

Complete	Guide	For	Python	Programming
	

Quick	&	Easy	Guide	To	Learn	Python
	

By:
James	P.	Long

	
ACKNOWLEDGMENTS

	
For	my	 students	 and	 friends,	who	 all	 selflessly	 helped	me	 in	writing	 this	 book.	Special
thanks	 to	 those	 who	 asked,	 insisted	 and	 assisted	 me	 in	 turning	 the	 seminars	 in	 this
practical	form.	All	Rights	Reserved	2012-2015	@	James	P.	Long

	

	
	
	
	
	
	
	
	

	

Table	of	Contents
Introduction	………………………………………10

Python	Versions	…………………………………13

Some	Commonly	used	Operations	in	Python	………………………………………………
15

Printf	Format	Strings	…………………………20

Python	 Interactive	 -	 Using	 Python	 As	 A	 Calculator

………………………………………….22

Python	Implementations	……………………26

Python	Compilers	&	Numerical	Accelerators	………………………………………31

Logical	And	Physical	Line	in	Python	……34

Python	Indentation	……………………………37

Python	Standard	Library	……………………39

Creating	Classes	&	Objects	…………………43

Documenting	Your	Code	……………………46

Python	-	Object	Oriented	Programming	49

Python	Database	………………………………..55

Classes	………………………………………………65

Methods	……………………………………………71

Instances	…………………………………………..75

Python	Database	Access	…………………….82

Python	Networking	………………………….108

Sending	Mail	in	Python	…………………….117

Python	multithreading	…………………….127

Python	xml	processing	…………………….148

Python	Programs	…………………………….166

Python	Program	to	Add	Two	Matrices	166

Python	 Program	 to	 Add	 Two	 Numbers
………………………………………………………..168

Python	 Program	 to	 Calculate	 the	 Area	 of	 a	 Triangle
…………………………………………..169

Python	 Program	 to	 Check	 Armstrong	 Number
…………………………………………..171

Python	 Program	 to	 Check	 if	 a	 Number	 is	 Odd	 or	 Even
…………………………………….173

Python	Program	to	Check	if	a	Number	is	Positive,	Negative	or	Zero	…………………174

Python	Program	to	Check	if	a	String	is	Palindrome	or	Not	……………………………177

Python	Program	to	Check	Leap	Year	…179

Python	 Program	 to	 Check	 Prime	 Number
………………………………………………………..181

Python	 Program	 to	Convert	 Celsius	 To	 Fahrenheit	………………………………………

183

Python	Program	to	Convert	Decimal	into	Binary,	Octal	and	Hexadecimal	…………184

Python	Program	to	Convert	Decimal	to	Binary	Using	Recursion	……………………186

Python	 Program	 to	 Convert	 Kilometers	 to	 Miles
……………………………………………….187

Python	 Program	 to	 Count	 the	 Number	 of	 Each	 Vowel
………………………………………189

Python	Program	to	Display	Calendar	..190

Python	Program	to	Display	Fibonacci	Sequence	Using	Recursion	……………….192

Python	Program	To	Display	Powers	of	2	Using	Anonymous	Function	……………..194

Python	Program	to	Display	the	multiplication	Table	…………………………196

Python	Program	to	Find	Armstrong	Number	in	an	Interval	………………………198

Python	 Program	 to	 Find	 ASCII	 Value	 of	 Character
………………………………………..200

Python	Program	to	Find	Factorial	of	Number	Using	Recursion	…………………201

Python	Program	to	Find	Factors	of	Number	…………………………………………..203

Python	Program	to	Find	Hash	of	File	…205

Python	Program	to	Find	HCF	or	GCD	…207

Python	Program	to	Find	LCM	……………209

Python	Program	to	Find	Numbers	Divisible	by	Another	Number	……………211

Python	Program	to	Find	Sum	of	Natural	Numbers	Using	Recursion	………………..212

Python	 Program	 to	 Find	 the	 Factorial	 of	 a	 Number
…………………………………………..214

Python	Program	to	Find	the	Largest	Among	Three	Numbers	…………………….216

Python	Program	to	Find	the	Size	(Resolution)	of	Image	………………………218

Python	 Program	 to	 Find	 the	 Square	 Root
………………………………………………………..220

Python	Program	to	Find	the	Sum	of	Natural	Numbers	……………………………..221

Python	 Program	 to	 Generate	 a	 Random	 Number
…………………………………………..222

Python	 Program	 to	 Illustrate	 Different	 Set	 Operations
………………………………………223

Python	Program	to	Make	a	Simple	Calculator	………………………………………225

Python	 Program	 to	 Multiply	 Two	 Matrices
………………………………………………………..229

Python	Program	to	Print	all	Prime	Numbers	in	an	Interval	…………………….231

Python	Program	to	Print	Hi,	Good	Morning!	…………………………………………234

Python	program	 to	Print	 the	Fibonacci	 sequence	…………………………………………
235

Python	 Program	 to	 Remove	 Punctuations	 form	 a	 String
……………………………………237

Python	 Program	 to	 Shuffle	 Deck	 of	 Cards
………………………………………………………..239

Python	Program	to	Solve	Quadratic	Equation	………………………………………….241

Python	Program	to	Sort	Words	in	Alphabetic	Order	……………………………..243

Python	 Program	 to	 Swap	 Two	 Variables
………………………………………………………..245

Python	 Program	 to	 Transpose	 a	 Matrix
………………………………………………………..246

Note	………………………………………………..248

More	From	Author	…………………………..249

	
	
	
	
	
	
	
	
	

INTRODUCTION

Python	 is	 a	 wide	 used	 general,	 high-level	 programming	 language.	 Its	 style	 philosophy
emphasizes	code	readability,	and	its	syntax	allows	programmers	to	precise	ideas	in	fewer
lines	of	code	that	might	be	possible	in	languages	like	C++	or	Java.	The	language	provides
constructs	supposed	to	modify	clear	programs	on	both	small	and	large	scales.

Python	 is	 a	 simple	 to	 learn,	 powerful	 programming	 language.	 Its	 economical	 high-level
information	 structures	 and	 an	 easy,	 but	 effective	 approach	 to	 object-oriented
programming.	 Python’s	 elegant	 syntax	 and	 dynamic	 typing,	 in	 conjunction	 with	 its
interpreted	 nature,	 make	 it	 a	 perfect	 language	 for	 scripting	 and	 speedy	 application
development	in	several	areas	on	most	platforms.	Python	is	one	in	all	those	rare	languages
which	 might	 claim	 to	 both	 easy	 and	 powerful.	 You	 may	 end	 up	 pleasantly	 stunned	 to
examine	how	easy	 it’s	 to	 think	about	 the	answer	 to	 the	matter	 instead	of	 the	syntax	and
structure	of	the	language	you	are	programming	in.

In	my	first	book	“Python	Programming	for	Beginners”,	I	have	discussed	all	about	what
python	programming	 language	 is?	How	 to	 install	python	 to	your	 system?	Different	data
types,	 function,	 parameters,	 class,	 objects	 used	 in	 python.	 I	 also	 have	 discussed	 about
basic	python	operators	and	modules.	Not	only	these,	you	can	also	get	knowledge	on	how
to	 call	 a	 function,	 exception	 handling	 function,	 python	 variables	 etc.	 That	 is	 all	 basic
things	that	are	must	know	when	you	start	learning	any	programming	language.

Now	in	this	book	I	am	going	to	share	with	you	advanced	python	programming	functions
and	programs	to	create	in	python?	I	assure	you	that	if	you	go	through	this	book	seriously,
then	in	few	days	you	will	become	an	expert	python	programmer.	So	what	are	you	waiting
for?	Start	going	through	the	book	and	start	creating	your	first	program	today.

	

	

	
	
	
	
	

PYTHON	VERSIONS

Python	 has	 many	 versions	 but	 most	 commonly	 used	 are	 Python	 2.0	 and	 Python	 3.0.
Python	2.0	was	released	on	16	October	2000,	with	many	major	new	features	including	a
full	garbage	collector	and	support	for	Unicode.	With	this	release	the	development	process
was	 changed	 and	 became	more	 transparent	 and	 community-backed.	 while	 Python	 3.0	 ,
which	is	also	known	as	Python	3000	or	py3k,	is	a	major,	backwards-incompatible	release,
and	was	released	on	3	December	2008.	Many	of	its	major	features	have	been	back	ported
to	the	backwards-compatible	Python	2.6	and	2.7.	Python	2.x	is	 legacy,	Python	3.x	is	 the
present	and	future	of	the	language.

Python	3.0	was	released	in	2008.	The	final	2.x	version	2.7	release	came	out	in	mid-2010,
with	a	statement	of	extended	support	for	this	end-of-life	release.	The	2.x	branch	will	see
no	 new	major	 releases	 after	 that.	 3.x	 is	 under	 active	 development	 and	 has	 already	 seen
over	 five	 years	 of	 stable	 releases,	 including	 version	 3.3	 in	 2012	 and	 3.4	 in	 2014.	 This
means	 that	 all	 recent	 standard	 library	 improvements,	 for	 example,	 are	only	available	by
default	in	Python	3.x.

For	 those	 interested	 in	 using	 Python	 via	 a	USB	 thumb	 drive,	 you	may	 be	 interested	 in
Portable	Python.	This	is	a	self-contained	Python	environment	that	you	can	either	run	from
the	thumb	drive	or	install	to	your	computer.	This	is	useful	for	people	who	can’t	or	don’t
want	to	install	Python	but	would	still	like	to	use	it.

SOME	COMMONLY	USED	OPERATIONS	IN	PYTHON

Using	Blank	Lines:

A	 line	 containing	only	whitespace,	 possibly	with	 a	 comment,	 is	 called	 a	 blank	 line	 and
Python	 ignores	 it	 completely.	 In	 an	 interactive	 interpreter	 session,	 you	 must	 enter	 an
empty	physical	line	to	terminate	a	multiline	statement.

Waiting	for	the	User:

The	 following	 line	 of	 the	 program	displays	 the	 prompt,	 Press	 the	 enter	 key	 to	 exit	 and
waits	for	the	user	to	press	the	Enter	key:

#!/usr/bin/python	raw_input(“\n\nPress	the	enter	key	to	exit.”)

Here,	“\n\n”	are	being	used	to	create	two	new	lines	before	displaying	the	actual	line.	Once
the	user	presses	the	key,	the	program	ends.	This	is	a	nice	trick	to	keep	a	console	window
open	until	the	user	is	done	with	an	application.

Multiple	Statements	on	a	Single	Line:

The	 semicolon	 (;)	 allows	 multiple	 statements	 on	 the	 single	 line	 given	 that	 neither
statement	starts	a	new	code	block.	Here	is	a	sample	snip	using	the	semicolon:

import	sys;	a	=	‘abc’;	sys.stdout.write(a	+	‘\n’)

Multiple	Statement	Groups	as	Suites:

In	 Python,	 a	 group	 of	 statements,	 which	 make	 a	 single	 code	 block	 are	 called	 suites.
Compound	 or	 complex	 statements,	 such	 as	 if,	 while,	 def,	 and	 class,	 are	 those	 which
require	a	header	line	and	a	suite.	Header	lines	begin	the	statement	and	terminates	with	a
colon	(:)	and	are	followed	by	one	or	more	lines,	which	make	up	the	suite.	For	example:

if	expression	:	suite

elif	expression	:	suite

else	:	suite

Accessing	Command-Line	Arguments:

Python	 provides	 a	 getopt	 module	 that	 helps	 you	 parse	 command-line	 options	 and
arguments.

$	python	test.py	arg1	arg2	arg3

The	Python	sys	module	provides	access	to	any	command-line	arguments	via	the	sys.argv.
This	serves	two	purpose:

•	sys.argv	is	the	list	of	command-line	arguments.

•	len(sys.argv)	is	the	number	of	command-line	arguments.

Parsing	Command-‐Line	Arguments:
Python	 provides	 a	 getopt	 module	 that	 helps	 you	 parse	 command-line	 options	 and
arguments.	This	module	provides	two	functions	and	an	exception	to	enable	command-line
argument	parsing.

getopt.getopt	method:

This	method	parses	command-line	options	and	parameter	list.	Following	is	simple	syntax
for	this	method:

getopt.getopt(args,	options[,	long_options])

Here	is	the	detail	of	the	parameters:

	

•	args:	This	is	the	argument	list	to	be	parsed.

•	options:	This	is	the	string	of	option	letters	that	the	script	wants	to	recognize,	with	options
that	require	an	argument	should	be	followed	by	a	colon	(:).

•	long_options:	This	is	optional	parameter	and	if	specified,	must	be	a	list	of	strings	with
the	names	of	the	long	options,	which	should	be	supported.	Long	options,	which	require	an
argument	should	be	followed	by	an	equal	sign	(‘=’).	To	accept	only	long	options,	options
should	be	an	empty	string.

	
	

PRINTF	FORMAT	STRINGS

%d	:	integer

%5d	:	integer	in	a	field	of	width	5	chars

%-5d	:	integer	in	a	field	of	width	5	chars,	but	adjusted	to	the	left

%05d	:	integer	in	a	field	of	width	5	chars,	padded	with	zeroes	from	the	left

%g	:	float	variable	in	%f	or	%g	notation

%e	:	float	variable	in	scientific	notation

%11.3e	:	float	variable	in	scientific	notation,	with	3	decimals,	field	of	width	11	chars

%5.1f	:	float	variable	in	fixed	decimal	notation,	with	one	decimal,	field	of	width	5	chars

%.3f	:	float	variable	in	fixed	decimal	form,	with	three	decimals,	field	of	min.	width

%s	:	string

%-20s	:	string	in	a	field	of	width	20	chars,	and	adjusted	to	the	left

	
	
	
	
	
	
	
	
	
	

PYTHON	INTERACTIVE	-	USING	PYTHON	AS	A	CALCULATOR

You	can	use	python	as	a	calculator,	as	you	can	add,	subtract,	multiply	and	divide	numbers
in	python	language.

Start	Python	(or	IDLE,	the	Python	IDE).

A	prompt	is	showing	up:

>>>

Display	version:

>>>help()

Welcome	to	Python	2.7!	This	is	the	online	help	utility.

…

help>

Help	commands:

modules:	available	modules

keywords:	list	of	reserved	Python	keywords

quit:	leave	help

To	get	help	on	a	keyword,	just	enter	its	name	in	help.

Common	Operators	in	Python

Example	For	Simple	Calculations	in	Python

>>>	3.14*5

15.700000000000001

Take	care	in	Python	2.x	if	you	divide	two	numbers:

Isn’t	this	strange:

>>>	35/6

5

Obviously	the	result	is	wrong!

But:

>>>	35.0/6

5.833333333333333

>>>	35/6.0

5.833333333333333

In	 the	 first	 example,	 35	 and	 6	 are	 interpreted	 as	 integer	 numbers,	 so	 integer	 division	 is
used	and	the	result	is	an	integer.

This	 uncanny	 behavior	 has	 been	 abolished	 in	 Python	 3,	 where	 35/6	 gives
5.833333333333333.

In	 Python	 2.x,	 use	 floating	 point	 numbers	 (like	 3.14,	 3.0	 etc….)	 to	 force	 floating	 point
division!

	
	
	
	
	
	

PYTHON	IMPLEMENTATIONS
	

An	“implementation”	of	Python	provides	support	for	the	execution	of	programs	which	are
written	 in	 the	 Python	 Programming	 language,	 is	 represented	 by	 the	 CPython	 reference
implementation.	There	several	implementation	to	run	python	programs.	Let’s	have	a	look
at	them:

CPython	Variants

These	 are	 implementations	 which	 are	 based	 on	 the	 CPython	 runtime	 core,	 but	 with
extended	behavior	or	features	in	some	aspects.

CrossTwine	Linker	-	A	combination	of	CPython	and	an	add-on	library	offering	improved
performance.

Stackless	 Python	 -	 CPython	 with	 an	 emphasis	 on	 concurrency	 using	 tasklets	 and
channels.

Unladen-Swallow	-	an	optimization	branch	of	CPython,	intended	to	be	fully	compatible
and	significantly	faster.

WPython	-	a	re-implementation	of	CPython	using	“wordcode”	instead	of	bytecode.

Other	Implementations
	
These	are	re-implementations	of	the	Python	language	that	do	not	depend	on	the	CPython
runtime	 core.	 Many	 of	 them	 reuse	 the	 standard	 library	 implementation.	 The	 only
implementations	that	are	known	to	be	compatible	with	a	given	version	of	the	language	are
IronPython,	Jython	and	PyPy.

The	 following	 implementations	 are	 comprehensive	 or	 even	 complete,	 that	 you	 can	 run
typical	programs	with	them	already:

Brython	-	A	way	to	run	Python	in	the	browser	through	translation	to	JavaScript.

CLPython	-	Python	in	Common	Lisp.

