ) 4

a b

a b h
θ

+
=

− +
 gives 

2

2 2

2
sin

( ) 4

h ab

a b h
θ

−
=

− +
  

8.Let the equations of two intersecting lines be 1 1 1 1 0L a x b y c≡ + + =  and  

2 2 2 2 0L a x b y c≡ + + = . Then the equations of the angles (angle and its supplement) 

between 1 20 & 0L L= =  are 1 1 1 2 2 2

2 2 2 2

1 1 2 2

a x b y c a x b y c

a b a b

+ + + +
= ±

+ +
 

9.If the equation 2 22 0ax hxy by+ + =  represents a pair of intersecting lines the combined 

equation of the pair of bisection of the angles between these lines 2 2( ) ( )h x y a b xy− = −  

10.Let 2 22 0ax hxy by+ + =  represent a pair of straight lines. Then the equation of the pair 

of straight lines. 
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(i) Passing through 0 0( , )x y  and parallel to the given pair of lines is 

2 2

0 0 0 0( ) 2 ( )( ) ( ) 0a x x h x x y y b y y− + − − + − =  and 

(ii) Passing through 0 0( , )x y  and perpendicular to the given pair of lines is

2 2

0 0 0 0( ) 2 ( )( ) ( ) 0b x x h x x y y a y y− − − − + − = . 

11. The pair of lines passing through the origin and perpendicular to the pair of lines is 
2 22 0ax hxy by+ + =  is 2 22 0bx hxy ay+ + =  

12. The area of the triangle formed by the lines 2 22 0ax hxy by+ + = , 0lx my n+ + =  is 

2 2

2 22

n h ab

am hlm bl

−

− +
 

13.If the second degree equation 2 22 2 2 0S ax hxy by gx fy c≡ + + + + + =  in the two 

variables x and y represents a pair of straight lines, then  

(i) 2 2 22 0abc fgh af bg ch+ − − − =  and 

(ii) 2 2 2, ,h ab g ac f bc≥ ≥ ≥  

14. If the equation 2 22 2 2 0ax hxy by gx fy c+ + + + + =  represents two straight lines, then 

the equation 2 22ax hxy by+ +  = 0 represents a pair of lines passing through the origin and 

parallel to the former pair of lines. 

15.If the equation 2 22 2 2 0S ax hxy by gx hy c≡ + + + + + =  represents a pair of parallel 

straight lines, then  

(i) 2h ab=  

(ii) 2 2af bg=  and 

(iii) The distance between the parallel lines = 
2 2

2 2
( ) ( )

g ac f bc

a a b b a b

− −
=

+ +
 

16. If the equation 2 22 2 2 0S ax hxy by gx fy c≡ + + + + + =  represents a pair of straight 

lines intersecting at the origin, then g = f = c = 0. 

17.If the equation 2 22 2 2 0S ax hxy by gx fy c≡ + + + + + =  represents a pair of 

intersecting straight lines, then their point of intersection is 
2 2

,
hf bg gh af

ab h ab h

− − 
 

− − 
 

18. Show that the product of the perpendicular distances from the origin to the pair of 

straight lines represented by 2 22 2 2 0ax hxy by gx fy c+ + + + + =  is 
2 2

| |

( ) 4

c

a b h− +
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ANSWERS 

Exercise 15 (a) 

1. (i) 1 1
tan

13

−  
 
 

  (ii) 
4

π
  (iii) 2α   (iv) 

2

π
 

2. . 

3. 
3 3

2
±  

4. . 

5. . 

6. 2 2 sec 2x xy α+  if 
4

π
α ≠  and 0xy =  if 

4

π
α =  

7. Proof 

8. 
6 4 11 9

(0,0), , , , , ( 1, 1);9 11 0
5 5 5 5

x y
   

− − − − − − − =   
   

 

9. (i) 
20 44 56

, ,
9 9 3

 
− 

 
  (ii) (0, 4),36−  

10. (i) 2 25 13 6 33 14 40 0x xy y x y− − − + + =  

(ii) 2 26 13 5 37 16 45 0x xy y x y− − − + + =  

11. 11 3 9 0x y− + =  

12. 3 9 0x y− − =  

Exercise 15 (b) 

1. 1 4
cos

65

−  
 
 

 

2. 
3 1

,
5 5

 
− − 
 

 

3. k = 4, 
5 1

,
8 8

 
− − 
 

 and 
1 1

cos
5

−  
 
 

 or k = -1, 
5 1

,
7 7

 
− 
 

 and 
1 4

cos
65

−  
 
 

 

4. 2 0, 1 0x y x y+ − = − + =  

5. . 

6. (i) 
2

5
     (ii) 

5

2
 

7. Proof 

8. 
143

25
 

9. 2 5,3  
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16 THREE DIMENSIONAL COORDINATES 

Introduction 

 Geometric shapes like spheres, cubes and cones do not exist in a single plane. 

These shapes require third dimension to describe their location in shape. To create this 

third dimension, a third axis is added to the co – ordinate system. Consequently, the 

location of each point in space is defined by three real numbers. Three dimensional 

geometry deals with geometry of solids like cone, sphere and also plane, lines using 

algebraic equations. The study of analytical geometry is important because of its major 

applications. 

 In this chapter we learn how to determine the position of a point in space and the 

distance between two points. We derive a formula to find the coordinates of a point 

dividing a line segment in a certain ratio. As an application of this, we determine the 

coordinates of the centriod of a triangle and tetrahedron. 

16.1 Coordinates: 

 Let ' ',X OX Y OY
������� ������

 be two mutually perpendicular straight lines passing through a 

fixed point ‘O’. These two lines determine the XOY – plane or briefly XY – plane. Draw 

the line 'Z OZ
������

 perpendicular to XY – plane and passing through O (this is unique). The 

fixed point O is called the origin and these three mutually perpendicular lines 

' ' ', ,X OX Y OY Z OZ
������� ������ ������

 are called Rectangular Coordinate axes. , ,OX OY OZ
���� ���� ����

are the positive 

directions of coordinate axes. In fig, the positive directions of these axes are represented 

by arrow – heads. 

     Z 

'X             Y 

 

                                                        o 

 

                             'Y       X 

'Z  

Fig.16.1 

The three coordinate axes are taken two at a time determine three planes namely, XOY – 

plane, YOZ – plane and ZOX – plane or briefly XY, YZ, ZX – planes respectively. These 

planes are mutually perpendicular and they are called Rectangular coordinate planes. The 
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triple coordinate axes ' ' ', ,X OX Y OY Z OZ
������� ������ ������

 are called the rectangular frame of reference 

and is written as OXYZ. 

 This frame of reference is said to be aright handed system if a right threaded 

screw advances in the direction of OZ
����

, when it is rotated from OX
����

 to OY
����

. Otherwise it 

is said to be a left handed system. 

 Given point P in space other than O, through P, we can exactly draw three planes 

parallel to the coordinate planes so that they meet the axes. ' ' ', ,X OX Y OY Z OZ
������� ������ ������

 in the 

points A, B, C respectively. Let x, y, z be real numbers such that 

| |, | |, | |OA x OB y OZ z= = =  and the signs of x, y, z are positive or negative according as 

A, B, C lie on the positive or negative according  as A, B, C lie on the positive or negative 

directions of the axes. Then the real numbers x, y, z taken in this order are called the 

coordinates of P with respect to OXYZ. We write the coordinates of P as the ordered triad 

(x, y, z ). The co – ordinates of the origin are (0, 0, 0). 

 Conversely, given an ordered triad of real numbers (x, y, z), we choose points A, 

B, C on the X, Y, Z – axes respectively so that | |, | |, | |OA x OB y OZ z= = = . The positions 

of A, B, C on the positive or negative side of the axes are determined according as x, y, z 

are positive or negative respectively. Through A, B, C draw planes parallel to YZ, ZX, 

XY planes respectively. These planes intersect at a unique point P in space. We observe 

that the coordinates of P are nothing but (x, y, z). 

 Thus, for every point P in space, we can associate an ordered triad (x, y, z) of real 

numbers formed by its coordinates and conversely, every ordered triad (x, y, z). So we 

often refer to the triad (x, y, z) as the point P itself. The set of all points in space is 

referred to as 3 – dimensional space or 3R  space. 

  If P (x, y, z) is a point in space 

  x is called the X – coordinate of P 

  y is called the Y – coordinate of P 

  z is called the Z – coordinate of P. 

16.1.1 Remark: 

 Given a point P (x, y, z) other than O in space, draw three planes PLCM, PLAN, 

PMBN parallel to XY, YZ, ZX planes respectively (fig). These three planes along with 

three coordinate planes constitute a rectangular parallelepiped. From the fig, we have 

 | |x OA CL BN MP= = = =  = perpendicular distance of P from YZ - plane . 

 | |x OB AN CM LP= = = =  = perpendicular distance of P from ZX – plane. 
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 | |z O BM AL NP= = = =  = perpendicular distance of P from XY – plane. 

