PYTHON
FOR
ABSOLUTE BEGINNERS

&] OSWALD CAMPESATO -

PYTHON
FOR
ABSOLUTE BEGINNERS

LICENSE, DISCLAIMER OF LIABILITY, AND LIMITED WARRANTY

By purchasing or using this book and its companion files (the “Work”), you agree that this
license grants permission to use the contents contained herein, but does not give you the right
of ownership to any of the textual content in the book or ownership to any of the information,
files, or products contained in it. This license does not permit uploading of the Work onto the
Internet or on a network (of any kind) without the written consent of the Publisher. Duplication
or dissemination of any text, code, simulations, images, etc. contained herein is limited to and
subject to licensing terms for the respective products, and permission must be obtained from
the Publisher or the owner of the content, etc., in order to reproduce or network any portion of
the textual material (in any media) that is contained in the Work.

MERCURY LEARNING AND INFORMATION (“MLI” or “the Publisher”) and anyone involved in the
creation, writing, production, accompanying algorithms, code, or computer programs (“the soft-
ware”), and any accompanying Web site or software of the Work, cannot and do not warrant the
performance or results that might be obtained by using the contents of the Work. The author,
developers, and the Publisher have used their best efforts to insure the accuracy and functional-
ity of the textual material and/or programs contained in this package; we, however, make no war-
ranty of any kind, express or implied, regarding the performance of these contents or programs.
The Work is sold “as is” without warranty (except for defective materials used in manufacturing
the book or due to faulty workmanship).

The author, developers, and the publisher of any accompanying content, and anyone involved in
the composition, production, and manufacturing of this work will not be liable for damages of
any kind arising out of the use of (or the inability to use) the algorithms, source code, computer
programs, or textual material contained in this publication. This includes, but is not limited to,
loss of revenue or profit, or other incidental, physical, or consequential damages arising out of
the use of this Work.

The sole remedy in the event of a claim of any kind is expressly limited to replacement of the book
and only at the discretion of the Publisher. The use of “implied warranty” and certain “exclusions”
vary from state to state, and might not apply to the purchaser of this product.

Companion files also available for downloading from the publisher by writing to
info@merclearning.com.

PYTHON
FOR
ABSOLUTE BEGINNERS

Oswald Campesato

3

MERCURY LEARNING AND INFORMATION
Boston, Massachusetts

Copyright ©2024 by MERCURY LEARNING AND INFORMATION, An Imprint of DeGruyter, Inc.
All rights reserved.

This publication, portions of it, or any accompanying software may not be reproduced in any way, stored
in a retrieval system of any type, or transmitted by any means, media, electronic display or mechanical
display, including, but not limited to, photocopy, recording, Internet postings, or scanning, without prior
permission in writing from the publisher.

Publisher: David Pallai

MERCURY LEARNING AND INFORMATION
121 High Street, 3" Floor

Boston, MA 02210
info@merclearning.com
www.merclearning.com
800-232-0223

O. Campesato. Python for Absolute Beginners.
ISBN: 978-1-50152-198-0

The publisher recognizes and respects all marks used by companies, manufacturers, and developers

as a means to distinguish their products. All brand names and product names mentioned in this book
are trademarks or service marks of their respective companies. Any omission or misuse (of any kind) of
service marks or trademarks, etc. is not an attempt to infringe on the property of others.

Library of Congress Control Number: 2023945505
232425321 Printed on acid-free paper in the United States of America.

Our titles are available for adoption, license, or bulk purchase by institutions, corporations, etc.
For additional information, please contact the Customer Service Dept. at 800-232-0223(toll free).

All of our titles are available in digital format at academiccourseware.com and other digital vendors.
Companion files are available for download by writing to the publisher at info@merclearning.com. The
sole obligation of MERCURY LEARNING AND INFORMATION to the purchaser is to replace the book, based
on defective materials or faulty workmanship, but not based on the operation or functionality of the
product.

I'd like to dedicate this book to my parents
— may this bring joy and happiness into their lives.