HotPy	 -	A	virtual	machine	 for	Python	 supporting	bytecode	optimization	and	 translation
using	type	information	gathered	at	run-time.

IronPython	 -	 Python	 in	 C#	 for	 the	 Common	 Language	 Runtime	 (CLR/.NET)	 and	 the
FePy	project’s	IronPython	Community	Edition	(IPCE).

Jython	-	Python	in	Java	for	the	Java	platform.

Pyjs	-	A	Python	to	JavaScript	compiler	plus	Web/GUI	framework.

PyMite	-	Python	for	embedded	devices.

PyPy	-	Python	in	Python,	targeting	several	environments.

Pyvm	 -	 A	 Python-related	 virtual	 machine	 and	 software	 suite	 providing	 a	 nearly	 self-
contained	“userspace”	system.

RapydScript	-	A	Python-like	language	that	compiles	to	JavaScript.

SNAPpy	-	A	subset	of	the	Python	language	that	has	been	optimized	for	use	in	low-power
embedded	devices.

Tinypy	-	A	minimalist	implementation	of	Python	in	64K	of	code	.

Tentative	Implementations
The	following	 implementations	are	apparent	works	 in	progress;	 they	may	not	be	able	 to
run	typical	programs:

Berp	-	an	implementation	of	Python	3	in	Haskell,	providing	an	interactive	environment	as
well	as	a	compiler.

Phpython	-	a	Python	interpreter	written	in	PHP.

Pyjaco	-	a	Python	to	JavaScript	compiler	similar	to	Pyjs	but	lighter	weight.

Pystacho	-	is,	like	Skulpt,	Python	in	JavaScript.

Pyvm2.py	-	a	CPython	bytecode	interpreter	written	in	Python.

Skulpt	-	Python	in	JavaScript.

Typhon	-	a	Rubinius-based	implementation	of	Python.

	

	
Python	Compilers	&	Numerical	Accelerators

	

Compilers

These	compilers	usually	implement	something	close	to	Python,	have	a	look	at	them:

2c-python	-	a	static	Python-to-C	compiler,	apparently	translating	CPython	bytecode	to	C.

Compyler	-	an	attempt	to	“transliterate	the	bytecode	into	x	86	assemblies”.

Cython	 -	 a	 widely	 used	 optimizing	 Python-to-C	 compiler,	 CPython	 extension	 module
generator,	 and	 wrapper	 language	 for	 binding	 external	 libraries.	 Interacts	 with	 CPython
runtime	and	supports	embedding	CPython	in	stand-alone	binaries.

GCC	Python	Front-End	-	an	in-progress	effort	to	compile	Python	code	within	the	GCC
infrastructure.

Nuitka	 -	 a	 Python-to-C++	 compiler	 using	 libpython	 at	 run-time,	 attempting	 some
compile-time	and	run-time	optimizations.	Interacts	with	CPython	runtime.

Pyc	 -	 performs	 static	 analysis	 in	 order	 to	 compile	 Python	 programs,	 uses	 similar
techniques	to	Shed	Skin.

Shed	Skin	-	a	Python-to-C++	compiler,	restricted	to	an	implicitly	statically	typed	subset
of	the	language	for	which	it	can	automatically	infer	efficient	types	through	whole	program
analysis.

UnPython	-	a	Python	to	C	compiler	using	type	annotations.

	

	

Numerical	Accelerators
	

Copperhead	 -	 purely	 functional	 data-parallel	 Python	 compiles	 to	 multi-core	 and	 GPU
backends.

Numba	-	NumPy-aware	optimizing	runtime	compiler	for	Python.

Parakeet	-	runtime	compiler	for	a	numerical	subset	of	Python.

	
	
	
	

Logical	And	Physical	Line	in	Python
	

A	physical	 line	is	what	you	see	when	you	write	the	program	in	python.	A	logical	 line	is
what	Python	sees	as	a	single	statement.	Python	implicitly	assumes	that	each	physical	line
corresponds	to	a	logical	line.	For	example,	you	want	to	write	-	‘hello	world’	-	if	this	was
on	a	line	by	itself,	then	this	also	corresponds	to	a	physical	line.

If	you	want	to	specify	more	than	one	logical	line	on	a	single	physical	line,	then	you	have
to	 explicitly	 specify	 this	 using	 a	 semicolon	 (;)	 which	 indicates	 the	 end	 of	 a	 logical
line/statement.

For	example:

i	=	12

print	i

is	effectively	same	as

i	=	12;

print	i;

which	is	also	same	as

i	=	12;	print	i;

and	same	as

i	=	12;	print	i

If	you	have	a	long	line	of	code,	you	can	break	it	into	multiple	physical	lines	by	using	the
backslash.	This	is	referred	to	as	explicit	line	joining:

s	=	‘This	is	a	python	book.	\

This	continues	the	book.’

print	s

Output:

This	is	a	python	book.	This	continues	the	book.

Similarly,

print	\

i

is	the	same	as

print	i

Sometimes,	there	is	an	implicit	assumption	where	you	don’t	need	to	use	a	backslash.	This
is	 the	 case	where	 the	 logical	 line	 has	 starting	 parentheses,	 starting	 square	 brackets	 or	 a
starting	curly	braces	but	not	an	ending	one.	This	is	called	implicit	line	joining.	You	can	see
this	in	action	when	we	write	programs	using	lists	in	later	chapters.

PYTHON	INDENTATION

Whitespace	 is	 very	 important	 in	Python.	The	whitespace	 at	 the	 beginning	 of	 the	 line	 is
called	 indentation.	 Leading	 whitespace	 at	 the	 beginning	 of	 the	 logical	 line	 is	 used	 to
determine	the	indentation	level	of	the	logical	line,	which	in	turn	is	used	to	determine	the
grouping	of	statements.	Each	set	of	statements	is	called	a	block.

For	example:

i	=	5

#	Error	below!	Notice	a	single	space	at	the	start	of	the	line

print	‘Value	is	‘,	i

print	‘I	repeat,	the	value	is	‘,	i

When	you	run	this,	you	get	error:

		File	“whitespace.py”,	line	5

				print	‘Value	is	‘,	i

				^

IndentationError:	unexpected	indent

Notice	that	there	is	a	single	space	at	the	beginning	of	the	second	line.	The	error	indicated
by	 Python	 tells	 us	 that	 the	 syntax	 of	 the	 program	 is	 invalid	 i.e.	 the	 program	 was	 not
properly	 written.	 Use	 four	 spaces	 for	 indentation.	 This	 is	 the	 official	 Python	 language

recommendation.	Good	 editors	will	 automatically	do	 this	 for	 you.	Make	 sure	you	use	 a
consistent	 number	 of	 spaces	 for	 indentation;	 otherwise	 your	 program	will	 show	 errors.
Python	always	use	indentation	for	blocks	and	will	never	use	braces.

PYTHON	STANDARD	LIBRARY
	

The	Python	 Standard	Library	 contains	 a	 huge	 number	 of	 useful	modules	 and	 is	 part	 of
every	standard	Python	installation.	we	will	explore	some	of	the	commonly	used	modules
in	this	library.	You	can	find	complete	details	for	all	of	the	modules	in	the	Python	Standard
Library	 in	 the	 ‘Library	 Reference’	 section	 of	 the	 documentation	 that	 comes	 with	 your
Python	installation.

sys	module

The	 sys	 module	 contains	 system-specific	 functionality.	 We	 have	 already	 seen	 that	 the
sys.argv	 list	contains	 the	command-line	arguments.	For	example,	you	want	 to	check	 the
version	of	the	Python	software	being	used;	the	sys	module	gives	us	that	information.

$	python

>>>	import	sys

>>>	sys.version_info

sys.version_info(major=2,	minor=7,	micro=6,	releaselevel=‘final’,	serial=0)

>>>	sys.version_info.major	==	2

True

logging	module

What	if	you	wanted	to	have	some	debugging	messages	or	important	messages	to	be	stored
somewhere	so	that	you	can	check	whether	your	program	has	been	running	as	you	would
expect	it?	How	do	you	“store	somewhere”	these	messages?	This	can	be	achieved	using	the
logging	module.

Save	as	stdlib_logging.py:

import	os,	platform,	logging

if	platform.platform().startswith(‘Windows’):

				logging_file	=	os.path.join(os.getenv(‘HOMEDRIVE’),

																																os.getenv(‘HOMEPATH’),

																																‘test.log’)

else:

				logging_file	=	os.path.join(os.getenv(‘HOME’),	‘test.log’)

print	“Logging	to”,	logging_file

logging.basicConfig(

				level=logging.DEBUG,

				format=’%(asctime)s	:	%(levelname)s	:	%(message)s’,

filename	=	logging_file,

				filemode	=	‘w’,

)

logging.debug(“Start	of	the	program”)

logging.info(“Doing	something”)

logging.warning(“Dying	now”)

Output:

$	python	stdlib_logging.py

Logging	to	/Users/swa/test.log

$	cat	/Users/swa/test.log

2014-03-29	09:27:36,660	:	DEBUG	:	Start	of	the	program

2014-03-29	09:27:36,660	:	INFO	:	Doing	something

2014-03-29	09:27:36,660	:	WARNING	:	Dying	now

CREATING	CLASSES	&	OBJECTS
	

Python	is	an	object-oriented	language	and	because	of	this	creating	and	using	classes	and
objects	are	quite	easy.

Overview	of	OOP	Terminology
Class:	 A	 user-defined	 prototype	 for	 an	 object	 that	 defines	 a	 set	 of	 attributes	 that
characterize	 any	 object	 of	 the	 class.	 The	 attributes	 are	 data	 members	 and	 methods,
accessed	via	dot	notation.

Class	variable:	A	variable	 that	 is	 shared	by	all	 instances	of	 a	 class.	Class	variables	are
defined	within	a	class	but	outside	any	of	the	class’s	methods.	Class	variables	aren’t	used	as
frequently	as	instance	variables	are.

Data	member:	A	class	variable	or	instance	variable	that	holds	data	associated	with	a	class

and	its	objects.

Function	 overloading:	 The	 assignment	 of	 more	 than	 one	 behavior	 to	 a	 particular
function.	The	operation	performed	varies	by	the	types	of	objects	involved.

Instance	 variable:	 A	 variable	 that	 is	 defined	 inside	 a	method	 and	 belongs	 only	 to	 the
current	instance	of	a	class.

Inheritance:	The	transfer	of	the	characteristics	of	a	class	to	other	classes	that	are	derived
from	it.

Instance:	An	individual	object	of	a	certain	class.	An	object	‘obj’	 that	belongs	 to	a	class
Circle,	for	example,	is	an	instance	of	the	class	Circle.

Instantiation:	The	creation	of	an	instance	of	a	class.

Method:	A	special	kind	of	function	that	is	defined	in	a	class	definition.

Object:	 A	 unique	 instance	 of	 a	 data	 structure	 that’s	 defined	 by	 its	 class.	 An	 object
comprises	both	data	members	and	methods.

Operator	 overloading:	 The	 assignment	 of	 more	 than	 one	 function	 to	 a	 particular
operator.

DOCUMENTING	YOUR	CODE

To	 document	 a	 Python	 object,	 docstring	 is	 used.	 A	 docstring	 is	 simply	 a	 triple-quoted
sentence	 which	 gives	 a	 brief	 summary	 of	 the	 object.	 The	 object	 can	 be	 anything	 a
function,	a	method,	a	class,	etc.

Anything	written	 in	 the	 triple	quotes	 is	 the	 function’s	docstring,	which	documents	what
the	function	does.	A	docstring,	is	the	first	thing	that	is	defined	in	a	function.	Docstring	is
available	 at	 runtime	 as	 an	 attribute	 of	 the	 function.	The	 docstring	 of	 a	 script	 should	 be
usable	as	its	‘usage’	message,	printed	when	the	script	is	invoked	with	incorrect	or	missing
arguments.	The	docstring	is	a	phrase	ending	in	a	period.	It	describes	the	function’s	effect
as	a	command.

In	 docstring	 for	 a	 module	 classes,	 exceptions	 and	 functions	 that	 are	 exported	 by	 the
module	 are	 listed.	 The	 docstring	 for	 a	 function	 or	 method	 summarize	 its	 behavior	 and
document	its	arguments,	return	value(s),	side	effects	and	exceptions	raised.	The	docstring
for	 a	 class	 summarize	 its	 behavior	 and	 list	 the	 public	 methods	 and	 instance	 variables.
Individual	methods	should	be	documented	by	their	own	docstring.

You	 can	 add	 a	 docstring	 to	 a	 function,	 class,	 or	module	 by	 adding	 a	 string	 as	 the	 first
indented	statement.

For	example:

#!/usr/bin/env	python

#	docstringexample.py

“““Example	of	using	documentation	strings.”””

class	Knight:

”””

An	example	class.

Call	spam	to	get	bacon.

”””

def	spam(eggs=“bacon”):

“““Prints	the	argument	given.”””

print(eggs)

	
	
	
	

PYTHON	-	OBJECT	ORIENTED	PROGRAMMING

Learning	Python	Classes
In	OOP	 (object-oriented	 programming),	 the	 class	 is	 the	most	 basic	 component.	OOP	 is
very	powerful	 tool	and	many	Python	 libraries	and	APIs	uses	classes,	and	so	you	should
know	what	classes	are?	How	they	work?	And	how	to	create	them?	One	thing	to	remember
about	Python	and	OOP	is	that	it’s	not	mandatory	to	use	objects	in	your	code.

Now	the	question	is	how	are	Classes	Better?
Let’s	 take	 an	 example,	 suppose	 you	 want	 to	 calculate	 the	 velocity	 of	 a	 car	 in	 a	 two-
dimensional	plane	using	functions.	And	you	now	want	to	make	a	new	program	to	calculate
the	velocity	of	an	airplane	in	three	dimensions,	and	then	you’ll	have	to	rewrite	the	many	of
the	functions	to	make	them	work	for	the	vertical	dimension,	especially	to	map	the	object
in	a	3-D	space.	 In	 that	case	classes	are	used.	Classes	 let	you	define	an	object	once,	and
then	you	can	reuse	it	multiple	times.	You	need	to	give	it	a	base	function,	and	then	build
upon	that	method	to	redefine	it	as	necessary.

Improving	Your	Class	Standing
Some	concepts	of	classes	are	given	below.	Have	a	look	at	them:

-	Classes	have	a	definite	namespace,	just	like	modules.	Trying	to	call	a	class	method	from
a	different	class	will	give	you	an	error	unless	you	qualify	it,	e.g.	spamClass.eggMethod().

-	 Classes	 support	multiple	 copies.	 Classes	 have	 two	 different	 objects:	 class	 objects	 and
instance	objects.	Class	objects	are	used	to	give	the	default	behavior	and	are	used	to	create
instance	 objects.	 Instance	 objects	 are	 the	 objects	 that	 actually	 do	 the	 work	 in	 your
program.	You	can	have	as	many	instance	objects	of	the	same	class	object	as	you	need.

-	Each	instance	object	has	its	own	namespace	but	also	inherits	from	the	base	class	object.
This	means	each	instance	has	the	same	default	namespace	components	as	the	class	object,
but	additionally	each	instance	can	make	new	namespace	objects	just	for	itself.

-	Classes	can	define	objects	that	respond	to	the	same	operations	as	built-in	types.	So,	class
objects	 can	 be	 sliced,	 indexed,	 con-	 catenated,	 etc.	 just	 like	 strings,	 lists,	 and	 other
standard	Python	types.	This	is	because	everything	in	Python	is	actually	a	class	object;	we
aren’t	actually	doing	anything	new	with	classes,	we’re	just	learning	how	to	better	use	the
inherent	nature	of	the	Python	language.

So	What	Does	a	Class	Look	Like?
See	here	you	class	look	like	in	python:

	

Defining	a	class

>>>	class	Item	:		#define	a	classobject

…	def	setName	(self,value)	:														#define		class	methods

…	self.name	=	value																#selfidentifiesaparticular	instance

…	def	display	(self)	:

…	print	self.name						#print	the	data	for	a	particular	instance

	
Creating	class	instances
>>>	x	=		Item	()

>>>	y	=	Item	()

>>>	z		=	Item	()

	
Adding	data	to	instances
>>>	x.setName	(“Hello,	This	is	Python	book.”)

>>>	y.setName	(“I	am	a	quick	learner.”)

>>>	z.setName	(“It	is	worth	buying	this	book.”)

Displaying	instance	data
>>>	x.display	()

Hello,	This	is	Python	book.

>>>	y.display	()

I	am	a	quick	learner.

>>>	z.display	()

It	is	worth	buying	this	book.