Therefore the coordinates of P are (x, y, z), then its perpendicular distances from YZ, ZX, 

XY planes are | |, | |, | |x y z  respectively. 

16.1.2 Remark: 

 From fig, OA  is perpendicular to the plane PLAN. So it is perpendicular to every 

line on the plane and in particular to PA , that is OA PA⊥ . Similarly, 

&OB PB OC PC⊥ ⊥ . Thus if the coordinates of P are (x, y, z) then | |, | |, | |x y z  are the 

perpendicular distances from the origin of the feet of the perpendiculars A, B, C from P to 

X, Y, Z – axes respectively. 

Z                                          P 

 

'X                   Y 

       N 

       O 

                                                         'Y                'Z                                      X 

Figure 16.2 

16.1.3 Remark: 

 From the fig, | |, | |, | |NP AL OC z AN OB y OA x= = = = = = . Thus if P (x, y, z) is a 

given point in space, from P draw PN perpendicular to the XY – plane meeting it at N. 

Draw parallel to Y – axis meeting OX at A (see fig) 

 Then | |, | |, | |PN z NA y OA x= = =  

16.1.4 Note: 

1. If a point P (x, y, z) lies in the XY – plane then from Remark 5.1.1, | |z  = 

perpendicular distance of P from XY – plane = 0 i.e., z = 0. Therefore P is of the 

form (x, y, 0). 

Similarly, the coordinates of points in YZ and ZX planes may be taken as (0, y, z) 

and (x, 0, z) respectively. 

2. If P (x, y, z) lies on the X – axis, then its perpendicular distances from ZX and XY 

planes are zero. So from Remark 5.1.1, y = 0, z = 0. Thus any point on X – axis is 

of the form (x, 0, 0). 

Similarly points on Y and Z axes are of the form (0, y, 0), (0, 0, z) respectively. 
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16.1.5 Octants:  

 The three coordinate planes divide the space into eight parts called Octants. The 

octant formed by the edges , ,OX OY OZ
���� ���� ����

is called the first octant. We write it as OXYZ. 

The octant whose bounding edges are OX, ' ',OY OZ  is denoted by ' 'OXY Z . In a similar 

fashion the remaining six octants can be found. The following table shows the octants and 

the sigh of coordinates in each octant. 

Octant OXYZ  'OX YZ  ' 'OX Y Z  'OXY Z  ' 'OX YZ  'OXYZ  ' 'OXY Z  ' ' 'OX Y Z

 

x – coordinate + -  - + - + + - 

y – coordinate + + - - + + - - 

z- coordinate + + + + - - - - 

 

16.1.6 Distance between two points in space 

 First we find the distance between the origin and any point in space. Using this we 

find the distance between any two points in space. 

16.1.7 Theorem: 

 The distance between the origin ‘O’ and any point P (x, y, z) in space is 

2 2 2OP x y z= + + . 

Proof: We may assume P O≠ . Let the planes through P parallel to the coordinate planes 

intersect the X, Y, Z axes respectively at A, B and C (see fig) 

   Since PA OX⊥  

  In 2 2 2,OAP OP OA AP∆ = +  

  Since AP  is the diagonal of the rectangle PDAF, 2 2 2
AP AF FP= +  

  From rectangle OAFC, AF = OC 

  From rectangle PDAF and OBEC, FP = AD = OB 

  2 2 2 2 2 2 2 2 2OP OA AP OA AF FP OA OC OB= + + + + = + +  

Since the coordinate of P are (x, y, z), | |, | |, | |OA x OB y OC z= = =  

Therefore 2 2 2 2
OP x y z= + + . Hence 2 2 2OP x y z= + +  

16.1.8 Note:  Distance is a non negative number. The distance of the point ( )3,0, 1−  

from the origin is 3 0 1 2+ + = . 
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16.1.9 Translation of axes: 

 If we keep the direction of coordinate axes unchanged and shift the origin to some 

other point, the change is called translation of axes. The coordinates of the point in space 

change when the origin is shifted.                                                 'Z  

Z 

                  'Y  

 

                         Y                                                                                 
'

X  

       A (h, k, l) 

 

             O (0, 0, 0)          X 

 Let P (x, y, z) and A (h, k, l) be two points in space with respect to the frame of 

reference OXYZ. Now treating A as origin, let ' ' ', ,AX AY AZ
����� ����� �����

 be the new axes parallel to 

, ,OX OY OZ
���� ���� ����

 respectively (see fig) 

 If ' ' '( , , )x y z  are coordinates of P with respect to ' ' '
AX Y Z , then 

' ' ', ,x x h y y k z z l= − = − = −  respectively, with reference to OXYZ frame. Shifting the 

origin to P, the new coordinates of Q are (1 1,0 2, 1 3) (0, 2, 2)− − − + = −  

16.1.10 Theorem (Distance formula): 

 Distance between the points 1 1 1 2 2 2( , , ) & ( , , )P x y z Q x y z  is 

2 2 2

2 1 2 1 2 1( ) ( ) ( )x x y y z z− + − + − . 

Proof: Shifting the origin to P, the new coordinates of Q are 2 1 2 1 2 1( , , )x x y y z z− − −  

Using 5.1.7, Distance between P and Q = PQ 

  = Distance of Q from the new origin P 

  = 2 2 2

2 1 2 1 2 1( ) ( ) ( )x x y y z z− + − + − . 

Using the above formula, the distance between the points (1, -1, 1) and (3, -3, 2) is 

2 2 2(3 1) ( 3 1) (2 1) 4 4 1 3PQ = − + − + + − = + + = . 
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16.1.11 Note: 

1. Clearly QP = PQ 

2. The foot of the perpendicular from P (x, y, z) to X – axis is A (x, 0, 0). Using 5.1.10 

perpendicular distance of P from X – axis is 

2 2 2 2 2( ) ( 0) ( 0)PA x x y z y z= − + − + − = +  

Similarly perpendicular distances of P from X – axis are 2 2 2 2&x z x y+ +  

respectively. 

16.1.12 Solved problems: 

1. Show that the points ( 4,9,6), ( 1,6,6) & (0,7,10)A B C− −  form a right angled isosceles 

triangle.               

Solution: Using distance formula  

2 2 2( 1 4) (6 9) (6 6) 9 9 3 2AB = − + + − + − = + =

2 2 2(0 1) (7 6) (10 6) 1 1 16 3 2BC = + + − + − = + + =

2 2 2(0 4) (7 9) (10 6) 16 4 16 6AC = + + − + − = + + =  

  3 2AB BC= =  

Therefore the triangle is isosceles.                                                                                        

Also 2 2 218 18 36AB BC AC+ = + = = . Therefore 90B = � . 

Therefore the triangle ABC is right angled isosceles triangle. 

2. Show that locus of the point whose distance from Y – axis is thrice its distance from (1, 

2 , -1) is 2 2 28 9 8 18 36 18 54 0x y z x y z+ + − − + + = . 

Solution: Let P (x, y, z) be any point on locus. 

Distance of P from Y – axis = 2 2x z+ . 

Distance of P from (1, 2, -1) = 2 2 2( 1) ( 2) ( 1)x y z− + − + +  

Given that, 2 2x z+ =3 2 2 2( 1) ( 2) ( 1)x y z− + − + +

2 2 2 2 29( 2 4 2 6)x z x x y y z z⇒ + = − + − + + + ⇒ 2 2 28 9 8 18 36 18 54 0x y z x y z+ + − − + + =  

which is the required equation. 
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3. A, B, C are three points on , ,OX OY OZ
���� ���� ����

 respectively at distances a, b, c (

0, 0, 0a b c≠ ≠ ≠ ) from the origin ‘O’. Find the coordinates of the point which is 

equidistant from A, B, C and O. 

Solution: Let P (x, y, z) be the required point. The coordinates of A, B, C and O are (a, 0, 

0), (0, b, 0), (0, 0, c) and (0, 0, 0) respectively. 

 Given that PA = PB = PC = PO 

  PA = PO 2 2 2 2 2 2 2 2( )PA PO x a y z x y z⇒ = ⇒ − + + = + +  

  2 2 0 ( 0)
2

a
a ax x a⇒ − = ⇒ = ≠∵  

Similarly we get ,
2 2

b c
y z= =  

Therefore P = , ,
2 2 2

a b c 
 
 

 is the point equidistant from A, B, C and O. 

4. Show that the points A (3, -2, 4), B (1, 1, 1) and C (-1, 4, -2) are collinear. (points 

are said to be collinear if they lie on the same line. See definition 5.2.1) 

Solution: By the distance formula 

  2 2 2(1 3) (1 2) (1 4) 4 9 9 22AB = − + + + − = + + =  

  2 2 2( 1 1) (4 1) ( 2 1) 4 9 9 22BC = − − + − + − − = + + =  

  2 2 2( 1 3) (4 1) ( 2 4) 16 36 36 88AC = − − + + + − − = + + =  

Now 2 22 88AB BC AC+ = = =  

Therefore A, B, C are collinear. 