CONTENTS

Preface xiii
Chapter 1: Introduction to Python 1
Tools for Python 1
easy_install and pip 2
virtualenv 2

Python Installation 2
Setting the PATH Environment Variable (Windows Only) 3
Launching Python on Your Machine 3
The Python Interactive Interpreter 3

Python Identifiers 4
Lines, Indentations, and Multi-Lines 4
Quotation Marks and Comments 5
Saving Your Code in a Module 6
Some Standard Modules 7
The help() and dir() Functions 7
Compile Time and Runtime Code Checking 8
Formatting Techniques 9
Working with {-strings 10
Working with Strings 12
Comparing Strings 12
Formatting Strings 13
Summary 14
Chapter 2: String Operations 15
Working with Strings 15
Formatting Strings 16

Slicing and Splicing Strings 17
Testing for Digits and Alphabetic Characters 18

Search For and Replace a String in Other Strings 19

Remove Leading and Trailing Characters 19

viii © CONTENTS

Printing Text without NewLine Characters
Working with Dates

Converting Strings to Dates
Exception Handling
Handling User Input
Command-Line Arguments (optional)
Summary

Chapter 3: Working with Loops

Precedence of Operators
Reserved Words
Working with Lists
Lists and Basic Operations
Reversing and Sorting a List
Working with Loops
Python for Loops
A for Loop with try/except
Flatten a List of Lists
Numeric Exponents in Python
Nested Loops
while Loops
Count the Number of Digits in Numbers
Count the Number of Digits in a Positive Integer

Using a while Loop to Find the Divisors of a Number

Using a while Loop to Find Prime Numbers
Assigning Values to Multiple Variables
The break/continue/pass Statements
Basic List Comprehensions
Working with List Comprehensions
Lists and Filter-related Operations
Summary

Chapter 4: Conditional Logic
Conditional Logic
Checking for Leap Years
Comparison and Boolean Operators
The in/not in/is/is not Comparison Operators
The and, or, and not Boolean Operators
Local and Global Variables
Uninitialized Variables and the Value None
Scope of Variables
Passing by Reference versus by Value
Arguments and Parameters
Summary

20
21
22
22
24
25
27

29

29
30
30
30
32
32
32
34
35
36
37
37
38
39
40
41
41
42
43
44
45
45

47

47
48
48
48
49
49
50
50
52
52
53

CONTENTS © IX

Chapter 5: Built-in Functions 55
Functions and Methods 55
Built-in Functions 56

The split(), join(), and range() Functions 56
The join() Function 57
The range() Function 57
The char Class 58
User-defined Functions 59
The return Statement in Python Functions 60
Specifying Default Values in a Function 61

Returning Multiple Values from a Function 61
Functions with a Variable Number of Arguments 62
Importing Custom Modules 63
Summary 64

Chapter 6: Tasks with Strings and Arrays 65
Task: Count Word Frequencies 65
Task: Check If a String Contains Unique Characters 67
Task: Insert Characters in a String 68
Task: String Permutations 69
Task: Check for Palindromes 70
Working with 1D Arrays 71

Rotate an Array 72
Task: Sort Array In-place Without a Sort Function 72
Task: Invert Adjacent Array Elements 73
Working with 2D Arrays 74
The Transpose of a Matrix 75
Summary 76

Chapter 7: Tasks with Numbers 77
Time and Space Complexity 77
Task: FizzBuzz 78
Task: Sum of Even and Odd Numbers in a List 78
Task: Maximum and Minimum Powers of an Integer 79
Task: Calculate the Number of Digits 80
Task: Determine If a Positive Integer is Prime 81
Task: Find the Prime Factorization of a Positive Integer 82
Task: Goldbach’s Conjecture 84
Task: Sum of Prime and Composite Numbers 85
Summary 86

Chapter 8: Working with Bit Values 87
Working with Bit Values 87

Task: Binary Substrings of a Number 88

X © CONTENTS

Task: Common 1 Values of Two Binary Numbers 89
Task: Invert Bits in Even and Odd Positions 90
Task: Invert Pairs of Adjacent Bits 92
Task: Find Common Bits in Two Binary Numbers 93
Task: Check for Adjacent Set Bits in a Binary Number 94
Task: Count Bits in a Range of Numbers 95
Task: Find the Right-most Set Bit in a Number 96
Task: The Number of Operations to Make All Characters Equal 97
Task: Compute XOR without XOR for Twwo Binary Numbers 98
Summary 99
Chapter 9: Python Data Structures 101
Queues 101
Tuples (Immutable Lists) 101
Sets 102
Dictionaries 103
Creating a Dictionary 104
Displaying the Contents of a Dictionary 104
Checking for Keys in a Dictionary 104
Deleting Keys from a Dictionary 105
Iterating Through a Dictionary 105
Interpolating Data from a Dictionary 105
Dictionary Functions and Methods 106
Dictionary Formatting 106
Ordered Dictionaries 106
Sorting Dictionaries 107
Python Multi-Dictionaries 107
List Comprehensions 107
Lists and Filter-related Operations 108
Expressions in Lists 109
Sorting Lists of Numbers and Strings 109
Lists and Arithmetic Operations 110
Concatenating a List of Words 111
Arrays and the append() Function 111
Working with Lists and the split() Function 112
Counting Words in a List 112
Iterating Through Pairs of Lists 113
Other List-Related Functions 113
Summary 115
Chapter 10: Introduction to Recursion 117
What is Recursion? 117
Arithmetic Series 118
Calculating Arithmetic Series (Iterative) 118
Calculating Arithmetic Series (Recursive) 119