	
	
	
	
	

PYTHON	DATABASES

In	python	when	you	use	web	applications	or	customer-oriented	programs,	Databases	are
very	important.	Normal	files,	such	as	text	files,	are	easy	to	create	and	use;	Python	has	the

tools	built-in	and	 it	doesn’t	 take	much	 to	work	with	 files.	Databases	are	used	when	you
work	on	 discrete	 “structures”,	 such	 as	 customer	 list	 that	 has	 phone	 numbers,	 addresses,
past	orders,	etc.	database	is	used	to	store	a	lump	of	data	and	it	allows	the	user	or	developer
to	pull	the	necessary	information,	without	regard	to	how	the	data	is	stored.	Also,	databases
can	be	used	to	retrieve	data	randomly,	rather	than	sequentially.

	
	
How	to	Use	a	Database

A	database	is	a	collection	of	data,	which	is	placed	into	an	arbitrary	structured	format.	Most
commonly	used	database	is	a	relational	database.	In	database	tables	are	used	to	store	the
data	 and	 relationships	 can	 be	 defined	 between	 different	 tables.	 SQL	 (Structured	 Query
Language)	is	the	language	which	is	used	to	work	with	most	Databases.	SQL	provides	the
commands	 to	 query	 a	 database	 and	 retrieve	 or	manipulate	 the	 information.	 SQL	 is	 also
used	to	input	information	into	a	database.

Working	With	A	Database

Database	 consists	 of	 one	 or	 more	 tables,	 just	 like	 a	 spreadsheet.	 The	 vertical	 columns
comprise	of	different	fields	or	categories;	they	are	analogous	to	the	fields	you	fill	out	in	a
form.	The	horizontal	rows	are	individual	records;	each	row	is	one	complete	record	entry.
Here	is	an	example	representing	a	customer’s	list.

USING	SQL	TO	QUERY	A	DATABASE

	

Here,	Index	field	is	the	one	that	provides	a	unique	value	to	every	record;	it’s	often	called
the	primary	key	field.	The	primary	key	is	a	special	object	for	databases;	simply	identifying
which	field	 is	 the	primary	key	will	automatically	 increment	 that	 field	as	new	entries	are
made,	 thereby	ensuring	a	unique	data	object	 for	easy	 identification.	The	other	 fields	are
simply	created	based	on	the	information	that	you	want	to	include	in	the	database.

Now	if	you	want	to	make	order	entry	database,	and	want	to	link	that	to	the	above	customer
list,	so	it	should	be	like:

This	table	is	called	“Orders_table”.	This	table	shows	various	orders	made	by	each	person
in	the	customer	 table.	Each	entry	has	a	unique	key	and	is	related	to	Customers_table	by
the	Customer_ID	field,	which	is	the	Index	value	for	each	customer.

Python	and	SQLite

Python	has	a	SQLite,	a	light-weight	SQL	library.	SQLite	is	basically	written	in	C,	so	it	is
very	quick	and	easy	to	understand.	It	creates	the	database	in	a	single	file,	so	implementing
a	database	becomes	 fairly	simple;	you	don’t	need	 to	worry	about	 the	 issues	of	having	a
database	 spread	 across	 a	 server.	SQLite	 is	 good	 for	 prototyping	your	 application	before
you	throw	in	a	full-blown	database.	By	this	you	can	easily	know	how	your	program	works
and	 any	 problems	 are	most	 likely	with	 the	 database	 implementation.	 It’s	 also	 good	 for
small	programs	that	don’t	need	a	complete	database	package	with	its	associated	overhead.

Creating	an	SQLite	database

SQLite	 is	built	 into	Python,	 so	 it	 can	easily	be	 imported	 to	any	other	 library.	Once	you
import	it,	you	have	to	make	a	connection	to	it;	so	as	to	create	the	database	file.	Cursor	in
SQLite	performs	most	of	the	functions;	you	will	be	doing	with	the	database.

import	sqlite3														#SQLite	v3	is	the	version	currently	included	with	Python

connection	=	sqlite3.connect	(“Hand_tools.database”)														#The	.	database	extension	is
optional

cursor	=	connection.cursor	()

#Alternative	database	created	only	in	memory

#mem_conn	=	sqlite3.connect	(“:memory:”)

#cursor	=	mem_conn.cursor	()

cursor.execute	(“““CREATE	TABLE	Tools	(id	INTEGER	PRIMARY	KEY,	name	TEXT,
size	TEXT,	price	INTEGER)”””)

for	item	in	((None,“Book”,“Small”,15),														#The	end	comma	is	required	to	separate

tuple	 items	 (None,“Purse”,“Medium”,35),(None,“Pen”,“Large”,55),(None,”
Hat”,“Small”,25),(None,“Handbag”,“Small”,25),(None,“Socks”,“Small”,10),
(None,“Comb”,“Large”,60),):cursor.execute	 (“INSERT	 INTO	 Tools	 VALUES
(?,?,?,?)”,item)

connection.commit()														#Write	data	to	database

cursor.close()																		#Close	database

In	this	example	question	marks	(?)	are	used	to	insert	items	into	the	table.	They	are	used	to
prevent	 a	 SQL	 injection	 attack,	 where	 a	 SQL	 command	 is	 passed	 to	 the	 database	 as	 a
legitimate	value.	The	question	marks	act	as	a	substitution	value.

Retrieving	data	from	SQLite

To	retrieve	the	data	from	a	SQLite	database,	you	just	use	the	SQL	commands	that	tell	the
database	what	information	you	want	and	how	you	want	it	formatted.

Example:

cursor.execute	(“SELECT	name,	size,	price	FROM	Tools”)

tools	Tuple	=	cursor.fetchall	()

for	tuple	in	tools	Tuple:name,	size,	price	=	tuple														#unpack	the	tuples

item	=	(“%s,	%s,	%d”	%	(name,	size,	price))

print	item

Output:

Book,	Small,	15

Purse,	Medium,	35

Pen,	Large,	55

Hat,	Small,	25

Handbag,	Small,	25

Socks,	Small,	10

Comb,	Large,	60

Book,	Small,	15

Purse,	Medium,	35

Pen,	Large,	55

Hat,	Small,	25

Handbag,	Small,	25

Socks,	Small,	10

Comb,	Large,	60

Dealing	with	existing	databases

SQLite	 will	 try	 to	 recreate	 the	 database	 file	 every	 time	 you	 run	 the	 program.	 If	 the
database	file	already	exists,	you	will	get	an	“OperationalError”	exception	stating	that	the
file	already	exists.	The	easiest	way	to	deal	with	this	is	to	simply	catch	the	exception	and
ignore	it.

cursor.execute	(“CREATE	TABLE	Foo	(id	INTEGER	PRIMARY	KEY,	name	TEXT)”)

except	sqlite3.Operational	Error:pass

This	will	allow	you	to	run	your	database	program	multiple	times	without	having	to	delete
the	database	file	after	every	run.

CLASSES

Class	is	a	data	structure	that	is	used	in	python	to	define	objects,	which	holds	data	values
and	 behavioral	 characteristics.	 Classes	 are	 the	 entities,	 which	 are	 the	 programs	 of	 an
abstraction	 for	 a	problem,	and	 instances	are	 realizations	of	 such	objects.	The	 term	most
likely	 originates	 from	 using	 classes	 to	 identify	 and	 categorize	 biological	 families	 of
species	 to	 which	 specific	 creatures	 belong	 and	 can	 be	 derived	 into	 similar	 yet	 distinct
subclasses.	Many	of	these	features	apply	to	the	concept	of	classes	in	programming.

In	Python,	 class	declarations	 are	 similar	 to	 the	 function	declarations,	 a	 header	 line	with
appropriate	keyword	followed	by	a	suite	as	its	definition,	as	indicated	below:

def	functionName(args):

‘function	documentation	string’

function_suite

class

ClassName:

‘class	documentation	string’

class_suite

Class	in	python	holds	multiple	data	items,	and	it	can	also	support	its	own	set	of	functions,
which	 are	 called	methods.	You	may	be	 asking	what	 other	 advantages	 classes	have	over
standard	container	types	such	as	lists	and	dictionaries.

	
	
Creating	Classes
Python	 classes	 are	 created	 using	 the	 class	 keyword.	 In	 the	 simple	 form	 of	 class
declarations,	the	name	of	the	class	immediately	follows	the	keyword:

class	ClassName:

‘class	documentation	string’

class_suite

class_suite	 consists	 of	 all	 the	 component	 statements,	 defining	 class	 members,	 data
attributes,	and	functions.	Classes	are	generally	defined	at	the	top-level	of	a	module	so	that
instances	of	a	class	can	be	created	anywhere	in	a	piece	of	source	code	where	the	class	is
defined.

	
Class	Declaration	vs.	Definition
In	 python	 there	 is	 no	 difference	 in	 declaring	 and	 defining	 classes	 because	 they	 occur
simultaneously.	The	definition	follows	the	declaration	and	the	documentation	string.

Class	Attributes
A	class	attribute	is	a	functional	element,	which	belongs	to	another	object	and	is	accessed
via	dotted-attribute	notation.	In	Python,	complex	numbers	have	data	attributes	while	lists
and	dictionaries	have	functional	attributes.	When	you	access	attribute,	you	can	also	access
an	object	that	may	have	attributes	of	its	own.

For	example:

-	sys.stdout.write(‘abc’)

-	print	myModule.myClass.__doc__

-	myList.extend(map(upper,	open(‘x’).readlines()))

Class	attributes	are	linked	to	the	classes	in	which	they	are	defined,	and	instance	objects	are
the	most	 commonly	 used	 objects	 in	 OOP.	 Instance	 data	 attributes	 are	 the	 primary	 data
attributes	 that	are	used.	Class	data	attributes	are	useful	only	when	a	“static”	data	 type	is
required,	which	does	not	require	any	instances.

	
Class	Data	Attributes
Data	attributes	are	the	variables	of	the	class	which	are	defined	by	the	programmer.	They
can	 be	 used	 like	 any	 other	 variable	 when	 the	 class	 is	 created	 and	 can	 be	 updated	 by
methods	within	 the	class.	These	 types	of	 attributes	 are	better	known	 to	programmers	as
static	members,	class	variables,	or	static	data.	They	represent	data	that	is	tied	to	the	class
object	they	belong	to	and	are	independent	of	any	class	instances.

Example	of	using	class	data	attributes	(abc):

>>>	class	C:

…	abc	=	100

>>>	print	C.abc

0

>>>	C.abc	=	C.abc	+	1

>>>	print	C.abc

Output:

101

	
METHODS

In	 the	 example	 given	 below,	MyFirstMethod	method	 of	 the	MyTeam	 class	 is	 simply	 a
function	which	is	defined	as	part	of	a	class	definition.	This	means	that	MyMethod	applies
only	to	objects	or	instances	of	MyTeam	type.

	

For	Example:

>>>	class	MyTeam:

def	MyFirstMethod(self):

pass

>>>	myInstance	=	MyTeam()

>>>	myInstance.MyFirstMethod()

Any	call	to	MyFirstMethod	by	itself	as	a	function	fails:

>>>	MyFirstMethod()

Traceback	(innermost	last):

File	“<stdin>”,	line	1,	in	?

MyFirstMethod()

NameError:	MyFirstMethod

Here	 in	 the	 above	 example,	 NameError	 exception	 is	 raised	 because	 there	 is	 no	 such
function	 in	 the	 global	 namespace.	 Here	 MyFirstMethod	 is	 a	 method,	 meaning	 that	 it
belongs	 to	 the	 class	 and	 is	 not	 a	 name	 in	 the	global	 namespace.	 If	MyFirstMethod	was
defined	as	a	function	at	the	top-level,	then	our	call	would	have	succeeded.	We	show	you
below	that	even	calling	the	method	with	the	class	object	fails.

>>>	MyTeam.MyFirstMethod()

Traceback	(innermost	last):

File	“<stdin>”,	line	1,	in	?

MyTeam.MyFirstMethod()

TypeError:	unbound	method	must	be	called	with	class	instance	1st	argument

This	TypeError	exception	may	seem	perplexing	at	first	because	you	know	that	the	method
is	an	attribute	of	the	class	and	so	are	wondering	why	there	is	a	failure.

	
Static	Methods
Python	does	not	 support	 static	methods,	 and	 functions	which	are	associated	only	with	a
class	and	not	with	any	particular	instances.	They	are	either	function,	which	help	manage
static	class	data	or	are	global	functions	which	have	some	sort	of	functionality	related	to	the
class,	 in	which	 they	 are	 defined.	Because	 python	 does	 not	 support	 static	methods,	 so	 a
standard	global	function	is	required.

	
	

	
	
	
	
	
	

INSTANCES

Class	is	a	data	structure	definition	type,	while	an	instance	is	a	declaration	of	a	variable	of
that	type.	Or	you	can	say	that	instances	are	classes	which	are	brought	to	life.	Instances	are
the	 objects	 which	 are	 used	 primarily	 during	 execution,	 and	 all	 instances	 are	 of	 type
“instance.”

Creating	Instances	by	Invoking	Class	Object
Most	 languages	 provide	 a	 new	 keyword	 to	 create	 an	 instance	 of	 a	 class.	 The	 python’s
approach	is	much	simpler.	Once	a	class	has	been	defined	in	python,	creating	an	instance	is
no	more	difficult.	Using	instantiation	of	the	function	operator.

For	Example:

>>>	class	MyTeam:	#	define	class

…	pass

>>>	myInstance	=	MyTeam()	#	instantiate	class

>>>	type(MyTeam)	#	class	is	of	class	type

<type	‘class’>

>>>	type(myInstance)	#	instance	is	of	instance	type

<type	‘instance’>

Using	the	term	“type”	in	Python	is	different	from	the	instance	being	of	the	type	of	class	it
was	created	from.	An	object’s	type	dictates	the	behavioral	properties	of	such	objects	in	the
Python	 system,	 and	 these	 types	 are	 a	 subset	 of	 all	 types,	which	Python	 supports.	User-
defined	 “types”	 such	 as	 classes	 are	 categorized	 in	 the	 same	manner.	 Classes	 share	 the
same	type,	but	have	different	IDs	and	values.	All	classes	are	defined	with	the	same	syntax,
so	 they	 can	 be	 instantiated,	 and	 all	 have	 the	 same	 core	 properties.	 Classes	 are	 unique
objects,	which	are	differ	only	in	definition,	hence	they	are	all	the	same	“type”	in	Python.

Instance	Attributes
Instances	have	only	data	attributes	and	these	are	simply	the	data	values	which	you	want	to
be	associated	with	a	particular	instance	of	any	class.	They	are	accessible	via	the	familiar
dotted-attribute	notation.	These	values	are	independent	of	any	other	instance	or	the	class	it
was	 instantiated	 from.	 If	 any	 instance	 is	 deallocated,	 then	 its	 attributes	 are	 also
deallocated.

“Instantiating”	Instance	Attributes
Instance	attributes	can	be	set	any	time	after	an	instance	has	been	created,	in	any	piece	of
code	that	has	access	to	the	instance.	However,	one	of	the	key	places	where	such	attributes
are	set	is	in	the	constructor,	__init__	().

Constructor	First	Place	to	Set	Instance	Attributes
The	constructor	is	the	earliest	place	that	instance	attributes	can	be	set	because	__init__	()
is	 the	 first	 method	 called	 after	 instance	 objects	 have	 been	 created.	 There	 is	 no	 earlier
opportunity	to	set	instance	attributes.	Once	__init__	()	has	finished	execution,	the	instance
object	is	returned,	completing	the	instantiation	process.

Default	Arguments	Provide	Default	Instance	Setup
One	can	also	use	__init__	()	along	with	default	arguments	to	provide	an	effective	way	in
preparing	an	instance	for	use.	In	most	of	the	cases,	the	default	values	represent	the	most
common	cases	for	setting	up	instance	attributes,	and	such	use	of	default	values	precludes
them	from	having	to	be	given	explicitly	to	the	constructor.

	
Built-in	Type	Attributes
Built-in	 types	 also	 have	 attributes,	 and	 although	 they	 are	 technically	 not	 class	 instance
attributes,	they	are	sufficiently	similar	to	get	a	brief	mention	here.	Type	attributes	do	not
have	an	attribute	dictionary	like	classes	and	instances	(__dict__),	so	how	do	we	figure	out
what	attributes	built-in	types	have?	The	convention	for	built-in	types	is	to	use	two	special
attributes,	__methods__	and	__members__,	to	outline	any	methods	and/or	data	attributes.

	
Instance	Attributes	vs.	Class	Attributes
Class	attributes	are	simply	data	values	which	are	associated	with	a	class	and	with	not	any

particular	 instances.	 Such	 values	 are	 also	 referred	 to	 as	 static	 members	 because	 their
values	remain	constant,	even	if	a	class	is	invoked	due	to	instantiation	multiple	times.	No
matter	 what,	 static	 members	 maintain	 their	 values	 independent	 of	 instances	 unless
explicitly	 changed.	 Comparing	 instance	 attributes	 to	 class	 attributes	 is	 just	 similar	 to
comparing	automatic	and	static	variables.	Their	main	aspect	is	that	you	can	access	a	class
attribute	with	either	the	class	or	an	instance,	while	the	instance	does	not	have	an	attribute
with	the	same	name.