Exercise 16 (a) 

1. Find the distance of P (3, -2, 4) from the origin. 

2. Find the distance between the points (3, 4, -2) and (1, 0, 7). 

3. Find ‘x’ if the distance between (5, -1, 7) and (x, 5, 1) is 9 units. 

4. Show that the points (2, 3, 5), (-1, 5, -1) and (4, -3, 2) form a right angled 

isosceles triangle. 

5. Show that the points (1, 2, 3), (2, 3, 1) and (3, 1, 2) form an equilateral triangle. 

6. P is a variable point which moves such that 3PA = 2PB. If A = (-2, 2, 3) and B = 

(13, -3, 13), prove that P satisfies the equation 
2 2 2 28 12 10 247 0x y z x y z+ + + − + − =  



 

423 

 

7. Show that the points (1, 2, 3), (7, 0, 1) and (-2, 3, 4) are collinear. 

8. Show that ABCD is a square where A, B, C, D are the points (0, 4, 1), (2, 3, -1), 

(4, 5, 0) and (2, 6, 2) respectively. 

16.2 Section Formula 

 Section formula gives the coordinates of a point that divides the line segment 

joining two given points in a given ratio. Using this we derive the coordinates of the 

centriod of a triangle and tetrahedron. 

16.2.1 Definition: 

 If three or more points lie on the same line, they are said to be collinear points. 

16.2.2 Division of a line segment in space: 

 Suppose A, B, P are three collinear points in space. 

If P lies on the segment AB, we say P divides AB  in the ratio AP : PB or P divides AB  

internally in the ratio AP : PB (see fig). 

 

                         A                                                 P                                            B 

 If P lies on the line AB
����

 and outside the segment AB , we say that P divides AB  

in the ratio - AP : PB (or AP : - PB) or P divides AB  externally in the ratio AP : PB. 

 

 

   A                              B           P    P       A  

 B 

16.2.3 Theorem (Section formula): 

 The point dividing the line segment joining the distinct points 

1 1 1 2 2 2( , , ) & ( , , )A x y z B x y z  in the ratio m : n (m + n not equal to 0) is given by  

   2 1 2 1 2 1, ,
mx nx my ny mz nz

m n m n m n

+ + + 
 

+ + + 
 

Proof: Suppose P (x, y, z) divides AB  in the ratio m : n. Draw planes through A, P, B 

parallel to the YZ – plane so as to meet OX
����

 in ' ' ', ,A P B . Then ' ' ', ,A P B  are the feet of 

the perpendiculars of A, P, B on the X – axis (see fig). 

Therefore ' ' '

1 2( ,0,0), ( ,0,0), ( ,0,0)A x P x B x= = =  
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Since parallel planes divide any two straight lines proportionally 
' '

' '

A P AP m

nPBP B
= =  

 1

2

x xm

n x x

−
⇒ =

−
 and so, 2 1mx nx

x
m n

+
=

+
 

Similarly, 2 1 2 1,
my ny mz nz

y z
m n m n

+ +
= =

+ +
 

Therefore the coordinates of P are 2 1 2 1 2 1, ,
mx nx my ny mz nz

m n m n m n

+ + + 
 

+ + + 
. 

16.2.4 Corollary: 

 The midpoint of the segment AB where 
1 1 1 2 2 2( , , ) & ( , , )A x y z B x y z= =  is 

1 2 1 2 1 2, ,
2 2 2

x x y y z z+ + + 
 
 

. 

Proof: Since the midpoint divides the line segment AB in the ratio 1 : 1 taking m = n =1 

in theorem 5.2.3, we get 1 2 1 2 1 2, ,
2 2 2

x x y y z z+ + + 
 
 

 . 

16.2.5 Note: 

1. If 1k ≠ −  from 5.2.3, the point which divides AB  in the ratio k : 1 is  

  2 1 2 1 2 1, ,
1 1 1

kx x ky y kz z

k k k

+ + + 
 

+ + + 
 

2. Further 
1 1 1 2 2 2( , , ), ( , , )A x y z B x y z= =  and C are collinear iff there exist m, n, m n≠ −  

such that 2 1 2 1 2 1, ,
mx nx my ny mz nz

C
m n m n m n

+ + + 
=  

+ + + 
 

16.2.6 Example: 

 By section formula, the point which divides the line joining the points A (2, -3, 1) 

and B (3, 4, -5) in the ratio 1 : 3 is 
1 3 3 2 1 4 3 3 1 5 3 1 9 5 1

, , , ,
1 3 1 3 1 3 4 4 2

× + × × + × − × − + × − −   
=   

+ + +   
 

16.2.7 Example: 

 We can use section formula to find the ratio in which the line joining two points is 

divided by a given point on it. 

 Consider the points A (7, 0, -1), B (1, 2, 3) and C (-2, 3, 5). Suppose B divides 

AC  in the ratio k : 1. 
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 Then, by note 5.2.5,  

  
2 1 7 3 1 0 5 1 1 7 2 3 5 1

, , , ,
1 1 1 1 1 1

k k k k k k
B

k k k k k k

× − + × × + × × + × − − −   
= =   

+ + + + + +   
 

 But. B = (1, 2, 3) 

Therefore equating the corresponding coordinates, 
7 2 3 5 1

1, 1, 3
1 1 1

k k k

k k k

− −
= = =

+ + +
 

Solving for k, we get k = 2. 

Therefore B divides AC  in the ratio 2 : 1. 

Note that B divides AC  internally since the ratio is positive. 

16.2.8 Example: Using section formula, we can verify whether the given points are 

collinear or not. Consider the points A (2, -4, 3), B (-4, 5, 6), C(4, -7, 2). 

 A, B, C are collinear iff C divides AB  in some ratio say m : n. Then, the 

coordinates of C, according to section formula are 
4 2 5 4 6 3

, ,
m n m n m n

m n m n m n

− + − + 
 

+ + + 
 

But C = (4, -7, 2) 

Equating the corresponding coordinates we have 

4 2 5 4 6 3
4, 7, 2

m n m n m n

m n m n m n

− + − +
= = − =

+ + +
 

From the above three relations we get a unique value 
1

4

m

n
= − . 

So, we conclude that ‘C’ divides AB externally in the ratio 1 : 4. 

Therefore A, B, C are collinear. 

16.2.9 Example: Let A, B, C be the points (5, 4, 6), (1, -1, 3) and (4, 3, 2) respectively. If 

these points are collinear, C must divide AB  in some ratio say m : n. Then coordinates of 

C are 
5 4 3 6

, ,
m n m n m n

m n m n m n

+ − + + 
 

+ + + 
. Since C is (4, 3, 2) equating the corresponding 

coordinates,  

We get 
5 4 3 6

4, 3, 2
m n m n m n

m n m n m n

+ − + +
= = =

+ + +
 

These relations respectively give 
1 1 4

, ,
3 4 1

m

n

−
= . 



 

We can see that there are no values of m and n that satisfy all the three equations 

simultaneously. So, we conclude that A, B, C are not collinear.

16.2.10 Definition: 

 Three or more straight lines passing through a single point P are called concurrent 

lines and the point P is called the point of concurrence.

 We know that in a triangle, 

concurrence is called its centriod. The centriod of a triangle trisects each median.

16.2.11 Theorem: The centriod of a triangle whose vertices are 

1 1 1 2 2 2 3 3 3
( , , ), ( , , ). ( , , )A x y z B x y z C x y z

Proof: Let D, E, F are midpoints of the sides 

, ,AD BE CF  are medians of 

 

Since D is the midpoint of 

centriod G divides AD  in the ratio 2 : 1.

2 3 2 3 2 3
1 1 1

2 2 2
2 2 2

, , , ,
1 2 1 2 1 2 3 3 3

x x y y z z
x y z

G

 + + +     
+ + +      

      ∴ = =
+ + + 

 
 

 

16.2.12 Example: The centriod of the triangle whose vertices are (5, 4, 6), (1, 

(4, 3, 2)  is 
5 1 4 4 1 3 6 3 2 10 11

, , , 2,
3 3 3 3 3

+ + − + + +   
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We can see that there are no values of m and n that satisfy all the three equations 

simultaneously. So, we conclude that A, B, C are not collinear. 

Three or more straight lines passing through a single point P are called concurrent 

lines and the point P is called the point of concurrence. 

We know that in a triangle, the medians are concurrent and the point of 

concurrence is called its centriod. The centriod of a triangle trisects each median.

The centriod of a triangle whose vertices are 

1 1 1 2 2 2 3 3 3
( , , ), ( , , ). ( , , )A x y z B x y z C x y z  is 1 2 3 1 2 3 1 2 3, ,

3 3 3

x x x y y y z z z+ + + + + + 
 
 

Let D, E, F are midpoints of the sides , ,BC AC AB  respectively. Then 

are medians of ABC∆  (See fig). 

 

Since D is the midpoint of BC , 2 3 2 3 2 3, ,
2 2 2

x x y y z z
D

+ + + 
=  
 

 by corollary 5.2.4.T

in the ratio 2 : 1. 