Geometric Series 120

Calculating a Geometric Series (Iterative)
Calculating Geometric Series (Recursive)
Factorial Values
Calculating Factorial Values (Iterative)
Calculating Factorial Values (Recursive)
Calculating Factorial Values (Tail Recursion)
Fibonacci Numbers
Calculating Fibonacci Numbers (Recursive)
Calculating Fibonacci Numbers (Iterative)
Task: Reverse a String via Recursion
Task: Check for Balanced Parentheses
Task: Determine if a Positive Integer is Prime
Summary

Chapter 11: Miscellaneous Topics

Functionally-Oriented Programming
The filter() Function
The map() Function
The reduce() Function
The Lambda Operator and Lambda Expressions
Lambda Expressions
Dunders and Magic Methods
The Iterator Protocol
The iter() Function and the __iter () Method
Dictionaries and Iterators
Examples of Iterators
Range Versus a List
What is a Pipe?
Working with Generators
The yield Keyword
Generators and Comprehensions
A Generator Without a Loop
Miscellaneous Examples of Generators
Generate Squares of Numbers
Generate an Infinite List of Integers
Find Prime Numbers
Summary

Appendix A: Introduction to NumPy

What is NumPy?

Useful NumPy Features
What are NumPy Arrays?
Working with Loops
Appending Elements to Arrays (1)
Appending Elements to Arrays (2)
Multiplying Lists and Arrays

CONTENTS © XI

120
121
122
122
123
124
124
124
125
126
127
128
129

131

131
131
132
132
132
133
134
135
135
136
137
137
138
139
139
140
141
142
142
143
144
145

147

147
147
148
149
149
150
151

xii © CONTENTS

Doubling the Elements in a List 151
Lists and Exponents 152
Arrays and Exponents 152
Math Operations and Arrays 153
Working with “~1” Sub-ranges with Vectors 153
Working with “~1” Sub-ranges with Arrays 154
Other Useful NumPy Methods 154
Arrays and Vector Operations 155
NumPy and Dot Products (1) 156
NumPy and Dot Products (2) 156
NumPy and the Length of Vectors 157
NumPy and Other Operations 158
NumPy and the reshape() Method 158
Calculating the Mean and Standard Deviation 159
Code Sample with Mean and Standard Deviation 160
Trimmed Mean and Weighted Mean 161
Summary 162
Appendix B: Introduction to Pandas 163
What is Pandas? 163
Options and Settings 164
Data Frames 164
Data Frames and Data Cleaning Tasks 165
Alternatives to Pandas 165

A Data Frame with a NumPy Example 165
Describing a Data Frame 167
Boolean Data Frames 169
Transposing a Data Frame 170
Data Frames and Random Numbers 171
Reading CSV Files 172
Specifying a Separator and Column Sets in Text Files 173
Specifying an Index in Text Files 173
The loc() and iloc() Methods 173
Converting Categorical Data to Numeric Data 174
Matching and Splitting Strings 177
Converting Strings to Dates 179
Working with Date Ranges 180
Detecting Missing Dates 181
Interpolating Missing Dates 182
Other Operations with Dates 185
Merging and Splitting Columns 187
Reading HTML Web Pages 189
Saving a Data Frame as an HTML Web Page 190
Summary 192

Index 193

PREFACE

WHAT IS THE PRIMARY VALUE PROPOSITION FOR THIS BOOK?

This book eases you into the foundational aspects of Python 3.x with an extensive range
of code samples that illustrate its diverse features. Start with Python tools and installations,
and progressively learn intricacies like strings, loops, conditional logic, and much more.
The appendix on NumPy provides insights into efficient numerical operations, making it a
holistic resource for novice programmers. Companion files with code samples and figures
are available for downloading from the publisher.