	
	
	
	
	
	
	
	

Python	Database	Access

The	standard	database	used	for	Python	is	DB-API.	Most	Python	database	interfaces	adhere
to	this	standard.	You	can	choose	the	right	database	for	your	application.	Python	Database
API	 supports	 a	 wide	 range	 of	 database	 servers	 such	 as,	 GadFly,	 mSQL,	 MySQL,
PostgreSQL,	Microsoft	SQL	Server	11000,	Informix,	Interbase,	Oracle,	Sybase.	You	must
download	 a	 separate	 DB	 API	 module	 for	 each	 database	 that	 you	 need	 to	 access.	 For
example,	if	you	need	to	access	an	Oracle	database	as	well	as	a	MySQL	database,	then	you
need	to	download	both	the	Oracle	and	the	MySQL	database	modules.

The	 DB	 API	 provides	 a	 minimal	 standard	 for	 working	 with	 databases	 using	 Python
structures	and	syntax	wherever	possible.

The	API	includes:

•	Importing	the	API	module.

•	Acquiring	a	connection	with	the	database.

•	Issuing	SQL	statements	and	stored	procedures.

•	Closing	the	connection

We	would	learn	all	the	concepts	using	MySQL,	so	let’s	talk	about	MySQLdb	module	only.

	
What	is	MySQLdb?
MySQLdb	 is	 an	 interface	 for	 connecting	 to	 a	MySQL	 database	 server	 from	 Python.	 It
implements	the	Python	Database	API	v2.0	and	is	built	on	top	of	the	MySQL	C	API.

How	to	install	MySQLdb?
Before	proceeding,	you	make	sure	you	have	MySQLdb	 installed	on	your	Tomhine.	 Just
type	the	following	in	your	Python	script	and	execute	it:

#!/usr/bin/python

import	MySQLdb

If	it	produces	the	following	result,	then	it	means	MySQLdb	module	is	not	installed:

Traceback	(most	recent	call	last):

File	“test.py”,	line	3,	in	<module>

import	MySQLdb

ImportError:	No	module	named	MySQLdb

To	install	MySQLdb	module,	download	it	from	MySQLdb	Download	page	and	proceed	as
follows:

$	gunzip	MySQL-python-1.2.2.tar.gz

$	tar	-xvf	MySQL-python-1.2.2.tar

$	cd	MySQL-python-1.2.2

$	python	setup.py	build

$	python	setup.py	install

	
Database	Connection:
Before	connecting	to	a	MySQL	database,	you	need	to	make	sure	of	the	followings	points
given	below:

•	You	have	created	a	database	TESTDB.

•	You	have	created	a	table	STAFF	in	TESTDB.

•	This	table	is	having	fields	FIRST_NAME,	LAST_NAME,	AGE,	SEX	and	INCOME.

•	User	ID	“abctest”	and	password	“python121”	are	set	to	access	TESTDB.

•	Python	module	MySQLdb	is	installed	properly	on	your	Tomhine.

•	You	have	gone	through	MySQL	tutorial	to	understand	MySQL	Basics.

For	Example:

Connecting	with	MySQL	database	“TESTDB”:

#!/usr/bin/python

import	MySQLdb

#	Open	database	connection

db	=	MySQLdb.connect(“localhost”,“abctest”,“python121”,“TESTDB”)

#	prepare	a	cursor	object	using	cursor()	method

cursor	=	db.cursor()

#	execute	SQL	query	using	execute()	method.

cursor.execute(“SELECT	VERSION()”)

#	Fetch	a	single	row	using	fetchone()	method.

data	=	cursor.fetchone()

print	“Database	version	:	%s	”	%	data

#	disconnect	from	server

db.close()

	

Output:

Database	version	:	5.0.45

Creating	Database	Table:

Once	a	database	connection	is	established,	you	can	easily	create	tables	or	records	into	the
database	using	execute	method.

Example	for	creating	Database	table	STAFF:

#!/usr/bin/python

import	MySQLdb

#	Open	database	connection

db	=	MySQLdb.connect(“localhost”,“abctest”,“python121”,“TESTDB”)

#	prepare	a	cursor	object	using	cursor()	method

cursor	=	db.cursor()

#	Drop	table	if	it	already	exist	using	execute()	method.

cursor.execute(“DROP	TABLE	IF	EXISTS	STAFF”)

#	 Create	 table	 as	 per	 requirement	 sql	 =	 “““CREATE	 TABLE	 STAFF	 (FIRST_NAME
CHAR(20)	 NOT	 NULL,LAST_NAME	 CHAR(20),AGE	 INT,SEX	 CHAR(1),INCOME
FLOAT)”””

cursor.execute(sql)

#	disconnect	from	server

db.close()

INSERT	Operation:
INSERT	operation	is	required	when	you	want	to	create	your	records	into	a	database	table.

Example	to	create	a	record	into	STAFF	table:

#!/usr/bin/python

import	MySQLdb

#	Open	database	connection

db	=	MySQLdb.connect(“localhost”,“abctest”,“python121”,“TESTDB”)

#	prepare	a	cursor	object	using	cursor()	method

cursor	=	db.cursor()

#	Prepare	SQL	query	to	INSERT	a	record	into	the	database.

sql	=	“““INSERT	INTO	STAFF(FIRST_NAME,LAST_NAME,	AGE,	SEX,	INCOME)

VALUES	(‘Tom’,	‘David’,	20,	‘M’,	11000)”””

try:

#	Execute	the	SQL	command

cursor.execute(sql)

#	Commit	your	changes	in	the	database

db.commit()

except:

#	Rollback	in	case	there	is	any	error

db.rollback()

#	disconnect	from	server

db.close()

Above	example	can	be	written	as	follows	to	create	SQL	queries	dynamically:

#!/usr/bin/python

import	MySQLdb

#	Open	database	connection

db	=	MySQLdb.connect(“localhost”,“abctest”,“python121”,“TESTDB”)

#	prepare	a	cursor	object	using	cursor()	method

cursor	=	db.cursor()

#	Prepare	SQL	query	to	INSERT	a	record	into	the	database.

sql	=	“INSERT	INTO	STAFF(FIRST_NAME,	\LAST_NAME,	AGE,	SEX,	INCOME)	\

VALUES	(‘%s’,	‘%s’,	‘%d’,	‘%c’,	‘%d’)”	%	\	(‘Tom’,	‘David’,	20,	‘M’,	11000)

try:

#	Execute	the	SQL	command

cursor.execute(sql)

#	Commit	your	changes	in	the	database

db.commit()

except:

#	Rollback	in	case	there	is	any	error

db.rollback()

#	disconnect	from	server

db.close()

READ	Operation:
READ	Operation	on	database	means	to	fetch	some	useful	information	from	the	database.
Once	 our	 database	 connection	 is	 established,	 we	 are	 ready	 to	 make	 a	 query	 into	 this
database.	We	can	use	either	fetchone()	method	to	fetch	single	record	or	fetchall()	method
to	fetech	multiple	values	from	a	database	table.

•	 fetchone():	 This	method	 fetches	 the	 next	 row	 of	 a	 query	 result	 set.	A	 result	 set	 is	 an
object	that	is	returned	when	a	cursor	object	is	used	to	query	a	table.

•	 fetchall():	This	method	 fetches	all	 the	 rows	 in	a	 result	 set.	 If	 some	rows	have	already

been	extracted	from	the	result	set,	the	fetchall()	method	retrieves	the	remaining	rows	from
the	result	set.

•	 rowcount:	 This	 is	 a	 read-only	 attribute	 and	 returns	 the	 number	 of	 rows	 that	 were
affected	by	an	execute()	method.

Example	to	query	all	the	records	from	STAFF	table	having	salary	more	than	5000:

#!/usr/bin/python

import	MySQLdb

#	Open	database	connection

db	=	MySQLdb.connect(“localhost”,“abctest”,“python121”,“TESTDB”)

#	prepare	a	cursor	object	using	cursor()	method

cursor	=	db.cursor()

#	Prepare	SQL	query	to	INSERT	a	record	into	the	database.

sql	=	“SELECT	*	FROM	STAFF	\

WHERE	INCOME	>	‘%d’”	%	(1000)

try:

#	Execute	the	SQL	command

cursor.execute(sql)

#	Fetch	all	the	rows	in	a	list	of	lists.

results	=	cursor.fetchall()

for	row	in	results:

fname	=	row[0]

lname	=	row[1]

age	=	row[2]

sex	=	row[3]

income	=	row[4]

#	Now	print	fetched	result

print	“fname=%s,lname=%s,age=%d,sex=%s,income=%d”	%	\

(fname,	lname,	age,	sex,	income)

except:

print	“Error:	unable	to	fecth	data”

#	disconnect	from	server

db.close()

Output:

fname=Tom,	lname=David,	age=20,	sex=M,	income=11000

Update	Operation:
UPDATE	Operation	 on	 any	 database	 means	 to	 update	 one	 or	 more	 records,	 which	 are
already	 available	 in	 the	 database.	 Following	 is	 the	 procedure	 to	 update	 all	 the	 records
having	SEX	as	‘M’.	Here,	we	will	increase	AGE	of	all	the	males	by	one	year.

For	Example:

#!/usr/bin/python

import	MySQLdb

#	Open	database	connection

db	=	MySQLdb.connect(“localhost”,“abctest”,“python121”,“TESTDB”)

#	prepare	a	cursor	object	using	cursor()	method

cursor	=	db.cursor()

#	Prepare	SQL	query	to	UPDATE	required	records

sql	=	“UPDATE	STAFF	SET	AGE	=	AGE	+	1

WHERE	SEX	=	‘%c’”	%	(‘M’)

try:

#	Execute	the	SQL	command

cursor.execute(sql)

#	Commit	your	changes	in	the	database

db.commit()

except:

#	Rollback	in	case	there	is	any	error

db.rollback()

#	disconnect	from	server

db.close()

DELETE	Operation:

DELETE	operation	is	required	when	you	want	to	delete	some	records	from	your	database.
Following	is	the	procedure	to	delete	all	the	records	from	STAFF	where	AGE	is	more	than
20:

	

For	Example:

#!/usr/bin/python

import	MySQLdb

#	Open	database	connection

db	=	MySQLdb.connect(“localhost”,“abctest”,“python121”,“TESTDB”)

#	prepare	a	cursor	object	using	cursor()	method

cursor	=	db.cursor()

#	Prepare	SQL	query	to	DELETE	required	records

sql	=	“DELETE	FROM	STAFF	WHERE	AGE	>	‘%d’”	%	(20)

try:

#	Execute	the	SQL	command

cursor.execute(sql)

#	Commit	your	changes	in	the	database

db.commit()

except:

#	Rollback	in	case	there	is	any	error

db.rollback()

#	disconnect	from	server

db.close()

Performing	Transactions:
Transactions	are	a	mechanism	that	ensures	consistency	of	data.	Transactions	should	have
the	following	properties:

•	Atomicity:	Either	a	transaction	completes	or	nothing	happens	at	all.

•	Consistency:	 A	 transaction	must	 start	 in	 a	 consistent	 state	 and	 leave	 the	 system	 in	 a
consistent	state.

•	 Isolation:	 Intermediate	 results	 of	 a	 transaction	 are	 not	 visible	 outside	 the	 current
transaction.

•	Durability:	Once	 a	 transaction	was	 committed,	 the	 effects	 are	 persistent,	 even	 after	 a

system	failure.

The	Python	DB	API	2.0	provides	two	methods	to	either	commit	or	rollback	a	transaction.

For	Example:

#	Prepare	SQL	query	to	DELETE	required	records

sql	=	“DELETE	FROM	STAFF	WHERE	AGE	>	‘%d’”	%	(20)

try:

#	Execute	the	SQL	command

cursor.execute(sql)

#	Commit	your	changes	in	the	database

db.commit()

except:

#	Rollback	in	case	there	is	any	error

db.rollback()

COMMIT	Operation:
Commit	 is	 the	operation,	which	gives	a	green	signal	 to	database	 to	finalize	 the	changes,
and	after	this	operation,	no	change	can	be	reverted	back.

	

For	Example:

db.commit()

ROLLBACK	Operation:
If	you	are	not	satisfied	with	one	or	more	of	the	changes	and	you	want	to	revert	back	those
changes	completely,	then	use	rollback()	method.

For	Example:

db.rollback()

Disconnecting	Database:
To	disconnect	Database	connection,	use	close()	method.

	

For	Example:

db.close()

If	 the	 connection	 to	 a	 database	 is	 closed	 by	 the	 user	 with	 the	 close()	 method,	 any
outstanding	transactions	are	rolled	back	by	the	DB.	However,	instead	of	depending	on	any
of	DB	 lower	 level	 implementation	 details,	 your	 application	would	 be	 better	 off	 calling
commit	or	rollback	explicitly.

	
	
	
Handling	Errors:
There	are	many	sources	of	errors.	A	few	examples	are	a	syntax	error	in	an	executed	SQL
statement,	 a	 connection	 failure,	 or	 calling	 the	 fetch	method	 for	 an	 already	 canceled	 or
finished	statement	handle.	The	DB	API	defines	a	number	of	errors	that	must	exist	in	each
database	module.	The	following	table	lists	these	exceptions.

Exception	Description

Warning	Used	for	non-fatal	issues.	Must	subclass	StandardError.

Error	Base	class	for	errors.	Must	subclass	StandardError.

	

InterfaceError

Used	for	errors	in	the	database	module,	not	the	database	itself.	Must	subclass	Error.

DatabaseError

Used	for	errors	in	the	database.	Must	subclass	Error.	DataError	Subclass	of	DatabaseError
that	refers	to	errors	in	the	data.

OperationalError

Subclass	 of	 DatabaseError	 that	 refers	 to	 errors	 such	 as	 the	 loss	 of	 a	 connection	 to	 the
database.	These	errors	are	generally	outside	of	the	control	of	the	Python	scripter.

IntegrityError

Subclass	of	DatabaseError	for	situations	that	would	damage	the	relational	integrity,	such
as	uniqueness	constraints	or	foreign	keys.

InternalError

Subclass	of	DatabaseError	that	refers	to	errors	internal	to	the	database	module,	such	as	a
cursor	no	longer	being	active.

ProgrammingError

Subclass	of	DatabaseError	that	refers	to	errors	such	as	a	bad	table	name	and	other	things
that	can	safely	be	blamed	on	you.

NotSupportedError

Subclass	of	DatabaseError	that	refers	to	trying	to	call	unsupported	functionality.

Your	 Python	 scripts	 should	 handle	 these	 errors,	 but	 before	 using	 any	 of	 the	 above
exceptions,	make	sure	your	MySQLdb	has	support	for	 that	exception.	You	can	get	more
information	about	them	by	reading	the	DB	API	2.0	specification.

PYTHON	NETWORKING

Python	provides	two	levels	of	access	to	network	services.	At	a	low	level,	you	can	access
the	 basic	 socket	 support	 in	 the	 underlying	 operating	 system	 which	 allows	 you	 to
implement	clients	and	servers	for	both	connection	oriented	and	connectionless	protocols.
Python	 also	 has	 libraries	 that	 provide	 higher-level	 access	 to	 specific	 application-level
network	protocols,	such	as	FTP,	HTTP,	and	so	on.

What	are	Sockets?
Sockets	 are	 the	 endpoints	 of	 a	 bidirectional	 communications	 channel.	 Sockets	 may
communicate	 within	 a	 process,	 between	 processes	 on	 the	 same	 machine,	 or	 between
processes	on	different	continents.	Sockets	may	be	implemented	over	a	number	of	different
channel	types:	UNIX	domain	sockets,	TCP,	UDP,	and	so	on.	The	socket	library	provides
specific	 classes	 for	 handling	 the	 common	 transports	 as	 well	 as	 a	 generic	 interface	 for
handling	the	rest.

Sockets	have	their	own	vocabulary:

The	socket	Module:
To	create	a	socket,	you	must	use	the	socket.socket()	function	available	in	socket	module.
Syntax:

s	=	socket.socket	(socket_family,	socket_type,	protocol=0)

Description	of	parameters:

•	socket_family:	This	is	either	AF_UNIX	or	AF_INET,	as	explained	earlier.

•	socket_type:	This	is	either	SOCK_STREAM	or	SOCK_DGRAM.

•	protocol:	This	is	usually	left	out,	defaulting	to	0.