2 3 2 3 2 3
1 1 1

1 2 3 1 2 3 1 2 3

2 2 2
2 2 2

, , , ,
1 2 1 2 1 2 3 3 3

x x y y z z
x y z

x x x y y y z z z

+ + +      
+ + +       + + + + + +       ∴ = =  

+ + +   
 
 

The centriod of the triangle whose vertices are (5, 4, 6), (1, 

5 1 4 4 1 3 6 3 2 10 11
, , , 2,

3 3 3 3 3

+ + − + + +   
=   

   
. 

We can see that there are no values of m and n that satisfy all the three equations 

Three or more straight lines passing through a single point P are called concurrent 

the medians are concurrent and the point of 

concurrence is called its centriod. The centriod of a triangle trisects each median. 

The centriod of a triangle whose vertices are 

1 2 3 1 2 3 1 2 3x x x y y y z z z 
 
 

. 

respectively. Then 

by corollary 5.2.4.The 

1 2 3 1 2 3 1 2 3, , , ,
1 2 1 2 1 2 3 3 3

x x x y y y z z z+ + + + + + 
 
 

The centriod of the triangle whose vertices are (5, 4, 6), (1, -1, 3) and 
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16.2.13 Tetrahedron 

 A tetrahedron is a closed figure formed by four planes not all passing through the 

same point. It has four vertices and six edges. Each vertex is obtained as the point of 

intersection o three planes. Each edge arises as the line of intersection of two of the four 

planes. If all edges of a tetrahedron are equal in length, it is called a regular tetrahedron. 

                                   A 

 

                                                                    C 

 

                 B 

                                                   D 

 In the fig, A, B, C are three points and D is a point not lying in the plane of A, B, 

C, D. Now ABCD is a tetrahedron with vertices A, B, C, D. , , , , ,AB AD AC BC BD CD  are 

its edges and , , &ABC BCD ACD ABD∆ ∆ ∆ ∆  are its faces. , ; , ; ,AB CD BC AD CA DB  are 

called three pairs of opposite edges. 

 It is known that the line segments joining the vertices to the centriod of opposite 

faces are concurrent. The point of concurrence is called the centriod of the tetrahedron. It 

divides each line segment in the ratio 3 : 1. 

16.2.14 Theorem: The centriod of the tetrahedron whose vertices are   

1 1 1 2 2 2 3 3 3 4 4 4( , , ), ( , , ), ( , , ), ( , , )A x y z B x y z C x y z D x y z  is  

  1 2 3 4 1 2 3 4 1 2 3 4, ,
4 4 4

x x x x y y y y z z z z+ + + + + + + + + 
 
 

. 

Proof: Let S be the centroid of the ABCD∆ .Then by theorem 16.2.11 

   2 3 4 2 3 4 2 3 4, ,
3 3 3

x x x y y y z z z
S

+ + + + + + 
=  
 

. 

Let G be the centriod of the tetrahedron ABCD. Then G divides AS  in the ratio 3 : 1. 

2 3 4 2 3 4 2 3 4
1 1 1

3( ) 3( ) 3( )
1. 1. 1.

3 3 3, ,
3 1 3 1 3 1

x x x y y y z z z
x y z

G

+ + + + + + 
+ + + 

∴ =  
+ + + 
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 = 1 2 3 4 1 2 3 4 1 2 3 4, ,
4 4 4

x x x x y y y y z z z z+ + + + + + + + + 
 
 

. 

16.2.15 Example: The centriod of the tetrahedron whose vertices are (2, 3, -4), (-3, 3, -2), 

(-1, 4, 2), (3, 5, 1) is
2 3 1 3 3 3 4 5 4 2 2 1 1 15 3

, , , ,
4 4 4 4 4 4

− − + + + + − − + + −   
=   

   
. 

16.2.16 Vector Method 

 The study o analytical geometry is so far confined to Cartesian methods only. 

Though this gives a clear geometric and analytical picture of the situation, vector 

approach to 3D – geometry makes the study simpler and more elegant. Since the students 

are familiar with vector algebra, vector methods are suggested for derivation of some 

formulae. According to convenience, either the classical method or the vector method 

may be used to solve the problems. 

 We know that if , ,i j k  are mutually orthogonal unit vectors along , ,OX OY OZ  in 

a right handed co-ordinate system, the position vector of a point ( , , )P x y z  in space with 

reference to the origin ‘O’ is given by OP xi yj zk= + + . 

 Conversely, for every vector xi yj zk+ + , there is a unique point ( , , )P x y z in space 

whose position vector is xi yj zk+ + . Thus there is a one – one correspondence between 

the set of points 3R  and the set of position vectors. We identify the point (x, y, z) with its 

position vector xi yj zk+ + . 

Now it follows that, Distance of ( , , )P x y z  from the O (0, 0, 0) is | |OP OP=  = magnitude 

of 2 2 2| |OP xi yj zk x y z= + + = + + . 

Distance between the points 1 1 1 2 2 2( , , ) & ( , , )A x y z B x y z  is | |AB AB=  = magnitude of 

| |AB OB OA= − = 2 1 2 1 2 1| ( ) ( ) ( ) |x x i y y j z z k− + − + − =
2 2 2

2 1 2 1 2 1( ) ( ) ( )x x y y z z− + − + −  

Section Formula: Suppose P (x, y, z) divides AB  in the ratio m : n where 

1 1 1 2 2 2( , , ) & ( , , )A x y z B x y z  are given points. Then A, P, B are collinear and 
AP m

PB n
=  

Therefore nAP mPB=  

n m⇒ =AP PB [ ] [ ]1 1 1 2 2 2
( ) ( ) ( ) ( ) ( ) ( )n x x i y y j z z k m x x i y y j z z k⇒ − + − + − = − + − + −  

1 2 1 2 1 2( ) ( ), ( ) ( ), ( ) ( )n x x m x x n y y m y y n z z m z z⇒ − = − − = − − = −  

2 1 2 1 2 1, ,
mx nx my ny mz nz

x y z
m n m n m n

+ + +
⇒ = = =

+ + +
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2 1 2 1 2 1, ,
mx nx my ny mz nz

P
m n m n m n

+ + + 
⇒ =  

+ + + 
 

16.3 Solved problems: 

1. Find the ratio in which YZ – plane divides the line joining A (2, 4, 5) and             

B (3, 5, -4). Also find the point of intersection. 

Solution: Suppose the line segment AB  meets YZ – plane in P. Then A, P, B are 

collinear. If P divides AB in the ratio k : 1, then  

  
3 2 5 4 4 5

, ,
1 1 1

k k k
P

k k k

+ + − + 
=  

+ + + 
 

Since P lies on the YZ – plane its X – coordinate is zero. 

Therefore 
3 2 2

0
1 3

k
k

k

+ −
= ⇒ =

+
 

Thus YZ – plane divides AB in the ratio 
2

:1
3

−
 i.e.., in the ratio 2 :3−  

Substituting the value of k, the point of intersection P = (0, 2, 23). 

2. Show that the points A (3, -2, 4), B (1, 1, 1) and C (-1, 4, -2) are collinear. 

Solution: Suppose the point P divides AB  in the ratio k : 1, then 

  
3 2 4

, ,
1 1 1

k k k
P

k k k

+ − + 
=  

+ + + 
     (1) 

If C lies on AB , then for some value of ‘k’, the coordinate of P must be same as those of 

C. 

Equating the X – coordinates of P and C, 
3

1 2
1

k
k

k

+
= − ⇒ = −

+
. 

Substituting k = -2 in (1), we get P = (-1, 4, -2) = C. 

Therefore A, B, C are collinear. 

3. Find the fourth vertex of the parallelogram whose consecutive are (2, 4, -1), (3, 6, 

-1) and (4, 5, 1). 

Solution: Let ABCD be the parallelogram where A = (2, 4, -1), B = (3, 6, -1),                  

C = (4, 5, 1) and D = (a, b, c). 

 Then the midpoint of AC = midpoint of BD (see fig) 



 

430 

 

  
2 4 4 5 1 1 3 6 1

, , , ,
2 2 2 2 2 2

a b c+ + − + + + − +   
⇒ =   

   
 

  
3 6 9 1

3, , 0
2 2 2 2

a b c+ + − +
⇒ = = =  

  3, 3, 1a b c⇒ = = =  

Therefore fourth vertex D = (3, 3, 1). 

4. (5, 4,6), (1, 1,3), (4,3, 2)A B C−  are three points. Find the coordinates of the point in 

which the bisector of BAC  meets the side BC . 

Solution: We know that the bisector of BAC divides BC  in the ratio AB : AC (see fig) 

 2 2 2(5 1) (4 1) (6 3) 5 2AB = − + + + − =  

 2 2 2(5 4) (4 3) (6 2) 3 2Ac = − + − + − =  

AB : AC = 5 : 3. 

If D is the point where the bisector of BAC  meets BC then D divides BC in the ratio      

5 : 3. 