THE TARGET AUDIENCE

The book is intended to reach an international audience of readers with highly diverse
backgrounds in various age groups. While many readers know how to read English, their
native spoken language is not English (which could be their second, third, or even fourth
language). Consequently, this book uses standard English rather than colloquial expres-
sions that might be confusing to those readers. As you know, many people learn by differ-
ent types of imitation, which includes reading, writing, or hearing new material. This book
takes these points into consideration in order to provide a comfortable and meaningful
learning experience for the intended readers.

GETTING THE MOST FROM THIS BOOK

Some programmers learn well from prose, others learn well from sample code (and lots
of it), which means that there’s no single style that can be used for everyone.

Moreover, some programmers want to run the code first, see what it does, and then
return to the code to delve into the details (and others use the opposite approach).

Consequently, the code samples contain a mixture of short code samples and slightly
longer code samples, whereas lengthy code samples are more suitable when you have
acquired an understanding of the rudimentary features of Python 3.x.

XIV © PREFACE

WHY ARE SOFTWARE INSTALLATION INSTRUCTIONS NOT INCLUDED?

There are useful websites containing installation instructions for Python for various
platforms. Instead of repeating those instructions in this book, that space is used for Python
material. In general, this book attempts to avoid “filler” content as well as easily accessible
set-up steps that are available online.

HOW WAS THE CODE FOR THIS BOOK TESTED?

The code samples in this book have been tested in Python version 3.9.1 on a MacBook
Pro with OS X 10.8.5. Although you do not need the identical version of Python on
your system, it’s a good idea to have access to a version (e.g., Python 3.8) that is close to
version 3.9.1.

WHAT DO | NEED TO KNOW FOR THIS BOOK?

The most useful prerequisite is some familiarity with another scripting language, which
will familiarize you with basic programming concepts. Knowledge of a programming lan-
guage such as Java can also be helpful for similar reasons (but it'’s not a requirement).
However, keep in mind that the less technical knowledge that you have, the more diligence
will be required in order to understand the various topics that are covered.

DOES THIS BOOK CONTAIN PRODUCTION-LEVEL CODE SAMPLES?

As mentioned earlier in the Preface, the primary purpose of the code samples in this
book is to illustrate various features of Python 3.x. As such, code clarity has higher priority
than writing more compact code that is more difficult to understand (and possibly more
prone to bugs). If you decide to use any of the code in this book in a production environ-
ment, you ought to subject that code to the same rigorous analysis as the code in other
parts of your application.

HOW DO I SET UP A COMMAND SHELL?

If you are a Mac user, there are three ways to do so. The first method is to use Finder
to navigate to Applications > Utilities and then double click on the Utilities
application. Next, if you already have a command shell available, you can launch a new
command shell by typing the following command:

open /Applications/Utilities/Terminal.app

A second method for Mac users is to open a new command shell on a MacBook from a
command shell that is already visible simply by clicking command+n in that command shell,
and your Mac will launch another command shell.

PRrREFACE * xVv

If you are a PC user, you can install Cygwin (open source https://cygwin.com/) that sim-
ulates bash commands, or use another toolkit such as MKS (a commercial product). Please
read the online documentation that describes the download and installation process. Note
that custom aliases are not automatically set if they are defined in a file other than the main
start-up file (such as .bash_login).

COMPANION FILES

Code samples and figures from the book are available by writing to the publisher at
info@merclearning.com.

CHAPTER

INTRODUCTION TO PYTHON

with its basic constructs, and handling some data types.

The first part of this chapter contains information about installing Python on your
machine and how to launch the Python interpreter. This section includes code samples that you
can save in text files to launch from the command line.

The second part of this chapter shows you how to work with simple data types, such as num-
bers and strings.

Before we start looking at code, keep in mind some of the chapters in this book contain
“forward referencing” whereby a Python construct (such as a loop or a list) is used before it is
discussed in detail in a subsequent chapter. For example, although conditional logic is discussed
in Chapter 4, you will see a conditional code snippet in some examples. However, an if-else
statement is easy to understand: when the “if” portion is true, execute some associated code; oth-
erwise, execute the code in the “else” portion of the conditional logic. However, if the “forward
referencing” code is too confusing, read the relevant material in a subsequent chapter and then
return to the code sample in this chapter.