Socket	objects	are	use	required	functions	to	create	your	client	or	server	program.	Here	I
am	going	to	share	with	you	the	list	of	functions	required:

Server	Socket	Methods:

Client	Socket	Methods:

General	Socket	Methods:

A	Simple	Server:
To	write	Internet	servers,	we	use	the	socket	function	available	in	socket	module	to	create	a
socket	object.	A	socket	object	is	then	used	to	call	other	functions	to	set	up	a	socket	server.
Now,	call	bind	 (hostname,	port)	 function	 to	specify	a	port	 for	your	service	on	 the	given
host.

Next,	 call	 the	 accept	 method	 of	 the	 returned	 object.	 This	 method	 waits	 until	 a	 client
connects	to	the	port	you	specified	and	then	returns	a	connection	object	that	represents	the
connection	to	that	client.

	

Example:

#!/usr/bin/python	#	This	is	server.py	file

import	socket	#	Import	socket	module

s	=	socket.socket()	#	Create	a	socket	object

host	=	socket.gethostname()	#	Get	local	machine	name

port	=	102	#	Reserve	a	port	for	your	service.

s.bind((host,	port))	#	Bind	to	the	port

s.listen(5)	#	Now	wait	for	client	connection.

while	True:

c,	addr	=	s.accept()	#	Establish	connection	with	client.

print	‘Got	connection	from’,	addr

c.send(‘Thanks	for	connecting’)

c.close()	#	Close	the	connection

A	Simple	Client:
Now,	we	will	write	a	very	simple	client	program,	which	will	open	a	connection	to	a	given
port	102	and	given	host.	This	is	very	simple	to	create	a	socket	client	using	Python’s	socket
module	function.	The	socket.connect(hosname,	port)	opens	a	TCP	connection	to	hostname
on	the	port.	Once	you	have	a	socket	open,	you	can	read	from	it	like	any	IO	object.	When

done,	remember	to	close	it,	as	you	would	close	a	file.	The	following	code	is	a	very	simple
client	that	connects	to	a	given	host	and	port,	reads	any	available	data	from	the	socket,	and
then	exits:

	

Example:

#!/usr/bin/python	#	This	is	client.py	file

import	socket	#	Import	socket	module

s	=	socket.socket()	#	Create	a	socket	object

host	=	socket.gethostname()	#	Get	local	machine	name

port	=	102	#	Reserve	a	port	for	your	service.

s.connect((host,	port))

print	s.recv(1024)

s.close	#	Close	the	socket	when	done

Now,	run	this	server.py	in	background	and	then	run	above	client.py	to	see	the	result.

#	Following	would	start	a	server	in	background.

$	python	server.py	&

#	Once	server	is	started	run	client	as	follows:

$	python	client.py

Output:

Got	connection	from	(‘127.0.0.1’,	48437)

Thanks	for	connecting

Python	Internet	modules
Here	 below	 is	 a	 list	 of	 some	 important	 modules,	 which	 are	 used	 in	 Python
Network/Internet	programming.

	
	
	

SENDING	MAIL	IN	PYTHON

Simple	 Mail	 Transfer	 Protocol	 (SMTP)	 is	 a	 protocol	 that	 is	 used	 to	 send	 e-mails	 and
routing	 e-mails	 between	 the	 mail	 servers.	 In	 Python	 there	 is	 ‘smtplib’	 module,	 which
defines	an	SMTP	client	session	object.	SMTP	client	session	object	is	used	to	send	mail	to
any	Internet	machine	with	an	SMTP	or	ESMTP	listener	daemon.

	

SYNTAX:

import	smtplib

smtpObj	=	smtplib.SMTP([host[,port[,local_hostname]]])

	

Detail	of	parameters	used:

•	host:	This	is	the	host	running	your	SMTP	server.	You	can	specify	IP	address	of	the	host
or	a	domain	name.	This	is	optional	argument.

•	port:	If	you	are	providing	host	argument,	then	you	need	to	specify	a	port,	where	SMTP
server	is	listening.	Usually	this	port	would	be	25.

•	local_hostname:	 If	your	SMTP	server	 is	 running	on	your	 local	machine,	 then	you	can
specify	 justlocalhost	 as	 of	 this	 option.	 An	 SMTP	 object	 has	 an	 instance	method	 called
sendmail,	which	will	typically	be	used	to	do	the	work	of	mailing	a	message.	It	takes	three
parameters:

•	The	sender	-	A	string	with	the	address	of	the	sender.

•	The	receivers	-	A	list	of	strings,	one	for	each	recipient.

•	The	message	-	A	message	as	a	string	formatted	as	specified	in	the	various	RFCs.

	

Example:

To	send	an	e-mail	using	Python	script.

#!/usr/bin/python

import	smtplib

sender	=	‘abc@senddomain.com’

receivers	=	[‘xyz@recdomain.com’]

message	=	“““From:	From	Person	<abc@senddomain.com>

To:	To	Person	<xyz@recdomain.com>

Subject:	SMTP	e-mail	test

This	is	a	test	e-mail	message.

”””

try:

smtpObj	=	smtplib.SMTP(‘localhost’)

smtpObj.sendmail(sender,	receivers,	message)

print	“Mail	sent	successfully”

except	SMTPException:

print	“Error	in	sending	mail”

In	case,	if	you	are	not	running	an	SMTP	server	on	your	local	machine,	then	you	can	use
‘smtplib’	 client	 to	 communicate	 with	 a	 remote	 SMTP	 server.	 Unless	 you’re	 using	 a
webmail	service,	your	e-mail	provider	will	have	provided	you	with	outgoing	mail	server
details	that	you	can	provide	them,	as	follows:

smtplib.SMTP(‘mail.your-domain.com’,	25)

Sending	an	HTML	E-mails	Using	Python:
When	you	send	a	text	message	using	Python,	then	all	the	content	will	be	treated	as	simple
text.	Even	if	you	will	include	HTML	tags	in	a	text	message,	it	will	be	displayed	as	simple
text	 and	 HTML	 tags	 will	 not	 be	 formatted	 according	 to	 HTML	 syntax.	 But	 Python
provides	option	to	send	an	HTML	message	as	actual	HTML	message.	While	sending	an	e-
mail	message,	you	can	specify	a	Mime	version,	content	type	and	character	set	to	send	an
HTML	e-mail.

Example	to	send	HTML	content	as	an	e-mail:

#!/usr/bin/python

import	smtplib

message	=	“““From:	From	Person	<abc@senddomain.com>

To:	To	Person	<xyz@recdomain.com>

MIME-Version:	1.0

Content-type:	text/html

Subject:	SMTP	HTML	e-mail	test

This	is	an	e-mail	message	to	be	sent	in	HTML	format

Here	is	HTML	text	for	you.

<h1>Here	is	Headline	for	you.</h1>

”””

try:

smtpObj	=	smtplib.SMTP(‘localhost’)

smtpObj.sendmail(sender,	receivers,	message)

print	“Mail	sent	successfully”

except	SMTPException:

print	“Error	in	sending	mail”

Sending	Attachments	as	an	e-mail:
To	 send	 an	 e-mail	 with	 mixed	 content	 requires	 setting	 Content-type	 header	 to
multipart/mixed.	Then,	text	and	attachment	sections	can	be	specified	within	boundaries.	A
boundary	is	started	with	two	hyphens	followed	by	a	unique	number,	which	can	not	appear
in	 the	message	 part	 of	 the	 e-mail.	 A	 final	 boundary	 denoting	 the	 e-mail’s	 final	 section
must	 also	 end	with	 two	 hyphens.	Attached	 files	 should	 be	 encoded	with	 the	 pack(“m”)
function	to	have	base64	encoding	before	transmission.

Example	to	send	a	file	/tmp/test.txt	as	an	attachment:

#!/usr/bin/python

import	smtplib

import	base64

filename	=	“/tmp/test.txt”

#	Read	a	file	and	encode	it	into	base64	format

fo	=	open(filename,	“rb”)

filecontent	=	fo.read()

encodedcontent	=	base64.b64encode(filecontent)	#	base64

sender	=	‘test@aaadomain.com’

reciever	=	‘aaa.admin@gmail.com’

marker	=	“TESTMARKER”

body	=”””

This	is	a	test	email	to	send	an	attachement.

”””

#	Define	the	main	headers.

part1	=	“““From:	From	Person	<me@fromdomain.net>

To:	To	Person	<aaa.admin@gmail.com>

Subject:	Sending	Attachement

MIME-Version:	1.0

Content-Type:	multipart/mixed;	boundary=%s

—%s

”””	%	(marker,	marker)

#	Define	the	message	action

part2	=	“““Content-Type:	text/plain

Content-Transfer-Encoding:8bit

%s

—%s

”””	%	(body,marker)

#	Define	the	attachment	section

part3	=	“““Content-Type:	multipart/mixed;	name="%s"

Content-Transfer-Encoding:base64

Content-Disposition:	attachment;	filename=%s

%s

—%s—

”””	%(filename,	filename,	encodedcontent,	marker)

message	=	part1	+	part2	+	part3

try:

smtpObj	=	smtplib.SMTP(‘localhost’)

smtpObj.sendmail(sender,	reciever,	message)

print	“Mail	sent	successfully”

except	Exception:

print	“Error	in	sending	email”

PYTHON	MULTITHREADING

In	python	you	can	run	multiple	 threads	at	a	 time.	Running	multiple	 threads	 is	similar	 to
running	several	different	programs	with	following	benefits:

•	Multiple	threads	within	a	process	share	the	same	data	space	with	the	main	thread	and	can
share	information	or	communicate	with	each	other	more	easily	as	compared	to	when	they
were	separate	processes.

•	Threads	sometimes	called	light-weight	processes	and	they	don’t	require	much	memory
overhead.	A	 thread	has	a	beginning,	 an	execution	 sequence,	 and	a	conclusion.	 It	has	an
instruction	pointer	that	keeps	track	of	where	within	its	context	it	is	currently	running.

•	It	can	be	pre-empted.

•	It	can	temporarily	be	put	on	hold	while	other	threads	are	running,	this	method	is	called
yielding.

Starting	a	New	Thread:
	
To	start	a	new	thread,	you	need	to	call	following	method	available	in	thread	module:

thread.start_new_thread	(function,	args[,kwargs])

This	method	is	used	to	enable	a	fast	and	efficient	way	to	create	new	threads	in	both	Linux
and	Windows.	The	method	call	 returns	 immediately	and	 the	child	 thread	starts	and	calls
function	with	the	passed	list	of	‘agrs’.	When	function	returns,	then	the	thread	terminates.
Here,	 ‘args’	 is	 a	 tuple	 of	 arguments;	 that	 uses	 an	 empty	 tuple	 to	 call	 function	 without
passing	any	arguments.	‘kwargs’	is	an	optional	dictionary	of	keyword	arguments.

For	Example:

#!/usr/bin/python

import	thread

import	time

#	Define	a	function	for	the	thread

def	print_time(threadName,	delay):

count	=	0

while	count	<	5:

time.sleep(delay)

count	+=	1

print	“%s:	%s”	%	(threadName,	time.ctime(time.time()))

#	Create	two	threads	as	follows

try:

thread.start_new_thread(print_time,	(“MyThread-1”,	2,))

thread.start_new_thread(print_time,	(“MyThread-2”,	4,))

except:

print	“Error	in	starting	a	thread”

while	1:

pass

Output:

MyThread-1:	Wed	Jan	01:45	01:45:17	2015

MyThread-1:	Wed	Jan	01:45	01:45:19	2015

MyThread-2:	Wed	Jan	01:45	01:45:19	2015

MyThread-1:	Wed	Jan	01:45	01:45:21	2015

MyThread-2:	Wed	Jan	01:45	01:45:23	2015

MyThread-1:	Wed	Jan	01:45	01:45:23	2015

MyThread-1:	Wed	Jan	01:45	01:45:25	2015

MyThread-2:	Wed	Jan	01:45	01:45:27	2015

MyThread-2:	Wed	Jan	01:45	01:45:31	2015

MyThread-2:	Wed	Jan	01:45	01:45:35	2015

Although	it	is	very	effective	for	low-level	threading,	but	the	thread	module	is	very	limited
compared	to	the	newer	threading	module.

The	Threading	Module:

New	threading	module	in	Python	2.4	provides	much	more	powerful,	high-level	support	for
threads.	The	threading	module	exposes	all	the	methods	of	the	thread	module	and	provides
some	additional	methods:

•	threading.activeCount():	Returns	the	number	of	thread	objects	that	are	active.

•	 threading.currentThread():	 Returns	 the	 number	 of	 thread	 objects	 in	 the	 caller’s	 thread
control.

•	threading.enumerate():	Returns	a	list	of	all	thread	objects	that	are	currently	active.

In	 addition	 to	 the	methods,	 the	 threading	module	 has	 the	 Thread	 class	 that	 implements
threading.	The	methods	provided	by	the	Thread	class	are	given	below:

•	run():	The	run()	method	is	the	entry	point	for	a	thread.

•	start():	The	start()	method	starts	a	thread	by	calling	the	run	method.

•	join([time]):	The	join()	waits	for	threads	to	terminate.

•	isAlive():	The	isAlive()	method	checks	whether	a	thread	is	still	executing.

•	getName():	The	getName()	method	returns	the	name	of	a	thread.

•	setName():	The	setName()	method	sets	the	name	of	a	thread.

Creating	Thread	using	ThreadingModule:
To	implement	a	new	thread	using	the	threading	module,	you	must	follow	the	points	given
below:

•	Define	a	new	subclass	of	the	Thread	class.

•	Override	the	__init__(self	[,args])	method	to	add	additional	arguments.

•	Then,	override	the	run(self	[,args])	method	to	implement	what	the	thread	should	do	when
started.

Once	you	have	created	the	new	Thread	subclass,	you	can	create	an	instance	of	it	and	then
start	a	new	thread	by	invoking	the	start(),	which	will	in	turn	call	run()	method.

For	Example:

#!/usr/bin/python

import	threading

import	time

exitFlag	=	0

class	myBook	(threading.Thread):

def	__init__(self,	threadID,	name,	counter):

threading.Thread.__init__(self)

self.threadID	=	threadID

self.name	=	name

self.counter	=	counter

def	run(self):

print	“Starting	”	+	self.name

print_time(self.name,	self.counter,	5)

print	“Exiting	”	+	self.name

def	print_time(threadName,	delay,	counter):

while	counter:

if	exitFlag:

thread.exit()

time.sleep(delay)

print	“%s:	%s”	%	(threadName,	time.ctime(time.time()))

counter	-=	1

#	Create	new	threads

thread1	=	myBook(1,	“MyThread-1”,	1)

thread2	=	myBook(2,	“MyThread-2”,	2)

#	Start	new	Threads

thread1.start()

thread2.start()

print	“Exit	From	Main	Thread”

Output:

Starting	MyThread-1

Starting	MyThread-2

Exit	From	Main	Thread

MyThread-1:	Mon	Jul	27	01:45:10:03	2015

MyThread-1:	Mon	Jul	27	01:45:10:04	2015

MyThread-2:	Mon	Jul	27	01:45:10:04	2015

MyThread-1:	Mon	Jul	27	01:45:10:05	2015

MyThread-1:	Mon	Jul	27	01:45:10:06	2015

MyThread-2:	Mon	Jul	27	01:45:10:06	2015

MyThread-1:	Mon	Jul	27	01:45:10:07	2015

Exiting	MyThread-1

MyThread-2:	Mon	Jul	27	01:45:10:08	2015

MyThread-2:	Mon	Jul	27	01:45:10:10	2015

MyThread-2:	Mon	Jul	27	01:45:10:12	2015

Exiting	MyThread-2

Synchronizing	Threads:													
In	 python	 threading	 module	 includes	 a	 simple-to-implement	 locking	 mechanism	 which
will	 allow	 you	 to	 synchronize	 the	 threads.	A	 new	 lock	 is	 created	 by	 calling	 the	Lock()
method,	 which	 returns	 the	 new	 lock.	 to	 force	 threads	 to	 run,	 	 The	 acquire(blocking)
method	 of	 the	 new	 lock	 object	 is	 used.	 If	 blocking	 is	 set	 to	 0,	 the	 thread	 will	 return
immediately	with	a	0	value	 if	 the	 lock	cannot	be	acquired	and	with	a	1	 if	 the	 lock	was
acquired.	If	blocking	is	set	to	1,	the	thread	will	block	and	wait	for	the	lock	to	be	released.
The	release()	method	of	the	the	new	lock	object	would	be	used	to	release	the	lock	when	it
is	no	longer	required.