5 4 3 1 5 3 3 1 5 2 3 3 23 3 19
, , , ,

5 3 5 3 5 3 8 2 8
D

× + × × + × − × + ×   
∴ = =   

+ + +   
 

5. If ( , , )M α β γ is the midpoint of the line segment joining the points A 1 1 1( , , )x y z

and B, then find B. 

Solution: Let ( , , )B h k s  be the point required. 

It is given that M is the midpoint of AB. 

Therefore we have 1 1 1( , , ) , ,
2 2 2

x h y k z s
α β γ

+ + + 
=  
 

 

  1 1 12 ;2 ;2x h y k z sα β γ⇒ = + = + = +  

  1 1 12 ; 2 ; 2h x k y s zα β γ⇒ = − = − = −  

Therefore point B is 1 1 1(2 , 2 , 2 )x y zα β γ− − − . 

6. If H, G, S and I respectively denote orthocentre, centriod, circumcentre and 

incentre of a triangle formed by the points (1, 2, 3), (2, 3, 1) and (3, 1, 2), then 

find H, G, S, I. 
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Solution:  2 2 2(2 1) (3 2) (1 3) 1 1 4 6AB = − + − + − = + + =  

  2 2 2(3 2) (1 3) (2 1) 1 4 1 6BC = − + − + − = + + =  

  2 2 2(1 3) (2 1) (3 2) 4 1 1 6CA = − + − + − = + + =  

Since AB = BC = CA, ABC is an equilateral triangle. 

We know that orthocentre, centriod, circumcentre and incentre of an equilateral triangle 

are the same (i.e.., all the four points coincide). 

 Now, centroid 
1 2 3 2 3 1 3 1 2

, , (2,2,2)
3 3 3

G
+ + + + + + 

= = 
 

 

Therefore H = (2, 2, 2), S = (2, 2, 2) and I = (2, 2, 2). 

7. Find the incentre of the triangle formed by the points (0, 0, 0), (3, 0, 0) and (0, 4, 

0). 

Solution:  

If a, b, c are the sides of the triangle ABC, where

1 1 1 2 2 2 3 3 3( , , ), ( , , ), ( , , )A x y z B x y z C x y z= = =  are the vertices, then the incentre of the 

triangle is given by  

  1 2 3 1 2 3 1 2 3, ,
ax bx cx ay by cy az bz cz

I
a b c a b c a b c

+ + + + + + 
=  

+ + + + + + 
 

Here A = (0, 0, 0), B = (3, 0, 0) and C = (0, 4, 0). 

  9 16 0 5a BC= = + + =  

  0 16 0 4b CA= = + + =  

  9 0 0 3c AB= = + + =  

Therefore 
5(0) 4(3) 3(0) 5(0) 4(0) 3(4) 5(0) 4(0) 3(0)

, , (1,1,0)
5 4 3 5 4 3 5 4 3

I
+ + + + + + 

= = 
+ + + + + + 

 

8. If the point (1, 2, 3) is changed to the point (2, 3, 1) through translation of axes, 

find the new origin. 

Solution: Let (x, y, z) be the coordinates of any point P, w.r.t the coordinate frame oxyz 

and (X, Y, Z) be the coordinates of P w.r.t the new frame of reference 'O XYZ . 

 Let '( , , )O h k s  be the new origin so that , ,x X h y Y k z Z s= + = + = +  
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  ( , , ) ( , , )h k s x X y Y z Z⇒ = − − −  

  ( , , ) (1 2, 2 3,3 1) ( 1, 1,2)h k s⇒ = − − − = − −  

Therefore ' ( 1, 1, 2)O = − −  is the new origin. 

9. Find the ratio in which the point P (5, 4, -6) divides the line segment joining the 

points A (3, 2, -4) and B (9, 8, -10). Also find the harmonic conjugate of P. 

Solution: Let P divide the line segment AB in the ratio :l m . 

Therefore we have 
9 3 8 2 10 4

(5,4, 6) , ,
l m l m l m

l m l m l m

+ + − − 
− =  

+ + + 
 

 : 1: 2l m⇒ =  or 2l m= . 

Now let Q divide AB in the ratio :l m−  

Then 
9 3 8 2 10 4 9 6 8 4 10 8

, , , , ( 3, 4, 2)
2 2 2

l m l m l m l l l l l l
Q

l m l m l m l l l l l l

− − − + − − − +   
= = = − −   

− − − − − −   
 

Therefore Q (-3, -4, 2) is the harmonic conjugate of P (5, 4, -6). 

Exercise 16 (b) 

1. Find the ratio in which XZ – plane divides the line joining A (-2, 3, 4) and B (1, 2, 

3). 

2. Find the coordinates of the vertex ‘C’ of triangle ABC if its centriod is the origin 

and the vertices A, B are (1, 1, 1) and (-2, 4, 1) respectively. 

3. If (3, 2, -1), (4, 1, 1) and (6, 2, 5) are three vertices and (4, 2, 2) is the centriod of a 

tetrahedron, find the fourth vertex. 

4. Find the distance between the midpoint of the line segment AB and the point (3, -

1, 2) where A = (6, 3, -4) and B= (-2, -1, 2). 

5. Show that the points (5, 4, 2), (6, 2, -1) and (8, -2, -7) are collinear. 

6. Show that the points A (3, 2, -4), B (5, 4, -6) and C (9, 8, -10) are collinear and 

find the ratio in which B divides the line segment AC. 

7. If A (4, 8, 12), B (2, 4, 6), C (3, 5, 4) and D (5, 8, 5) are four points, show that the 

lines &AB CD
���� ����

 intersect. 

8. Find the point of intersection of the lines &AB CD
���� ����

 where A = (7, -6, 1), B (17, -

18, -3), C (1, 4, -5) and D = (3, -4, 11). 

9. A (3, 2, 0), B (5, 3, 2), C (-9, 6, -3) are the vertices of a triangle. AD , the bisector 

of BAC  meets the line segment BC at D. Find the coordinates of D. 

10. Show that the points O (0, 0, 0), A (2, -3, 3), B (-2, 3, -3) are collinear. Find the 

ratio in which each point divides the segment joining the other two. 
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Key Concepts 

� Distance of ( , , )P x y z  from the origin = 2 2 2
x y z+ + . 

� The distance of the point ( , , )P x y z  from the x, y, z axes are respectively 

2 2 2 2 2 2, ,y z z x x y+ + +  

� Distance between the points 1 1 1 2 2 2( , , ) & ( , , )x y z x y z  is 

2 2 2

2 1 2 1 2 1( ) ( ) ( )x x y y z z− + − + −  

� The point dividing the segment AB where 1 1 1 2 2 2( , , ), ( , , )A x y z B x y z= =  in the 

ratio :m n  is 2 1 2 1 2 1, ,
mx nx my ny mz nz

m n m n m n

+ + + 
 

+ + + 
 

� Point dividing the line segment AB in k : 1 is 2 1 2 1 2 1, ,
1 1 1

kx x ky y kz z

k k k

+ + + 
 

+ + + 
. 

� Mid point of AB  is 1 2 1 2 1 2, ,
2 2 2

x x y y z z+ + + 
 
 

 

� Centriod of a triangle with vertices ( , , ), 1, 2,3i i ix y z i =  is 

1 2 3 1 2 3 1 2 3, ,
3 3 3

x x x y y y z z z+ + + + + + 
 
 

 

� Centriod of a tetrahedron with vertices ( , , ), 1, 2,3i i ix y z i = ,4 is 

1 2 3 4 1 2 3 4 1 2 3 4, ,
4 4 4

x x x x y y y y z z z z+ + + + + + + + + 
 
 

. 

ANSWERS  

Exercise 16 (a) 

1. 29  

2. 101  

3. 8, 2 

Exercise 16 (b) 

1. -3 :2      6. 1 : 2 

2. (1, -5, -2)     8. (2, 0, 3) 

3. (3, 3, 3)     9. 
38 57 17

, ,
16 16 16

 
 
 

 

4. 14       10. 
1 2

, , 1
2 1

OA AB OB

AB BO OA

− −
= = =  
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17. Direction Cosines and Direction Ratios 
 
 

Introduction 

 Any two lines lying on the same plane are either parallel or intersecting. When 

two non-parallel lines on a plane meet at a point , an angle is formed and we know how to 

measure that angle. Sometimes we come across lines in space in space which are neither 

parallel nor intersecting. For example, the diagonal of the rectangle formed by the floor 

and the opposite diagonal of the rectangle formed by the roof of a room are two such 

lines, called skew lines. Measuring angle between such lines is very important. 

 In Analytical geometry of two dimensions the orientation of a line is given by 

slope. Whereas 3-dimensional geometry it is measured in terms of direction cosines. In 

this chapter we learn about the direction cosines and direction ratios of a line and use 

them to derive a formula to find the angle between lines. 

17.1 Definition of Direction Cosines – Simple Problems 

 Consider a ray OA
����

passing through O and making angles , ,α β γ  respectively with 

, ,OX OY OZ
���� ���� ����

(i.e.., positive directions of X,Y,Z axes).The numbers cos ,cos ,cosα β γ  are 

the direction cosines of a ray OA
����

.Usually they are denoted by (l,m,n) where 

cos , cos , cosl m nα β γ= = = (fig 17.1) 

 By reversing the direction, we observe that the ray AO
����

 makes angles 

, ,α β γ∏ − ∏ − ∏ −  respectively with positive directions of X, Y, Z axes. 