In addition, the latest production version of Python (as this book goes to print) is 3.11, which
is significantly faster than 3.10 and 3.9, and Python 3.12 will be available soon. More information
regarding Python 3.11 is accessible online:

This chapter introduces Python, along with useful tools for installing its modules, working

https:/fwww.i-programmer.info/news/216-python/15824-python-311-released. html

NOTE The Python scripts in this book are for Python 3.x.

TOOLS FOR PYTHON

Although you only need Python installed on your machine for the code samples in this
book, there are distributions available that include additional libraries. For example, the
Anaconda Python distribution available for Windows, Linux, and Mac, and is downloadable:
hittp://continuum.io/downloads.

2 « Python for Absolute Beginners

Anaconda is well-suited for modules such as NumPy and SciPy, and if you are a Windows
user, Anaconda appears to be a better alternative.

easy_install and pip

Both easy install and pip are easy to use when you need to install Python modules.
Whenever you need to install a module, use either easy install or pip with the following

syntax:

easy install <module-name>
pip install <module-name>

Python-based modules are easier to install, whereas modules with code written in C are

NOTE
usually faster, but more difficult to install.

virtualenv

The virtualenv tool enables you to create isolated Python environments, and it is available
online:

hittp:/howw.virtualenv.orglen/latest/virtualenv.html

virtualenv addresses the problem of preserving the correct dependencies and versions
(and indirectly permissions) for different applications. (If you are a Python novice, you might
not need virtualenv right now). The next section shows you how to check whether Python is
installed on your machine, and where you can download Python.

PYTHON INSTALLATION

Before you download anything, check if you have Python already installed on your machine,
which is likely if you have a MacBook or a Linux machine. Simply type the following command
in a command shell:

python -V
The output for the MacBook used in this book is here:

python 3.9.1

Install Python 3.9.1 (or as close as possible to this version) on your machine so that you will

NOTE
have the same version of Python that was used to test the code in this book.

If you need to install Python on your machine, navigate to the Python home page and select
the downloads link or navigate directly to this website:

http:/www.python.org/download/
In addition, Pythonwin is available for Windows, and its home page is online:

http:/hwww.cgl.ucsf.edu/Outreach/pc204/pythonwin. html

Introduction to Python * 3

Finally, use any text editor that can create, edit, and save Python scripts as plain text files (do
not use Microsoft Word).

After you have Python installed and configured on your machine, you are ready to work with
the files in this book.

SETTING THE PATH ENVIRONMENT VARIABLE (WINDOWS ONLY)

The PATH environment variable specifies a list of directories that are searched whenever
you specify an executable program from the command line. A good guide to setting up your
environment so that the executable is always available in every command shell is to follow the
instructions found online:

http:/hwvww.blog.pythonlibrary.org/2011/11/24/python-101-setting-up-python-on-windows/

LAUNCHING PYTHON ON YOUR MACHINE

There are three different ways to launch Python:

e Use the Python Interactive Interpreter.
e Launch Python scripts from the command line.
e Use an IDE.

The next section shows you how to launch the interpreter from the command line. Later in
this chapter, we show how to launch Python files from the command line.

The emphasis in this book is to launch scripts from the command line, and in some cases, to

NOTE nter code in the interpreter.

The Python Interactive Interpreter

Launch the interactive interpreter from the command line by opening a command shell and
typing the following command:

python
You will see the following prompt (or something similar):
Python 3.9.1 (v3.9.1:1e5d33e909, Dec 7 2020, 12:44:01)

[Clang 12.0.0 (clang-1200.0.32.27)] on darwin

Type "help", "copyright", "credits" or "license" for more information.
>>>

Type the expression 2 + 7 atthe prompt:
>>> 2 4+ 7

Python displays the following result:

>>>

4 o Python for Absolute Beginners

Press ctrl-d to exit the Python shell.

You can launch any Python script from the command line by preceding it with the word
“python.” For example, if you have the script myscript.py that contains Python statements,
launch the script as follows:

python myscript.py

As a simple illustration, suppose that the Python file myscript.py contains the following
code:

print ('Hello World from Python')
print('2 + 7 = ', 247)

Launch the preceding code by typing python myscript.py from the command line, after
which you will see the following output:

Hello World from Python
2+ 7= 9

PYTHON IDENTIFIERS

A Python identifier is the name of a variable, function, class, module, or other object, and a
valid identifier conforms to the following rules:

e starts with a letter A to Z, or a to z, or an underscore (_)
* zero or more letters, underscores, and digits (0 to 9)

NOTE Python identifiers cannot contain characters such as @, $, and %.