For	Example:

#!/usr/bin/python

import	threading

import	time

class	myBook	(threading.Thread):

def	__init__(self,	threadID,	name,	counter):

threading.Thread.__init__(self)

self.threadID	=	threadID

self.name	=	name

self.counter	=	counter

def	run(self):

print	“Starting	”	+	self.name

#	Get	lock	to	synchronize	threads

threadLock.acquire()

print_time(self.name,	self.counter,	3)

#	Free	lock	to	release	next	thread

threadLock.release()

def	print_time(threadName,	delay,	counter):

while	counter:

time.sleep(delay)

print	“%s:	%s”	%	(threadName,	time.ctime(time.time()))

counter	-=	1

threadLock	=	threading.Lock()

threads	=	[]

#	Create	new	threads

thread1	=	myBook(1,	“MyThread-1”,	1)

thread2	=	myBook(2,	“MyThread-2”,	2)

#	Start	new	Threads

thread1.start()

thread2.start()

#	Add	threads	to	thread	list

threads.append(thread1)

threads.append(thread2)

#	Wait	for	all	threads	to	complete

for	t	in	threads:

t.join()

print	“Exiting	from	Main	Thread”

Output:

Starting	MyThread-2

MyThread-1:	Mon	Jul	27	01:45:11:28	2015

MyThread-1:	Mon	Jul	27	01:45:11:29	2015

MyThread-1:	Mon	Jul	27	01:45:11:30	2015

MyThread-2:	Mon	Jul	27	01:45:11:32	2015

MyThread-2:	Mon	Jul	27	01:45:11:34	2015

MyThread-2:	Mon	Jul	27	01:45:11:36	2015

Exiting	from	Main	Thread

	
	
	
Multithreaded	Priority	Queue:
The	Queue	module	in	python	allows	you	to	create	a	new	queue	object,	which		can	hold	a
specific	number	of	items.	Methods	that	are	used	to	control	the	Queue	are	given	below:

•	get():	The	get()	removes	and	returns	an	item	from	the	queue.

•	put():	The	put	adds	item	to	a	queue.

•	qsize()	:	The	qsize()	returns	the	number	of	items	that	are	currently	in	the	queue.

•	empty():	The	empty()	returns	True	if	queue	is	empty;	otherwise,	False.

•	full():	the	full()	returns	True	if	queue	is	full;	otherwise,	False.

For	Example:

#!/usr/bin/python

import	Queue

import	threading

import	time

exitFlag	=	0

class	myBook	(threading.Thread):

def	__init__(self,	threadID,	name,	q):

threading.Thread.__init__(self)

self.threadID	=	threadID

self.name	=	name

self.q	=	q

def	run(self):

print	“Starting	”	+	self.name

process_data(self.name,	self.q)

print	“Exiting	”	+	self.name

def	process_data(threadName,	q):

while	not	exitFlag:

queueLock.acquire()

if	not	workQueue.empty():

data	=	q.get()

queueLock.release()

print	“%s	processing	%s”	%	(threadName,	data)

else:

queueLock.release()

time.sleep(1)

threadList	=	[“MyThread-1”,	“MyThread-2”,	“Thread-3”]

nameList	=	[“A”,	“B”,	“C”,	“D”,	“E”]

queueLock	=	threading.Lock()

workQueue	=	Queue.Queue(10)

threads	=	[]

threadID	=	1

#	Create	new	threads

for	tName	in	threadList:

thread	=	myThread(threadID,	tName,	workQueue)

thread.start()

threads.append(thread)

threadID	+=	1

#	Fill	the	queue

queueLock.acquire()

for	word	in	nameList:

workQueue.put(word)

queueLock.release()

#	Wait	for	queue	to	empty

while	not	workQueue.empty():

pass

#	Notify	threads	it’s	time	to	exit

exitFlag	=	1

#	Wait	for	all	threads	to	complete

for	t	in	threads:

t.join()

print	“Exiting	Main	Thread”

Output:

Starting	Thread-1

Starting	Thread-2

Starting	Thread-3

Thread-1	processing	A

Thread-2	processing	B

Thread-3	processing	C

Thread-1	processing	D

Thread-2	processing	E

Exiting	Thread-3

Exiting	Thread-1

Exiting	Thread-2

Exiting	Main	Thread

	
	
	
	
	
	
	

PYTHON	XML	PROCESSING

What	is	XML?
XML	 is,	Extensible	Markup	Language	 (XML)	and	 its	 like	HTML	or	SGML.	XML	 is	 a
portable,	open	source	language	that	allows	the	programmers	to	develop	applications	that
can	 be	 read	 by	 other	 applications,	 regardless	 of	 operating	 system	 and/or	 developmental
language.	XML	is	extremely	useful	for	keeping	track	of	small	to	medium	amounts	of	data.

XML	Parser	Architectures	and	APIs:
The	Python	standard	library	provides	a	set	of	interfaces	to	work	with	XML.	The	two	most
basic	and	broadly	used	APIs	to	XML	data	are	the	SAX	and	DOM	interfaces.

•	Simple	API	 for	XML	 (SAX):	Here,	 you	 register	 callbacks	 for	 events	 of	 interest	 and
then	let	the	parser	proceed	through	the	document.	This	is	useful	when	your	documents	are
large	or	 you	have	memory	 limitations,	 it	 parses	 the	 file	 as	 it	 reads	 it	 from	disk	 and	 the
entire	file	is	never	stored	in	memory.

•	 Document	 Object	 Model	 (DOM)	 API:	 This	 is	 a	 World	 Wide	 Web	 Consortium
recommendation	wherein	the	entire	file	 is	read	into	memory	and	stored	in	a	hierarchical
(tree-based)	form	to	represent	all	the	features	of	an	XML	document.

The	thing	is	that	SAX	can’t	process	information	as	fast	as	DOM,	when	working	with	large
files.	On	the	other	hand,	using	DOM	can	kill	your	resources,	especially	if	used	on	a	lot	of
small	files.	SAX	is	read-only,	while	DOM	allows	changes	to	the	XML	file.	As	these	two
APIs	 complement	 each	other,	 there	 is	 no	 reason	why	you	can’t	 use	 them	both	 for	 large
projects.	Let’s	see	a	simple	example	for	XML	file	movies.xml:

<collection	shelf=“New	Arrivals”>

<movie	title=“Enemy	Behind”>

<type>War,	Thriller</type>

<format>DVD</format>

<year>2003</year>

<rating>PG</rating>

<stars>10</stars>

<description>Talk	about	a	US-Japan	war</description>

</movie>

<movie	title=“Transformers”>

<type>Anime,	Science	Fiction</type>

<format>DVD</format>

<year>1989</year>

<rating>R</rating>

<stars>8</stars>

<description>A	schientific	fiction</description>

</movie>

<movie	title=“Trigun”>

<type>Anime,	Action</type>

<format>DVD</format>

<episodes>4</episodes>

<rating>PG</rating>

<stars>10</stars>

<description>Vash	the	Stampede!</description>

</movie>

<movie	title=“Ishtar”>

<type>Comedy</type>

<format>VHS</format>

<rating>PG</rating>

<stars>2</stars>

<description>Viewable	boredom</description>

</movie>

</collection>

	
Parsing	XML	with	SAX	APIs:
SAX	is	a	standard	interface	for	event-driven	XML	parsing.	For	Parsing	XML	with	SAX,
you	 need	 to	 create	 your	 own	 ContentHandler	 by	 subclassing	 xml.sax.ContentHandler.
Your	ContentHandler	handles	the	particular	tags	and	attributes	of	your	flavor	of	XML.	A
ContentHandler	 object	 provides	 methods	 to	 handle	 various	 parsing	 events.	 Its	 owning
parser	 calls	 ContentHandler	 methods	 as	 it	 passes	 the	 XML	 file.	 The	 methods
startDocument	and	endDocument	are	called	at	the	start	and	the	end	of	the	XML	file.	The
ContentHandler	is	called	at	the	start	and	end	of	each	element.	Here	are	some	methods	to
understand	before	proceeding:

The	make_parser	Method:
This	method	creates	a	new	parser	object	and	returns	it.	The	parser	object	created	will	be	of
the	first	parser	type	the	system	finds.

xml.sax.make_parser([parser_list])

Here	parameter	‘parser_list’,	is	the	optional	argument	consisting	of	a	list	of	parsers	to	use
which	must	all	implement	the	make_parser	method.

The	parse	Method:
This	method	creates	a	SAX	parser	and	uses	it	to	parse	a	document.

xml.sax.parse(xmlfile,	contenthandler[,	errorhandler])

Here	 parameters	 ‘xmlfile’,	 is	 the	 name	 of	 the	XML	 file	 to	 read	 from.	 ‘contenthandler’,
must	be	a	ContentHandler	object.	and	‘errorhandler’,	must	be	a	SAX	ErrorHandler	object.

The	parseString	Method:
There	is	one	more	method	to	create	a	SAX	parser	and	to	parse	the	specified	XML	string.

xml.sax.parseString(xmlstring,	contenthandler[,	errorhandler])

Here	 parameters	 ‘xmlstring’,	 is	 the	 name	 of	 the	 XML	 string	 to	 read	 from.
‘contenthandler’,	 must	 be	 a	 ContentHandler	 object.	 ‘errorhandler’,	 must	 be	 a	 SAX
ErrorHandler	object.

For	Example:

#!/usr/bin/python

import	xml.sax

class	MovieHandler(xml.sax.ContentHandler):

def	__init__(self):

self.CurrentData	=	””

self.type	=	””

self.format	=	””

self.year	=	””

self.rating	=	””

self.stars	=	””

self.description	=	””

#	Call	when	an	element	starts

def	startElement(self,	tag,	attributes):

self.CurrentData	=	tag

if	tag	==	“movie”:

print	“*****Movie*****”

title	=	attributes[“title”]

print	“Title:”,	title

#	Call	when	an	elements	ends

def	endElement(self,	tag):

if	self.CurrentData	==	“type”:

print	“Type:”,	self.type

elif	self.CurrentData	==	“format”:

print	“Format:”,	self.format

elif	self.CurrentData	==	“year”:

print	“Year:”,	self.year

elif	self.CurrentData	==	“rating”:

print	“Rating:”,	self.rating

elif	self.CurrentData	==	“stars”:

print	“Stars:”,	self.stars

elif	self.CurrentData	==	“description”:

print	“Description:”,	self.description

self.CurrentData	=	””

#	Call	when	a	character	is	read

def	characters(self,	content):

if	self.CurrentData	==	“type”:

self.type	=	content

elif	self.CurrentData	==	“format”:

self.format	=	content

elif	self.CurrentData	==	“year”:

self.year	=	content

elif	self.CurrentData	==	“rating”:

self.rating	=	content

elif	self.CurrentData	==	“stars”:

self.stars	=	content

elif	self.CurrentData	==	“description”:

self.description	=	content

if	(__name__	==	“__main__”):

#	create	an	XMLReader

parser	=	xml.sax.make_parser()

#	turn	off	namepsaces

parser.setFeature(xml.sax.handler.feature_namespaces,	0)

#	override	the	default	ContextHandler

Handler	=	MovieHandler()

parser.setContentHandler(Handler)

parser.parse(“movies.xml”)

Output:

*****Movie*****

Title:	Enemy	Behind

Type:	War,	Thriller

Format:	DVD

Year:	2003

Rating:	PG

Stars:	10

Description:	Talk	about	a	US-Japan	war

*****Movie*****

Title:	Transformers

Type:	Anime,	Science	Fiction

Format:	DVD

Year:	1989

Rating:	R

Stars:	8

Description:	A	schientific	fiction

*****Movie*****

Title:	Trigun

Type:	Anime,	Action

Format:	DVD

Rating:	PG

Stars:	10

Description:	Vash	the	Stampede!

*****Movie*****

Title:	Ishtar

Type:	Comedy

Format:	VHS

Rating:	PG

Stars:	2

Description:	Viewable	boredom

Parsing	XML	with	DOM	APIs:
The	 Document	 Object	 Model	 or	 “DOM,”	 is	 a	 cross-language	 API	 which	 is	 used	 for
accessing	and	modifying	the	XML	documents.	The	DOM	is	extremely	useful	for	random-
access	applications.	SAX	allows	to	use	one	document	at	a	time.	If	you	are	looking	at	one
SAX	element,	you	have	no	access	to	another	one.	the	easiest	way	to	quickly	load	an	XML
document	and	to	create	a	minidom	object	is	by	using	the	xml.dom	module.	The	minidom
object	provides	a	simple	parser	method	that	will	quickly	create	a	DOM	tree	from	the	XML
file.

For	Example:

#!/usr/bin/python

from	xml.dom.minidom	import	parse

import	xml.dom.minidom

#	Open	XML	document	using	minidom	parser

DOMTree	=	xml.dom.minidom.parse(“movies.xml”)

collection	=	DOMTree.documentElement

if	collection.hasAttribute(“shelf”):

print	“Root	element	:	%s”	%	collection.getAttribute(“shelf”)

#	Get	all	the	movies	in	the	collection

movies	=	collection.getElementsByTagName(“movie”)

#	Print	detail	of	each	movie.

for	movie	in	movies:

print	“*****Movie*****”

if	movie.hasAttribute(“title”):

print	“Title:	%s”	%	movie.getAttribute(“title”)

type	=	movie.getElementsByTagName(‘type’)[0]

print	“Type:	%s”	%	type.childNodes[0].data

format	=	movie.getElementsByTagName(‘format’)[0]

print	“Format:	%s”	%	format.childNodes[0].data

rating	=	movie.getElementsByTagName(‘rating’)[0]

print	“Rating:	%s”	%	rating.childNodes[0].data

description	=	movie.getElementsByTagName(‘description’)[0]

print	“Description:	%s”	%	description.childNodes[0].data

Output:

Root	element	:	New	Arrivals

*****Movie*****

Title:	Enemy	Behind

Type:	War,	Thriller

Format:	DVD

Rating:	PG

Description:	Talk	about	a	US-Japan	war

*****Movie*****

Title:	Transformers

Type:	Anime,	Science	Fiction

Format:	DVD

Rating:	R

Description:	A	schientific	fiction

*****Movie*****

Title:	Trigun

Type:	Anime,	Action

Format:	DVD

Rating:	PG

Description:	Vash	the	Stampede!

*****Movie*****

Title:	Ishtar

Type:	Comedy

Format:	VHS

Rating:	PG

Description:	Viewable	boredom

PYTHON	PROGRAMS

Python	Program	to	Add	Two	Matrices

#	Program	to	add	two	matrices

#	using	nested	loop

X	=	[[12,7,3],

				[4	,5,6],

				[7	,8,9]]

	

Y	=	[[5,8,1],

				[6,7,3],

				[4,5,9]]

	

result	=	[[0,0,0],

									[0,0,0],

									[0,0,0]]

#	iterate	through	rows

for	i	in	range(len(X)):

			#	iterate	through	columns

			for	j	in	range(len(X[0])):

							result[i][j]	=	X[i][j]	+	Y[i][j]

for	r	in	result:

			print(r)

Output:

[17,	15,	4]

[10,	12,	9]

[11,	13,	18]

Python	Program	to	Add	Two	Numbers
	

#	This	program	adds	two	numbers

#	Numbers	are	provided	by	the	user

#	Store	input	numbers

num1	=	input(‘Enter	first	number:	‘)

num2	=	input(‘Enter	second	number:	‘)

#	Add	two	numbers

sum	=	float(num1)	+	float(num2)

#	Display	the	sum

print(‘The	sum	of	{0}	and	{1}	is	{2}’.format(num1,num2,sum))

Output:

Enter	first	number:	5.3

Enter	second	number:	3.3

The	sum	of	5.3	and	3.3	is	8.6

	
Python	Program	to	Calculate	the	Area	of	a	Triangle

#	Python	Program	to	find	the	area	of	triangle

#	Three	sides	of	the	triangle

#	a,b,c	are	provided	by	the	user

a	=	float(input(‘Enter	first	side:	‘))

b	=	float(input(‘Enter	second	side:	‘))

c	=	float(input(‘Enter	third	side:	‘))

#	calculate	the	semi-perimeter

s	=	(a	+	b	+	c)	/	2

#	calculate	the	area

area	=	(s*(s-a)*(s-b)*(s-c))	**	0.5

print(‘The	area	of	the	triangle	is	%0.2f’	%area)

Output:

Enter	first	side:	5

Enter	second	side:	6

Enter	third	side:	7

The	area	of	the	triangle	is	14.70

	
	

Python	Program	to	Check	Armstrong	Number

#	Python	program	to	if	the

#	number	provided	by	the

#	user	is	an	Armstrong	number

#	or	not

#	take	input	from	the	user

num	=	int(input(“Enter	a	number:	“))

#	initialise	sum

sum	=	0

#	find	the	sum	of	the	cube	of	each	digit

temp	=	num

while	temp	>	0:

			digit	=	temp	%	10

			sum	+=	digit	**	3

			temp	//=	10

#	display	the	result

if	num	==	sum:

			print(num,“is	an	Armstrong	number”)

else:

			print(num,“is	not	an	Armstrong	number”)

Output	1

Enter	a	number:	663

663	is	not	an	Armstrong	number

	