 So cos( ) cos ,cos( ) cos ,cos( ) cosl m nα α β β λ γ∏ − = − = − ∏ − = − = − ∏ − = − = −  

are d.c’s of AO
����

If L is a directed line in space, we draw a line parallel to L passing 

through origin so that the direction of the line is same as that of L. The direction cosines 

of L are defines as the direction cosines of this line through ‘O’. 

17.1.1 Note: 

1. Since a line in space has two directions, it has two sets of direction cosines, one for 

each direction. If (l, m, n) is one set of d.c’s then (-l, -m, -n) is the other set. So it is 

enough to mention any one set of d.c’s of a line. 

2. It is clear from the definition and note (1) that if(l,m,n) are the d.c’s of a line the d.c’s 

of its parallel line L are ± (l,m,n). 

17.1.2 Example: Since OX
����

 males angles 0 ,90 ,90� � with , ,OX OY OZ
���� ���� ����

 respectively, 

cos0,cos90 ,cos90� �  i.e.., (1, 0, 0) are the  of X-axes. Similarly d.c’s of Y, Z axes are (0, 

1, 0),(0, 0, 1) respectively. 
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17.1.3 Theorem: 

Suppose P(x, y, z) is any point in space such that OP=r. 

 If (l, m, n) are d.c’s of OP
����

then x=le, y=mr, z=nr. 

 From P draw PA
����

perpendicular to the X-axis. Let A be the foot of the 

perpendicular. Suppose OP
����

 makes angles , ,α β γ  with the positive directions of X, Y, Z 

axes respectively. 

In fig 17.2, OAP∆ is right angled. 

                              Y                            Z
1 

                                                          r                              P 

     X
1                       

O
                                                                                                                           

X                                                                                        

                              Y
1 

        Z 

Since A is the foot of the perpendicular from P to X-axes, A=(x, 0, 0). 

If x>0 A is on the positive side of X-axes. 

OA x∴ =  

cos
OA x

OP r
α = =  

If x<0,A is on the negative side of X-axes OA x∴ = −  

     cos( ) cos
OA x x

OP r r
α α

−
∴ ∏ − = = ⇒ =  

Similarly by dropping perpendiculars to Y and Z axes respectively we get y=mr, z=nr. 

17.1.4 Note: If OP=r and d.c’s of OP
����

 are (l,m,n) then the coordinates of P are                    

(lr, mr ,nr) 

17.1.5 Example: Suppose P is a point in the space such that 3OP =  and OP
����

 makes 

angles , ,
3 4 3

∏ ∏ ∏
 with , , ,OX OY OZ

���������������

respectively. 

Then d.c’s of OP
����

 are: 
1 1 1

cos ,cos ,cos . .., , ,
3 4 3 2 22

i e
∏ ∏ ∏  
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By 17.1.4 coordinates of P are
3 3 3

, ,
2 22

 
  
 

. 

17.1.6 Corollary:  If P(x, y, z) is appoint in the space then the d.c’s of OP
����

 are

2 2 2 2 2 2 2 2 2
, ,

x y z

x y z x y z x y z

 
 
 + + + + + + 

 

Proof: If P=(x, y, z) the OP=r= 2 2 2
x y z+ +  

By 17.1.3 d.c’s  of OP are , , ,
x y z

r r r

 
 
 

 

i.e..,
2 2 2 2 2 2 2 2 2

, ,
x y z

x y z x y z x y z

 
 
 + + + + + + 

 

17.1.7 Example: 

Consider the point P(2,3,-1).By 17.1.6 direction cosines of OP
����

are 
2 3 1

, , ,
14 14 14

− 
 
 

 

17.1.8 Corollary: If (l, m, n) are the direction cosines of a line L, then 2 2 2 1l m n+ + =  

Proof:  Draw a line parallel to the given line and passing through ‘O’. Let    P(x, y, z) be 

appoint on the line each that OP=r. Then 2 2 2
r x y z= + + . 

By theorem 17.1.3  

, ,x lr y mr z nr= ± = ± = ± Where the sign should be taken positive or negative throughout, 

by note 17.1.1 

Now 2 2 2 2 2 2 2 2 2 2 2( ) 1r x y z l m n r l m n= + + = + + ⇒ + + =  

17.1.9 Example: We cannot have a line direction cosines are 
1 1 1

, ,
3 2 2

 
 
 

 because 

2 2 2
1 1 1 4

1
33 2 2

     
+ + = ≠    
    

 

17.1.10 Theorem: 

 The direction cosines of the directed line PQ
����

 joining the points 
1 1 1( )P x y z+ + and 

2 2 2( )Q x y z+ +  are 2 1 2 1 2 1

2 2 2

2 1 2 1 2 1

, ,
( ) ( ) ( )

x x y y z z

x x x x x x

 − − −
 
 ∑ − ∑ − ∑ − 

. 
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17.1.11 Solved problems: 

1. Problem: If P(2,3,-6),Q(3,-4,5) are two points, find the d.c’s of , ,OP QO PQ
���� ���� ����

 where O 

is the origin 

Solution:   4 9 36 7; 9 16 25 5 2OP QO= + + = = + + =

1 49 121 171PQ = + + =  

∴d.c’s of OP
����

 are     :  
2 3 6

, ,
7 7 7

− 
 
 

d.c’s of QO
����

are    : 
0 3 0 ( 4) 0 5 3 4 1

, , , , ,
5 2 5 2 5 2 5 2 5 2 5 2

− − − − −   
=   

   

d.c’s of PQ
����

 are : 
3 2 4 3 5 6 1 7 11

, , , ,
171 171 171 171 171 171

− − − + −   
=   

   
 

2. Problem:  Find the d.c’s of a line that makes equal angles with the axes

Solution: Suppose the line makes an angle α  with OX
����

.since it makes equal angles with 

the axes, its d.c’s are ( )cos ,cos ,cosα α α

But 

2 2 2

2 2

cos cos cos 1

1 1
3cos 1 cos cos

3 3

α α α

α α α

+ + =

⇒ = ⇒ = ⇒ = ±

Therefore the d.c’s of the line are:  
1 1 1

, ,
3 3 3

 
± ± ± 
 

 

3. Problem: If the d.c’s of a line are 
1 1 1

, ,
c c c

 
 
 

 find c

Solution: 2

2 2 2 2

1 1 1 3
, , 1 1 3c

c c c c

 
= ⇒ = ⇒ = 

 
 

3c⇒ = ±

4. Problem:  Find the direction cosines of two lines which are connected by the relations

l+m+n=0 and mn-2nl-2lm=0. 

Solution:  

Given that  0l m n+ + =  (1) 

And 2 2 0mn nl lm− − = (2) 
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From (1) l m n= − −  

Substituting in (2) 2 ( ) 2 ( ) 0mn n m n m m n− − − − − − =  

2 22 2 2 2 0mn mn n m mn+ + + + =  

2 22 5 2 0m mn n+ + =

(2 )( 2 ) 0m n m n+ + =

2 0 2 0m n orm n+ = + =  

1

2

2

1

m

n

m

n

−
=

−
=

(3) 

From 1 1
l m

n n

−
= = −  (4) 

When 
1

2

m

n

−
=

From 4  
1 1

1
2 2

l

n

−
= − =

2 2 2

2 2 2

1

1 2 61 1 ( 2)

m l n l m n

l

+ +
∴ = = = =

− + + −

1 1 2
, ,

6 6 6
l m n

−
∴ = = =

Again from (3) and (4) 2
m

n
= −  gives 2 1 1

l

n
= + − =  

2 2 2 1

1 2 1 1 4 1 6

l m n l m n+ +
∴ = = = =

− + +

1 2 1
, ,

6 6 6
l m n

−
∴ = = =

Thus the d.c’s of the two lines are 
1 1 2 1 2 1

, , ; , ,
6 6 6 6 6 6

− −   
   
   

 

5. Problem:  A ray makes angles ,
3 3

π π
 with ,OX OY

���������

 respectively. Find the angle made 

by it withOZ
����

. 
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Solution:  Let the angle made by the ray with OZ
����

 be γ  

d.c’s of the ray are: 
1 1

cos ,cos ,cos , ,cos
3 3 2 2

π π
γ γ

   
=   

   

2 21 1 1 1 1
cos 1 cos 1 cos

4 4 2 2 2
γ γ γ+ + = ⇒ = − = ⇒ = ±

1 1
cos

2
γ −  

⇒ = ± 
 

 

3

4 4
or

π
γ

∏
⇒ =

 Exercise 17(a) 

I. 1. A Line makes angles 90
0
, 60

0
, 30

0
 with the positive directions of  X,Y,Z axes

respectively. Find its direction cosines. 

2. If the line makes angles α, β ,γ with the +ve directives of X, Y, Z axes, what is the

value of sin
2 α + sin

2 β + sin
2 γ ? 

3. What are the direction cosines of the line joining the points (−4,1, 7) and (2, −3, 2)

II 1. Find the ratio in which the XZ-plnae divides the line joining A(−2,3, 4) and B(1, 2,3) .

2. Show that the lines PQ and RS are parallel, if P = (2, 3, 4) Q(4, 7,8) R = (−1, −2,1)

S = (1, 2, 5) .

II. 1.If the direction cosines of two non-parallel lines are related by 2mn + 3nl –

5lm=  0 and l + m + n = 0, then show that these lines are perpendicular to each

other.

17.2 Definition of Direction ratios – Simple Problems. 
Any three real numbers which are proportional to the direction cosines of a line 

are called direction ratios (d.r’s) of that line  

If (a, b, c) are the direction ratios of a line then for every 0;( , , )a b cλ λ λ λ≠  are 

also its direction ratios .Thus a line may have infinite number of direction ratios. 

17.2.1 Determining the direction cosines with given direction ratios: 

Let (a, b, c) be the direction ratios of a line whose direction cosines are  (l, m, 

n).Then (a, b, c) are proportional to (l, m, n). 

( )
a b c

k say
l m n

∴ = = =  

2 2 2 2 2 2 2 2( )a b c k l m n k⇒ + + = + + =

2 2 2k a b c⇒ = ± + +
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Therefore the direction cosines of the line are: 

( )
2 2 2 2 2 2 2 2 2

, , , , , ,
a b c a b c

l m n
k k k a b c a b c a b c

  
= = ±  
  + + + + + + 

17.2.2 Note: 

1. If (a, b, c) are direction ratios of a line 2 2 2 1a b c+ + ≠ in general 

2. The direction cosines of a line are its direction ratios but not vice versa.

17.2.3 Direction ratios of the line joining the points 2 2 2 2 2 2( , , ) & ( , , )x y z x y z  

By Theorem 17.1.10 the direction cosines of the line joining 

2 2 2 2 2 2( , , ) & ( , , )x y z x y z  are 2 1 2 1 2 1

2 2 2

2 1 2 1 2 1

, ,
( ) ( ) ( )

x x y y z z

x x x x x x

 − − −
 
 ∑ − ∑ − ∑ − 

. 

Since ( )2 1 2 1 2 1, ,x x y y z z− − −  are proportional to direction cosines of the 

line, they are direction ratios of the line. 

17.2.4 Note:  If P(x, y, z) is a point in space , by corollary 17.1.6,direction cosines 

of OP
����

2 2 2 2 2 2 2 2 2
, ,

x y z

x y z x y z x y z

 
 
 + + + + + + 

. 

Since x, y, z are proportional to these values, direction ratios of OP
����

 are (x, y, 

z).Thus the coordinates of any point on a line through the origin may be taken are 

direction ratios of the line. 

17.2.5 Example:  If  P(-2,4,-5) and Q(1,2,3) are two points , direction ratios of the 

line PQ
����

 are(3,-2,8) Direction cosines of the line are 

3 2 8
, ,

9 4 64 9 4 64 9 4 64

3 2 8
. .., , ,

77 77 77
i e

− 
 

+ + + + + + 

− 
 
 

17.2.6 Angle between two lines: 

Let 1 2,L L  be two lines in space. Draw lines ' '

1 2,L L  parallel to 1 2,L L  and passing 

through the origin. The angle between ' '

1 2,L L which lies in 0,
2

π 
  

 is defined as the angle

between 1 2,L L . 
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17.2.7 Theorem: If ( ) ( )1 1 1 2 2 2, , , , ,l m n l m n  are direction cosines of two lines, and θ  is

the angle between them, then 1 2 1 2 1 2cos l l m m n nθ = + +

Proof: Let 1 2,L L  be the given lines with direction cosines ( ) ( )1 1 1 2 2 2, , , , ,l m n l m n

respectively 

Case (1): If the lines 1 2,L L  are parallel then 

0

cos 1

θ

θ

=

=

From 17.1.1 note (2), 

2 1 2 1 2 1, ,l kl m km n kn= = =  Where    1k = ±  

So that 2 2 2

1 2 1 2 1 2 1 1 1 1l l m m n n l m n+ + = + + =  

Therefore result holds good in this case. 

Case (2): Suppose 1 2,L L  are not parallel .Draw ' '

1 2,L L  parallel to 1 2,L L  and passing 

through the origin. Let A, B be points on ' '

1 2,L L  respectively at a distance of 1 unit from 

‘O’. 

Then 
1 1 1

2 2 2

( , , )

( , , )

A l m n and

B l m n

= ±

= ±

2 2 2 2

1 2 1 2 1 2( ) ( ) ( )AB l l m m n n∴ = − + − + −

= 2 2 2 2 2 2 2 2 2

1 2 1 2 1 2 1 1 1 2 2 2 1 2 1 2 1 2( ) ( ) ( ) ( ) ( ) 2( )l l m m n n l m n l m n l l m m n n+ + + + + = + + + + + ± + +

= 1 2 1 2 1 21 1 2( )l l m m n n+ ± + +  

Using cosine rule from OAB∆ , 

2 2 2

cos
2 .

OA OB AB

OAOB
θ

+ −
=

1 2 1 2 1 21 1 [1 1 2( )]
( 1)

2

l l m m n n
OA OB

+ − + ± + +
= = =∵  

1 2 1 2 1 2( )l l m m n n= ± + +  

Since 0, ,cos
2

π
θ θ

 
∈   

 is non-negative 
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1 2 1 2 1 2cos l l m m n nθ∴ = + +

17.2.8 Note: If the lines are perpendicular, 
2

π
θ = ,so cos 0θ =

∴  From 17.2.7, 
1 2 1 2 1 2 0l l m m n n+ + =  

17.2.9 Langange’s identity: 

For any two ordered triads of real numbers, 
1 1 1 1 1 1( , , ) ( , , )a b c and a b c

Then 2 2 2 2 2 2 2 2

1 1 1 2 2 2 1 2 1 2 1 2 12 2 1( )( ) ( ) ( )a b c a a a a a b b c c a a b+ + + + − + + = ∑ − . 

Notice that simplification and rearrangement of terms on the left yields the right side. 

17.2.10 Note:  

1. If θ  is the angle between two lines with direction cosines 1 1 1 2 2 2( , , ) ( , , )l m n and l m n

then, 
2 2 2 2 2 2 2 2 2 2

1 1 1 2 2 2 1 2 1 2 1 2 1 2 1 2sin 1 cos ( )( ) ( ) ( )l m n l m n l l m m n n l m m lθ θ= − = + + + + − + + = ∑ −

(by langrange’s identity)

Exercise 17(b) 

1. If (6,10,10) (1, 0, −5) (6, −10, 0) are the vertices of a triangle, find the direction ratios of its

sides. Also show that it is a right angle triangle.

2. If the direction cosines of two non-parallel lines are related by

2   3 –  5  0      0,mn nl lm andl m n+ = + + =  then show that these lines are

perpendicular to each other.

3. A line makes angles α,β,γ, δ, with the four diogonals of a cube.  Show that
2 2 2 2 22          4 / 3.cos a cos cos cos cos cosα β γ α δ+ + + + + =

 Key Concepts 

1. Direction cosines of a ray OA
����

 are  cos , cos , cosl m nα β γ= = = where , ,α β γ  are the 

angles made by   OA
����

 with positive directions of , ,OX OY OZ
���� ���� ����

. 

2. By reversing the direction, the ray AO
����

 makes angles , ,α β γ∏ − ∏ − ∏ −  respectively 

with positive directions of X, Y, Z axes. 

3. cos( ) cos ,cos( ) cos ,cos( ) cosl m nα α β β λ γ∏ − = − = − ∏ − = − = − ∏ − = − = −  are d.c’s

of AO
����

 

4. Since a line in space has two directions, it has two sets of direction cosines, one for

each direction. If (l, m, n) is one set of d.c’s then (-l, -m, -n) is the other set. 
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5. if(l,m,n) are the d.c’s of a line  then the d.c’s of its parallel line L are ± (l,m,n).

6.If P(x, y, z) is a point in the space then the d.c’s of OP
����

 are

2 2 2 2 2 2 2 2 2
, ,

x y z

x y z x y z x y z

 
 
 + + + + + + 

7.If (l, m, n) are the direction cosines of a line L, then 2 2 2 1l m n+ + =  

8.The direction cosines of the directed line PQ
����

 joining the points 1 1 1( , , )P x y z and 

2 2 2( , , )Q x y z  are 2 1 2 1 2 1

2 2 2

2 1 2 1 2 1

, ,
( ) ( ) ( )

x x y y z z

x x x x x x

 − − −
 
 ∑ − ∑ − ∑ − 

. 