Output	2

Enter	a	number:	371

407	is	an	Armstrong	number

Python	Program	to	Check	if	a	Number	is	Odd	or	Even

#	Python	program	to	check	if

#	the	input	number	is	odd	or	even.

#	A	number	is	even	if	division

#	by	2	give	a	remainder	of	0.

#	If	remainder	is	1,	it	is	odd.

num	=	int(input(“Enter	a	number:	“))

if	(num	%	2)	==	0:

			print(“{0}	is	Even”.format(num))

else:

			print(“{0}	is	Odd”.format(num))

	

	

Output	1

Enter	a	number:	73

73	is	Odd

Output	2

Enter	a	number:	24

24	is	Even

	
Python	Program	to	Check	if	a	Number	is	Positive,	Negative	or	Zero

#	In	this	python	program,	we	input	a	number

#	check	if	the	number	is	positive	or

#	negative	or	zero	and	display

#	an	appropriate	message

num	=	float(input(“Enter	a	number:	“))

if	num	>	0:

			print(“Positive	number”)

elif	num	==	0:

			print(“Zero”)

else:

			print(“Negative	number”)

#	In	this	program,	we	input	a	number

#	check	if	the	number	is	positive	or

#	negative	or	zero	and	display

#	an	appropriate	message

#	This	time	we	use	nested	if

num	=	float(input(“Enter	a	number:	“))

if	num	>=	0:

			if	num	==	0:

							print(“Zero”)

			else:

							print(“Positive	number”)

else:

			print(“Negative	number”)

Output	1

Enter	a	number:	5

Positive	number

Output	2

Enter	a	number:	0

Zero

Output	3

Enter	a	number:	-4

Negative	number

Python	Program	to	Check	if	a	String	is	Palindrome	or	Not

#	Program	to	check	if	a	string

#		is	palindrome	or	not

#	take	input	from	the	user

my_str	=	input(“Enter	a	string:	“)

#	make	it	suitable	for	caseless	comparison

my_str	=	my_str.casefold()

#	reverse	the	string

rev_str	=	reversed(my_str)

#	check	if	the	string	is	equal	to	its	reverse

if	list(my_str)	==	list(rev_str):

			print(“It	is	palindrome”)

else:

			print(“It	is	not	palindrome”)

Output	1

Enter	a	string:	aIbohPhoBiA

It	is	palindrome

	

Output	2

Enter	a	string:	13344331

It	is	palindrome

Output	3

Enter	a	string:	palindrome

It	is	not	palindrome

	

Python	Program	to	Check	Leap	Year

#	Python	program	to	check	if

#	the	input	year	is

#	a	leap	year	or	not

year	=	int(input(“Enter	a	year:	“))

if	(year	%	4)	==	0:

			if	(year	%	100)	==	0:

							if	(year	%	400)	==	0:

											print(“{0}	is	a	leap	year”.format(year))

							else:

											print(“{0}	is	not	a	leap	year”.format(year))

			else:

							print(“{0}	is	a	leap	year”.format(year))

else:

			print(“{0}	is	not	a	leap	year”.format(year))

	

Output	1

Enter	a	year:	2012

2012	is	a	leap	year

Output	2

Enter	a	year:	2015

2015	is	not	a	leap	year

Python	Program	to	Check	Prime	Number

#	Python	program	to	check	if

#	the	input	number	is

#	prime	or	not

#	take	input	from	the	user

num	=	int(input(“Enter	a	number:	“))

#	prime	numbers	are	greater	than	1

if	num	>	1:

			#	check	for	factors

			for	i	in	range(2,num):

							if	(num	%	i)	==	0:

											print(num,“is	not	a	prime	number”)

											print(i,“times”,num//i,“is”,num)

											break

			else:

							print(num,“is	a	prime	number”)

#	if	input	number	is	less	than

#	or	equal	to	1,	it	is	not	prime

else:

			print(num,“is	not	a	prime	number”)

Output	1

Enter	a	number:	407

407	is	not	a	prime	number

11	times	37	is	407

Output	2

Enter	a	number:	853

853	is	a	prime	number

Python	Program	to	Convert	Celsius	To	Fahrenheit

#	Python	Program	to	convert	temperature	in

#	celsius	to	fahrenheit	where,	input	is

#	provided	by	the	user	in

#	degree	celsius

#	take	input	from	the	user

celsius	=	float(input(‘Enter	degree	Celsius:	‘))

#	calculate	fahrenheit

fahrenheit	=	(celsius	*	1.8)	+	32

print(‘%0.1f	degree	Celsius	is	equal	to	%0.1f	degree	Fahrenheit’	%(celsius,fahrenheit))

Output

Enter	degree	Celsius:	43.7

43.7	degree	Celsius	is	equal	to	110.66	degree	Fahrenheit

Python	Program	to	Convert	Decimal	into	Binary,	Octal	and	Hexadecimal

#	Python	program	to	convert	decimal

#	number	into	binary,	octal	and

#	hexadecimal	number	system

#	Take	decimal	number	from	user

dec	=	int(input(“Enter	an	integer:	“))

print(“The	decimal	value	of”,dec,“is:”)

print(bin(dec),“in	binary.”)

print(oct(dec),“in	octal.”)

print(hex(dec),“in	hexadecimal.”)

Output

Enter	an	integer:	133

The	decimal	value	of	133	is:

0b10000101	in	binary.

0o205	in	octal.

0x85	in	hexadecimal.

	
	
	

Python	Program	to	Convert	Decimal	to	Binary	Using	Recursion

#	Python	program	to	convert	decimal

#	number	into	binary	number

#	using	recursive	function

def	binary(n):

			“““Function	to	print	binary	number

			for	the	input	decimal	using	recursion”””

			if	n	>	1:

							binary(n//2)

			print(n	%	2,end	=	”)

#	Take	decimal	number	from	user

dec	=	int(input(“Enter	an	integer:	“))

binary(dec)

	

Output

Enter	an	integer:	76

1001100

Python	Program	to	Convert	Kilometers	to	Miles

#	Program	to	convert	kilometers

#	into	miles	where,	input	is

#	provided	by	the	user	in

#	kilometers

#	take	input	from	the	user

kilometers	=	float(input(‘How	many	kilometers?:	‘))

#	conversion	factor

conv_fac	=	0.621371

#	calculate	miles

miles	=	kilometers	*	conv_fac

print(‘%0.3f	kilometers	is	equal	to	%0.3f	miles’	%(kilometers,miles))

Output

How	many	kilometers?:	3.7

5.500	kilometers	is	equal	to	2.300	miles

	
	
	

Python	Program	to	Count	the	Number	of	Each	Vowel

#	Program	to	count	the	number	of

#	each	vowel	in	a	string

#	string	of	vowels

vowels	=	‘aeiou’

#	take	input	from	the	user

ip_str	=	input(“Enter	a	string:	“)

#	make	it	suitable	for	caseless	comparisions

ip_str	=	ip_str.casefold()

#	make	a	dictionary	with	each	vowel	a	key	and	value	0

count	=	{}.fromkeys(vowels,0)

#	count	the	vowels

for	char	in	ip_str:

			if	char	in	count:

							count[char]	+=	1

print(count)

	

Output

Enter	a	string:	I	welcome	you	all	to	read	my	book	and	learn	python	easily.

{‘e’:	4,	‘u’:	1,	‘o’:	6,	‘a’:	5,	‘i’:	1}

Python	Program	to	Display	Calendar

#	Python	program	to	display	calendar

#	of	given	month	of	the	year

#	import	module

import	calendar

#	ask	of	month	and	year

yy	=	int(input(“Enter	year:	“))

mm	=	int(input(“Enter	month:	“))

#	display	the	calendar

print(calendar.month(yy,mm))

	

Output

Enter	year:	2015

Enter	month:	09

		September	2015

	

	Mo

	

	Tu

	

	We

	

	Th

	

	Fr

	

	Sa

	

	Su

	

		

	

	1

	

	2

	

	3

	

	4

	

	5

	

	6

	

	7

	

	8

	

	9

	

	10

	

	11

	

	12

	

	13

	

	14

	

	15

	

	16

	

	17

	

	18

	

	19

	

	20

	

	21

	

	22

	

	23

	

	24

	

	25

	

	26

	

	27

	

	28

	

	29

	

	30

	

		

	

		

	

		

	

		

Python	Program	to	Display	Fibonacci	Sequence	Using	Recursion

#	Python	program	to	display	the	Fibonacci

#	sequence	up	to	n-th	term	using

#	recursive	functions

def	recur_fibo(n):

			“““Recursive	function	to

			print	Fibonacci	sequence”””

			if	n	<=	1:

							return	n

			else:

							return(recur_fibo(n-1)	+	recur_fibo(n-2))

#	take	input	from	the	user

nterms	=	int(input(“How	many	terms?	“))

#	check	if	the	number	of	terms	is	valid

if	nterms	<=	0:

			print(“Plese	enter	a	positive	integer”)

else:

			print(“Fibonacci	sequence:”)

			for	i	in	range(nterms):

							print(recur_fibo(i))

Output

How	many	terms?	8

Fibonacci	sequence:

0

1

1

2

3

5

8

13

Python	Program	To	Display	Powers	of	2	Using	Anonymous	Function

#	Python	Program	to	display

#	the	powers	of	2	using

#	anonymous	function

#	Take	number	of	terms	from	user

terms	=	int(input(“How	many	terms?	“))

#	use	anonymous	function

result	=	list(map(lambda	x:	2	**	x,	range(terms)))

#	display	the	result

for	i	in	range(terms):

			print(“2	raised	to	power”,i,“is”,result[i])

Output

How	many	terms?	6

2	raised	to	power	0	is	1

2	raised	to	power	1	is	2

2	raised	to	power	2	is	4

2	raised	to	power	3	is	8

2	raised	to	power	4	is	16

2	raised	to	power	5	is	32

Python	Program	to	Display	the	multiplication	Table

#	Python	program	to	find	the	multiplication

#	table	(from	1	to	10)c

#	of	a	number	input	by	the	user

#	take	input	from	the	user

num	=	int(input(“Display	multiplication	table	of?	“))

#	use	for	loop	to	iterate	10	times

for	i	in	range(1,11):

			print(num,‘x’,i,’=’,num*i)

	

	

	

Output

Display	multiplication	table	of?	7

7	x	1	=	7

7	x	2	=	14

7	x	3	=	21

7	x	4	=	28

7	x	5	=	35

7	x	6	=	42

7	x	7	=	49

7	x	8	=	56

7	x	9	=	63

7	x	10	=	70

	
Python	Program	to	Find	Armstrong	Number	in	an	Interval

#	Program	to	ask	the	user

#	for	a	range	and	display

#	all	Armstrong	numbers	in

#	that	interval

#	take	input	from	the	user

lower	=	int(input(“Enter	lower	range:	“))

upper	=	int(input(“Enter	upper	range:	“))

for	num	in	range(lower,upper	+	1):

			#	initialize	sum

			sum	=	0

			#	find	the	sum	of	the	cube	of	each	digit

			temp	=	num

			while	temp	>	0:

							digit	=	temp	%	10

							sum	+=	digit	**	3

							temp	//=	10

			if	num	==	sum:

							print(num)

Output

Enter	lower	range:	0

Enter	upper	range:	999

0

1

153

370

371

407

Python	Program	to	Find	ASCII	Value	of	Character

#	Program	to	find	the

#	ASCII	value	of	the

#	given	character

#	Take	character	from	user

c	=	input(“Enter	a	character:	“)

print(“The	ASCII	value	of	’”	+	c	+	”’	is”,ord(c))

Output	1

Enter	a	character:	k

The	ASCII	value	of	‘k’	is	107

Output	2

Enter	a	character:	=

The	ASCII	value	of	‘=’	is	61

Python	Program	to	Find	Factorial	of	Number	Using	Recursion

#	Python	program	to	find	the

#	factorial	of	a	number

#	using	recursion

def	recur_factorial(n):

			“““Function	to	return	the	factorial

			of	a	number	using	recursion”””

			if	n	==	1:

							return	n

			else:

							return	n*recur_factorial(n-1)

#	take	input	from	the	user

num	=	int(input(“Enter	a	number:	“))

#	check	is	the	number	is	negative

if	num	<	0:

			print(“Sorry,	factorial	does	not	exist	for	negative	numbers”)

elif	num	==	0:

			print(“The	factorial	of	0	is	1”)

else:

			print(“The	factorial	of”,num,“is”,recur_factorial(num))

Output	1

Enter	a	number:	-5

Sorry,	factorial	does	not	exist	for	negative	numbers

Output	2

Enter	a	number:	5

The	factorial	of	5	is	120

Python	Program	to	Find	Factors	of	Number

#	Python	Program	to	find	the

#	factors	of	a	number

#	define	a	function

def	print_factors(x):

			“““This	function	takes	a

			number	and	prints	the	factors”””

			print(“The	factors	of”,x,“are:”)

			for	i	in	range(1,	x	+	1):

							if	x	%	i	==	0:

											print(i)

#	take	input	from	the	user

num	=	int(input(“Enter	a	number:	“))

print_factors(num)

Output

Enter	a	number:	120

The	factors	of	120	are:

1

2

3

4

5

6

8

10

12

15

20

24

30

40

60

120

Python	Program	to	Find	Hash	of	File

#	Python	rogram	to	find	the	SHA-1

#	message	digest	of	a	file

#	import	hashlib	module

import	hashlib

def	hash_file(filename):

			””““This	function	returns	the	SHA-1	hash

			of	the	file	passed	into	it”””

			#	make	a	hash	object

			h	=	hashlib.sha1()

			#	open	file	for	reading	in	binary	mode

			with	open(filename,‘rb’)	as	file:

							#	loop	till	the	end	of	the	file

							chunk	=	0

							while	chunk	!=	b”:

											#	read	only	1024	bytes	at	a	time

											chunk	=	file.read(1024)

											h.update(chunk)

			#	return	the	hex	representation	of	digest

			return	h.hexdigest()

message	=	hash_file(“track1.mp3”)

print(message)

Output

633d7356947eec543c50b76a1852f92427f4dca9

Python	Program	to	Find	HCF	or	GCD

#	Python	program	to	find	the

#	H.C.F	of	two	input	number

#	define	a	function

def	hcf(x,	y):

			“““This	function	takes	two

			integers	and	returns	the	H.C.F”””

			#	choose	the	smaller	number

			if	x	>	y:

							smaller	=	y

			else:

							smaller	=	x

			for	i	in	range(1,smaller	+	1):

							if((x	%	i	==	0)	and	(y	%	i	==	0)):

											hcf	=	i

		return

#	take	input	from	the	user

num1	=	int(input(“Enter	first	number:	“))

num2	=	int(input(“Enter	second	number:	“))

print(“The	H.C.F.	of”,	num1,“and”,	num2,“is”,	hcf(num1,	num2))

	

	

Output

Enter	first	number:	40

Enter	second	number:	48

The	H.C.F.	of	40	and	48	is	8

Python	Program	to	Find	LCM

#	Python	Program	to	find	the

#	L.C.M.	of	two	input	number

#	define	a	function

def	lcm(x,	y):

			“““This	function	takes	two

			integers	and	returns	the	L.C.M.”””