.9. Direction cosines of a line whose  the direction ratios are (a, b, c) are 

2 2 2 2 2 2 2 2 2
, ,

a b c

a b c a b c a b c

 
± 

+ + + + + + 
 

10. Direction ratios of the line joining the points 2 2 2 2 2 2( , , ) & ( , , )x y z x y z are 

( )2 1 2 1 2 1, ,x x y y z z− − −  And the direction cosines of the line joining 

2 2 2 2 2 2( , , ) & ( , , )x y z x y z  are 2 1 2 1 2 1

2 2 2

2 1 2 1 2 1

, ,
( ) ( ) ( )

x x y y z z

x x x x x x

 − − −
 
 ∑ − ∑ − ∑ − 

. 

11. If P(x, y, z) is a point in space , by corollary 17.1.6,direction cosines of OP
����

2 2 2 2 2 2 2 2 2
, ,

x y z

x y z x y z x y z

 
 
 + + + + + + 

. 

12.If ( ) ( )1 1 1 2 2 2
, , , , ,l m n l m n  are direction cosines of two lines, and θ  is the angle between 

them, then 1 2 1 2 1 2
cos l l m m n nθ = + +

 If the lines are perpendicular, 
2

π
θ = ,so cos 0θ =

∴ , 
1 2 1 2 1 2 0l l m m n n+ + =

13.Angle between the lines whose direction ratios are ( ) ( )1 1 1 2 2 2, , , , ,a b c a b c  is

1 1 2 1 2 1 2

2 2 2 2 2 2

1 1 1 2 2 2

cos
a a b b c c

a b c a b c

− + +

+ + + +

The lines perpendicular if a1a2 + b1b2 + c1c2 = 0 
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 The lines are parallel if 

1

2

a

a
 = 

1

2

b

b
= 

1

2

c

c

Answers 

Exercise 17 (a) 

I. 1. 
1 3

0, ,
2 2

 
  
 

2. 2

3. 
6 4 5

, ,
77 77 77

− − 
 
 

 

 II.  1. 
2 2 3 2 3 2 4 5 1

, , , , , , , , ,
17 17 17 17 17 17 42 42 42

− − − − − −     
    
    

 

 III.1. 
1 1 2 1 2 3

, , , , ,
6 6 6 14 14 14

−   
  
  

Exercise 17 (b) 

1. (-5, -10, -15), (5, -10, 5), (0, 20, 10), Triangle ABC is right angled

triangle.

2. 3

π

3. 4/3
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VOCATIONAL BRIDGE COURSE 

MATHEMATICS –  First Year (w.e.f.  2018-2019) 

 MODEL QUESTION PAPER 

Time: 3 Hours Max.Marks: 75 

_____________________________________________________________________________________ 

 Section A          10x3=30 

Note: 

i) Answer all questions

ii) Each question carries 3 marks

1. A function f : A → B is defined by f ( x ) = x 
2
 + x +1. If A = {−2, −1, 0,1, 2}, then find

B.

2. If the vectors −3i + 4 j + pk  and  qi + 8 j + 6k are collinear, then find p and q.

3. 
2

2

2 7 4
lim

2 1x

x x

x

 



4. Find ( )
d Cosx

dx Cosx Sinx

5. A point P moves such that PA = PB where A = ( −3, 2) and B = (0, 4) . Find the

equation to the locus of P.

6. Transform the line equation of the line x + y + 2 = 0 into

(i) slope – intercept form (ii) intercept from (iii) normal form. 

7. The three consecutive vertices of a parallelogram are given as (2,4, –1), (3,6,–1),

(4,5,1). Find the fourth vertex.

8. Simplify: sin 330 
0
.cos120 

0
 + cos 210 

0
.sin 300

0
 .

9. Simplify
3  3

sin sin3

cos cos 

 





10. If sinh x = 3/4 , find cosh(2 x)



Section B 3x15 =45 

Note: 

i) Answer any 3 questions

ii) Each question carries 15 marks

11 I(a) .  Prove by Mathematical Induction   1
2
 + 2

2
 + 3

2
 + ........ + n

2 = 
( 1)(2 1)

6

n n n 

       I(b).  If A =

1 2 3

0 1 4

2 2 1

 
 


 
  

find (A
T
)
-1

OR 

 II (a). Prove 

2

2

2

1

1

1

a a

b b

c c

 = (a-b)(b-c)(c-a) 

II (b) If a = (1, − 2, 1), b = (2, 1, 1), c = (1, 2, −1) then find ( )axb xc  and ( )ax bxc . 

12.I(a)  Evaluate 
0

sin( ) sin( )
lim
x

a bx a bx

x

  

I(b) Find the derivative of  x
2
 +2x from first principles

OR 

II(a)  Show that  f(x) =
2

cos cosax bx

x


for x ≠ 0 

=  
2 2

2

b a
for x = 0

where a and b are real constants, is continuous at x = 0 

II(b) Find the equations of tangent and normals to the curve

y=x 
4
 − 6 x 

3
 + 13 x 

2
 − 10 x + 5 at the point (0, 5).

13 I(a)  Find the foot of the perpendicular drawn from the point (3,0) upon the straight line 

5x+ 12y- 41=0. 

I (b) Find the equation to the straight line which passes through (0, 0) and also the point 



        of intersection of the lines x + y + 1 = 0 and 2 y − y + 5 = 0 . 

OR 

II(a) When the axes are rotated through on angle   , find the transformed equation of

3 x 
2
 + 10 xy + 3 y

2
  = 4.

 II(b). If (6,10,10), (1, 0, −5), (6, −10, 0) are the vertices of a triangle, find the direction 

ratios of its sides. Also, show that it is a right angled triangle. 

14 I(a). If Sin (A+B) = 
24

25
 and cos(A-B) =

4

5
 where 0<A<B<

4


 then find the value of 

Sin2A. 

I(b). Solve: sin
2
 θ − cos θ =

1

4

OR 

II(a). If  A + B + C = 180
0
 then prove that sin 2 A − sin 2 B + sin 2C = 4 cos A sin B cos C .

   II(b). Solve 3 cos θ + sin θ= 2  

15 I(a). Solve 2 x − y + 3 z = 9 , x + y + z = 6 , x − y + z = 2 by matrix inversion method. 

     I(b) .Find the equations of tangent and normal to the curve of 

y = x 
4
 − 6 x 

3
 + 13 x 

2
 − 10 x + 5 at (0, 5) .

OR 

II(a).  Show that the equation 2 x 
2
 − 13 xy − 7 y 

2
 + x + 23 y − 6 = 0 represents a pair of

straight  lines and also find the angle between and the co-ordinates of the point of 

intersection of lines. 

       II(b). Prove that cos2
10


+ cos

2 2

5


+cos

2 3

5


+ cos

2 9

10


= 2. 



 VOCATIONAL BRIDGE COURSE 

First Year  - Paper – I (w.e.f.  2018-19)

MATHEMATICS SCHEME OF EXIMATION (WEIGHTAGE)

Total Questions : 15 

Time: 3 Hours Max.Marks: 75  
_____________________________________________________________________________ 

Note: In section A – Answer all Questions 

In section B – Answer any three Questions 

Section – A 10x3=30 

Note: 

i) Answer all the questions

ii) Each question carries 3 marks.

1. From Algebra

2. From Algebra

3. From Calculus

4. From Calculus

5. From Co-ordinate Geometry

6. From Co-ordinate Geometry

7. From Co-ordinate Geometry

8. From Trigonometry

9. From Trigonometry

10. From Trigonometry

Section – B 3x15=45 

Note:  

i) Answer any 3 questions

ii) Each question carries 15 marks.

11. From Algebra with internal choice

12. From Calculus with internal choice

13. From Co-ordinate Geometry with internal choice

14. From Trigonometry with internal choice

15. I(a) – From Algebra

I(b) – From

Calculus

OR 

II(a) – from Co-ordinate Geometry 

II(b) – from Trigonometry 



VOCATIONAL BRIDGE COURSE 

MATHEMATICS – First Year 

WEIGHTAGE OF MARKS 

S.No. 

Chapter 

number

Chapters Number 

of periods

Weightage

1 FUNCTIONS 12Hours

28

2 MATHEMATICAL INDUCTION 5 Hours

3 MATRICES 8 Hours

4 ADITION OF VECTORS 8 Hours

5 PRODUCT OF VECTORS 8 Hours

6 TRIGONOMETRIC RATIOS UP TO 

TRANSFORMATIONS

14 Hours

327 TRIGONOMETRIC EQUATIONS 5 Hours

8 HYPERBOLIC FUNCTIONS 3 Hours

9 LIMITS AND CONTINUITY 8 Hours

29 10 DIFFERENTIATION 12 Hours

11 APPLICATIONS OF DERIVATIVES 15 Hours

12 LOCUS 4 Hours

31

13 TRANSFORMATION OF AXES 4 Hours

14 THE STRAIGHT LINE 14 Hours

15 PAIR OF STRAIGHT LINES 18 Hours

16 THREE DIMENSIONAL CO-ORDINATES 6 Hours

17 DIRECTION COSINES AND DIRECTION RATIOS 6 Hours

TOTAL 150Hours 120 Marks