			#	choose	the	greater	number

			if	x	>	y:

							greater	=	x

			else:

							greater	=	y

			while(True):

							if((greater	%	x	==	0)	and	(greater	%	y	==	0)):

											lcm	=	greater

											break

							greater	+=	1

			return	lcm

#	take	input	from	the	user

num1	=	int(input(“Enter	first	number:	“))

num2	=	int(input(“Enter	second	number:	“))

print(“The	L.C.M.	of”,	num1,“and”,	num2,“is”,	lcm(num1,	num2))

Output

Enter	first	number:	3

Enter	second	number:	4

The	L.C.M.	of	3	and	4	is	12

	
Python	Program	to	Find	Numbers	Divisible	by	Another	Number

#	Python	Program	to	find	numbers

#	divisible	by	thirteen

#	from	a	list	using	anonymous	function

#	Take	a	list	of	numbers

my_list	=	[12,	65,	54,	39,	102,	339,	221,]

#	use	anonymous	function	to	filter

result	=	list(filter(lambda	x:	(x	%	13	==	0),	my_list))

#	display	the	result

print(“Numbers	divisible	by	13	are”,result)

Output

Numbers	divisible	by	13	are	[65,	39,	221]

Python	Program	to	Find	Sum	of	Natural	Numbers	Using	Recursion

#	Python	program	to	find	the	sum	of

#	natural	numbers	up	to	n

#	using	recursive	function

def	recur_sum(n):

			“““Function	to	return	the	sum

			of	natural	numbers	using	recursion”””

			if	n	<=	1:

							return	n

			else:

							return	n	+	recur_sum(n-1)

#	take	input	from	the	user

num	=	int(input(“Enter	a	number:	“))

if	num	<	0:

			print(“Enter	a	positive	number”)

else:

			print(“The	sum	is”,recur_sum(num))

Output

Enter	a	number:	10

The	sum	is	55

Python	Program	to	Find	the	Factorial	of	a	Number

#	Python	program	to	find	the

#	factorial	of	a	number

#	provided	by	the	user

#	take	input	from	the	user

num	=	int(input(“Enter	a	number:	“))

factorial	=	1

#	check	if	the	number	is	negative,	positive	or	zero

if	num	<	0:

			print(“Sorry,	factorial	does	not	exist	for	negative	numbers”)

elif	num	==	0:

			print(“The	factorial	of	0	is	1”)

else:

			for	i	in	range(1,num	+	1):

							factorial	=	factorial*i

			print(“The	factorial	of”,num,“is”,factorial)

Output	1

Enter	a	number:	-18

Sorry,	factorial	does	not	exist	for	negative	numbers

Output	2

Enter	a	number:	9

The	factorial	of	9	is	362,880

Python	Program	to	Find	the	Largest	Among	Three	Numbers

#	Python	program	to	find	the	largest

#	number	among	the	three

#	input	numbers

#	take	three	numbers	from	user

num1	=	float(input(“Enter	first	number:	“))

num2	=	float(input(“Enter	second	number:	“))

num3	=	float(input(“Enter	third	number:	“))

if	(num1	>	num2)	and	(num1	>	num3):

			largest	=	num1

elif	(num2	>	num1)	and	(num2	>	num3):

			largest	=	num2

else:

			largest	=	num3

print(“The	largest	number	is”,largest)

	

Output	1

Enter	first	number:	8

Enter	second	number:	16

Enter	third	number:	4

The	largest	number	is	16.0

Output	2

Enter	first	number:	-6

Enter	second	number:	-15

Enter	third	number:	0

The	largest	number	is	0.0

Python	Program	to	Find	the	Size	(Resolution)	of	Image

#	Python	Program	to	find	the	resolution

#	of	a	jpeg	image	without	using

#	any	external	libraries

def	jpeg_res(filename):

			””““This	function	prints	the	resolution

			of	the	jpeg	image	file	passed	into	it”””

			#	open	image	for	reading	in	binary	mode

			with	open(filename,‘rb’)	as	img_file:

							#	height	of	image	(in	2	bytes)	is	at	164th	position

							img_file.seek(163)

							#	read	the	2	bytes

							a	=	img_file.read(2)

							#	calculate	height

							height	=	(a[0]	<<	8)	+	a[1]

							#	next	2	bytes	is	width

							a	=	img_file.read(2)

							#	calculate	width

							width	=	(a[0]	<<	8)	+	a[1]

			print(“The	resolution	of	the	image	is”,width,“x”,height)

jpeg_res(“image.jpg”)

	

Output

The	resolution	of	the	image	is	180	x	200

Python	Program	to	Find	the	Square	Root
	

#	Python	Program	to	calculate	the	square	root

num	=	float(input(‘Enter	a	number:	‘))

num_sqrt	=	num	**	0.5

print(‘The	square	root	of	%0.3f	is	%0.3f’%(num	,num_sqrt))

Output

Enter	a	number:	11

The	square	root	of	11.000	is	3.316

Python	Program	to	Find	the	Sum	of	Natural	Numbers

#	Python	program	to	find	the	sum	of

#	natural	numbers	up	to	n

#	where	n	is	provided	by	user

#	take	input	from	the	user

num	=	int(input(“Enter	a	number:	“))

if	num	<	0:

			print(“Enter	a	positive	number”)

else:

			sum	=	0

			#	use	while	loop	to	iterate	un	till	zero

			while(num	>	0):

							sum	+=	num

							num	-=	1

			print(“The	sum	is”,sum)

Output

Enter	a	number:	10

The	sum	is	55

Python	Program	to	Generate	a	Random	Number

#	Program	to	generate	a	random	number

#	between	0	and	9

#	import	the	random	module

import	random

print(random.randint(0,9))

Output

5

Python	Program	to	Illustrate	Different	Set	Operations

#	Program	to	perform	different

#	set	operations	like	in	mathematics

#	define	three	sets

E	=	{0,	2,	4,	6,	8};

N	=	{1,	2,	3,	4,	5};

#	set	union

print(“Union	of	E	and	N	is”,E	|	N)

#	set	intersection

print(“Intersection	of	E	and	N	is”,E	&	N)

#	set	difference

print(“Difference	of	E	and	N	is”,E	-	N)

#	set	symmetric	difference

print(“Symmetric	difference	of	E	and	N	is”,E	^	N)

Output

Union	of	E	and	N	is	{0,	1,	2,	3,	4,	5,	6,	8}

Intersection	of	E	and	N	is	{2,	4}

Difference	of	E	and	N	is	{8,	0,	6}

Symmetric	difference	of	E	and	N	is	{0,	1,	3,	5,	6,	8}

Python	Program	to	Make	a	Simple	Calculator

#	Program	make	a	simple	calculator

#	that	can	add,	subtract,	multiply

#	and	divide	using	functions

#	define	functions

def	add(x,	y):

			“““This	function	adds	two	numbers”””

			return	x	+	y

def	subtract(x,	y):

			“““This	function	subtracts	two	numbers”””

			return	x	-	y

def	multiply(x,	y):

			“““This	function	multiplies	two	numbers”””

			return	x	*	y

def	divide(x,	y):

			“““This	function	divides	two	numbers”””

			return	x	/	y

#	take	input	from	the	user

print(“Select	operation.”)

print(“1.Add”)

print(“2.Subtract”)

print(“3.Multiply”)

print(“4.Divide”)

choice	=	input(“Enter	choice(1/2/3/4):”)

num1	=	int(input(“Enter	first	number:	“))

num2	=	int(input(“Enter	second	number:	“))

if	choice	==	‘1’:

			print(num1,”+”,num2,”=”,	add(num1,num2))

elif	choice	==	‘2’:

			print(num1,”-“,num2,”=”,	subtract(num1,num2))

elif	choice	==	‘3’:

			print(num1,”*”,num2,”=”,	multiply(num1,num2))

elif	choice	==	‘4’:

			print(num1,”/”,num2,”=”,	divide(num1,num2))

else:

			print(“Invalid	input”)

	

	

Output

Select	operation.

1.Add

2.Subtract

3.Multiply

4.Divide

Enter	choice(1/2/3/4):	2

Enter	first	number:	20

Enter	second	number:	11

20	-	11	=	9

Python	Program	to	Multiply	Two	Matrices

#	Program	to	multiply	two	matrices

#	using	nested	loops

#	3x3	matrix

X	=	[[12,7,3],

				[4	,5,6],

				[7	,8,9]]

#	3x4	matrix

	

Y	=	[[5,8,1,2],

				[6,7,3,0],

				[4,5,9,1]]

#	result	is	3x4

result	=	[[0,0,0,0],

									[0,0,0,0],

									[0,0,0,0]]

#	iterate	through	rows	of	X

for	i	in	range(len(X)):

			#	iterate	through	columns	of	Y

			for	j	in	range(len(Y[0])):

							#	iterate	through	rows	of	Y

							for	k	in	range(len(Y)):

											result[i][j]	+=	X[i][k]	*	Y[k][j]

for	r	in	result:

			print(r)

	

	

Output

[114,	160,	60,	27]

[74,	97,	73,	14]

[119,	157,	112,	23]

Python	Program	to	Print	all	Prime	Numbers	in	an	Interval

#	Python	program	to	ask	the	user

#	for	a	range	and	display

#	all	the	prime	numbers	in

#	that	interval

#	take	input	from	the	user

lower	=	int(input(“Enter	lower	range:	“))

upper	=	int(input(“Enter	upper	range:	“))

for	num	in	range(lower,upper	+	1):

			#	prime	numbers	are	greater	than	1

			if	num	>	1:

							for	i	in	range(2,num):

											if	(num	%	i)	==	0:

															break

							else:

											print(num)

	

Output

Enter	lower	range:	100

Enter	upper	range:	200

101

103

107

109

113

127

131

137

139

149

151

157

163

167

173

179

181

191

193

197

199

Python	Program	to	Print	Hi	Good	Morning!

#	This	program	prints	Hi,	Good	Morning!

print(‘Hi,	Good	Morning!’)

Output

Hi,	Good	Morning!

Python	program	to	Print	the	Fibonacci	sequence

#	Program	to	display	the	fibonacci

#	sequence	up	to	n-th	tern	where

#	n	is	provided	by	the	user

#	take	input	from	the	user

nterms	=	int(input(“How	many	terms?	“))

#	first	two	terms

n1	=	0

n2	=	1

count	=	2

#	check	if	the	number	of	terms	is	valid

if	nterms	<=	0:

			print(“Plese	enter	a	positive	integer”)

elif	nterms	==	1:

			print(“Fibonacci	sequence:”)

			print(n1)

else:

			print(“Fibonacci	sequence:”)

			print(n1,”,”,n2,end=’	,	‘)

			while	count	<	nterms:

							nth	=	n1	+	n2

							print(nth,end=’	,	‘)

							#	update	values

							n1	=	n2

							n2	=	nth

							count	+=	1

	

Output

How	many	terms?	12

Fibonacci	sequence:

0	,	1	,	1	,	2	,	3	,	5	,	8	,	13	,	21	,	34	,	55	,	89

Python	Program	to	Remove	Punctuations	form	a	String

#	Program	to	all	punctuations	from	the

#	string	provided	by	the	user

#	define	punctuations

punctuations	=	”’!()-[]{};:’”\,<>./?@#$%^&*_~”’

#	take	input	from	the	user

my_str	=	input(“Enter	a	string:	“)

#	remove	punctuations	from	the	string

no_punct	=	””

for	char	in	my_str:

			if	char	not	in	punctuations:

						no_punct	=	no_punct	+	char

#	display	the	unpunctuated	string

print(no_punct)

Output

Enter	a	string:	“Hello!!!”,	Good	Morning	–Have	a	good	day.

Hello	Good	Morning	Have	a	good	day

Python	Program	to	Shuffle	Deck	of	Cards

#	Python	program	to	shuffle	a

#	deck	of	card	using	the

#	module	random	and	draw	5	cards

#	import	modules

import	itertools,	random

#	make	a	deck	of	cards

deck	=	list(itertools.product(range(1,14),[‘Spade’,‘Heart’,‘Diamond’,‘Club’]))

#	shuffle	the	cards

random.shuffle(deck)

#	draw	five	cards

print(“You	got:”)

for	i	in	range(5):

			print(deck[i][0],	“of”,	deck[i][1])

Output	1

You	got:

5	of	Heart

1	of	Heart

8	of	Spade

12	of	Spade

4	of	Spade

Output	2

You	got:

10	of	Club

1	of	Heart

3	of	Diamond

2	of	Club

3	of	Club

Python	Program	to	Solve	Quadratic	Equation

#	Solve	the	quadratic	equation

#	ax**2	+	bx	+	c	=	0

#	a,b,c	are	provied	by	the	user

#	import	complex	math	module

import	cmath

a	=	float(input(‘Enter	a:	‘))

b	=	float(input(‘Enter	b:	‘))

c	=	float(input(‘Enter	c:	‘))

#	calculate	the	discriminant

d	=	(b**2)	-	(4*a*c)

#	find	two	solutions

sol1	=	(-b-cmath.sqrt(d))/(2*a)

sol2	=	(-b+cmath.sqrt(d))/(2*a)

print(‘The	solution	are	{0}	and	{1}’.format(sol1,sol2))

Output

Enter	a:	1

Enter	b:	5

Enter	c:	6

The	solutions	are	(-3+0j)	and	(-2+0j)

Python	Program	to	Sort	Words	in	Alphabetic	Order

#	Program	to	sort	alphabetically	the	words

#	form	a	string	provided	by	the	user

#	take	input	from	the	user

my_str	=	input(“Enter	a	string:	“)

#	breakdown	the	string	into	a	list	of	words

words	=	my_str.split()

#	sort	the	list

words.sort()

#	display	the	sorted	words

for	word	in	words:

			print(word)

Output

Enter	a	string:	this	is	my	second	python	book	to	read

book

is

my

python

read

second

this

to

	
	

Python	Program	to	Swap	Two	Variables

#	Python	program	to	swap	two	variables

#	provided	by	the	user

x	=	input(‘Enter	value	of	x:	‘)

y	=	input(‘Enter	value	of	y:	‘)

#	create	a	temporary	variable

#	and	swap	the	values

temp	=	x

x	=	y

y	=	temp

print(‘The	value	of	x	after	swapping:	{}’.format(x))

print(‘The	value	of	y	after	swapping:	{}’.format(y))

Output

Enter	value	of	x:	8

Enter	value	of	y:	15

The	value	of	x	after	swapping:	15

The	value	of	y	after	swapping:	8

Python	Program	to	Transpose	a	Matrix

#	Program	to	transpose	a	matrix

#	using	nested	loop

X	=	[[12,7],

				[4	,5],

				[3	,8]]

	

result	=	[[0,0,0],

									[0,0,0]]

	

#	iterate	through	rows

for	i	in	range(len(X)):

			#	iterate	through	columns

			for	j	in	range(len(X[0])):

							result[j][i]	=	X[i][j]

for	r	in	result:

			print(r)

	

Output

[12,	4,	3]

[7,	5,	8]

	

NOTE

This	 is	all	about	Python	Programming.	These	 things	are	must	 to	understand	if	you	are	a
beginner	in	learning	Python	Program	Language.	I	Hope	you	liked	the	book	and	learned	a
lot	from	it.	I	have	also	shared	basic	python	programs	in	this	book,	so	what	are	you	waiting
for??	Turn	on	your	system	and	start	creating	your	Python	Programs.
	

	
	
	
	
	

MORE	FROM	AUTHOR

Python	Programming	For	Beginners:	Quick	And	Easy	Guide	For	Python
Programmers

	

	

	
	

©	Copyright	2014	–	James	P.	Long

All	rights	reserved.	Without	limiting	the	rights	under	copyright	reserved	above,	no	part	of
this	 publication	 maybe	 reproduced,	 stored	 in	 or	 introduced	 into	 a	 retrieval	 system,	 or
transmitted	 in	 any	 form,	 or	 by	 any	 means	 (electronic,	 mechanical,	 photocopying,
recording	or	otherwise)	without	the	prior	written	permission	of	both	the	copyright	owner
and	the	publisher	of	this	book.

The	author	and	publishers	of	this	book	do	not	dispense	medical	advice	nor	prescribe	to	the
use	of	any	 technique	or	 treatment	for	health	disorders	and	any	sort	of	medical	problems
without	the	advice	of	a	medical	professional,	either	directly	or	indirectly.	It	is	the	intention
of	this	book	to	only	offer	information	of	a	general	nature.	Any	specific	problems	should	be
referred	to	your	doctor.	If	you	choose	to	use	this	information	for	yourself	then	the	author
and	publisher	assume	no	responsibility	whatsoever.

	Introduction
	Python Versions
	Some Commonly used Operations in Python
	Printf Format Strings
	Python Interactive - Using Python As A Calculator
	Python Implementations
	Python Compilers & Numerical Accelerators
	Logical And Physical Line in Python
	Python Indentation
	Python Standard Library
	Creating Classes & Objects
	Documenting Your Code
	Python - Object Oriented Programming
	Python Database
	Classes
	Methods
	Instances
	Python Database Access
	Python Networking
	Sending Mail in Python
	Python multithreading
	Python xml processing
	Python Programs
	Python Program to Add Two Matrices
	Python Program to Add Two Numbers
	Python Program to Calculate the Area of a Triangle
	Python Program to Check Armstrong Number
	Python Program to Check if a Number is Odd or Even
	Python Program to Check if a Number is Positive, Negative or Zero
	Python Program to Check if a String is Palindrome or Not
	Python Program to Check Leap Year
	Python Program to Check Prime Number
	Python Program to Convert Celsius To Fahrenheit
	Python Program to Convert Decimal into Binary, Octal and Hexadecimal
	Python Program to Convert Decimal to Binary Using Recursion
	Python Program to Convert Kilometers to Miles
	Python Program to Count the Number of Each Vowel
	Python Program to Display Calendar
	Python Program to Display Fibonacci Sequence Using Recursion
	Python Program To Display Powers of 2 Using Anonymous Function
	Python Program to Display the multiplication Table
	Python Program to Find Armstrong Number in an Interval
	Python Program to Find ASCII Value of Character
	Python Program to Find Factorial of Number Using Recursion
	Python Program to Find Factors of Number
	Python Program to Find Hash of File
	Python Program to Find HCF or GCD
	Python Program to Find LCM
	Python Program to Find Numbers Divisible by Another Number
	Python Program to Find Sum of Natural Numbers Using Recursion