Python is a case-sensitive language, so “Abc™ and “abc” are different identifiers.
In addition, Python has the following naming conventions:

e Class names start with an uppercase letter and all other identifiers with a lowercase letter.
* An initial underscore is used for private identifiers.
e Two initial underscores are used for strongly private identifiers.

An identifier with two initial underscores and two trailing underscores indicates a language-
defined special name.

LINES, INDENTATIONS, AND MULTI-LINES

Unlike other programming languages (such as Java), Python uses indentation instead of curly
braces for code blocks. Indentation must be consistent in a code block, as shown here:

if True:
print ("ABC")
print ("DEF")

Introduction to Python © §

else:
print ("ABC")
print ("DEF")

Multi-line statements can terminate with a new line or the backslash (“\”) character, as shown
here:

total = x1 + \
x2 + \
%3

You can place x1, x2, and x3 on the same line, so there is no reason to use three separate
lines; however, this functionality is available in case you need to add a set of variables that do not
fit on a single line.

You can specify multiple statements in one line by using a semicolon (“;”) to separate each
statement, as shown here:

a=10; b=5; print(a); print(atb)

The output of the preceding code snippet is as follows:

10
15

NOTE The use of semi-colons and the continuation character are discouraged in Python.

QUOTATION MARKS AND COMMENTS

Python allows single ('), double ("), and triple (" or ") quotation marks for string literals,
provided that they match at the beginning and the end of the string. You can use triple quota-
tion marks for strings that span multiple lines. The following examples are legal Python strings:

word = 'word'
line = "This is a sentence."
para = """This is a paragraph. This paragraph contains

more than one sentence."""

A string literal that begins with the letter “r” (for “raw”) treats everything as a literal character
and “escapes” the meaning of metacharacters:

al = r'\n'
a2 = r'\r'
a3 = r'\t"

print('al:',al,'a2:',a2,'a3:"',a3)
The output of the preceding code block is as follows:

al: \n a2: \r a3: \t

6 e Python for Absolute Beginners

You can embed a single quotation mark in a pair of double quotation marks (and vice versa)
to display a single quotation mark or double quotation marks. Another way to accomplish the

same result is to precede a single or double quotation mark with a backslash (“*) character. The
following code block illustrates these techniques:

pl = "
b2 = '
b3 = v\vv
b4 = m\""

print ('bl:',bl, 'b2:',b2)
print ('b3:',b3, 'b4:',b4)

The output of the preceding code block is as follows:

bl: ' b2: "
b3: ' bd: "

A hash sign (#) that is not inside a string literal is the character that indicates the beginning
of a comment. Moreover, all characters after the # and up to the physical line end are part of the
comment (and ignored by the interpreter). Consider the following code block:

First comment
print ("Hello, Python!") # second comment

This code produces the following result:
Hello, Python!

A comment may be on the same line after a statement or expression:
name = "Tom Jones" # This is also a comment

You can comment multiple lines as follows:
This is comment one

This is comment two
This is comment three

A blank line in Python is a line containing only whitespace, a comment, or both.

SAVING YOUR CODE IN A MODULE

Earlier you saw how to launch the interpreter from the command line and then enter Python
statements. However, everything you type into the interpreter is only valid for the current ses-
sion. If you exit the interpreter and then launch the interpreter again, your previous definitions
are no longer valid. Fortunately, you can store Python code in a text file.

A module is a text file that contains Python statements. In the previous section, you saw how
the interpreter enables you to test code snippets whose definitions are valid for the current ses-
sion. If you want to retain the code snippets and other definitions, place them in a text file so that
you can execute that code outside of the interpreter. One other detail to note is that modules are
also called “scripts” in this book.

Introduction to Python o 7

The outermost statements are executed from top to bottom when the module is imported for
the first time, which will then set up its variables and functions. A module can be run directly
from the command line, as shown here:

python first.py
As an illustration, place the following two statements in a text file called first .py:

x = 3
print (x)

Type the following command:

python first.py

The output from the preceding command is 3, which is the same as executing the preceding
code from the interpreter.

SOME STANDARD MODULES

The Python Standard Library provides many modules that can simplify your own scripts. A
list of the Standard Library modules is available online:

hittp:/hwww.python.org/doc/

Some of the most important modules include cgi, math, os, pickle, random, re,
socket, sys, time, and urllib.

The code samples in this book use the modules math, os, random, and re. You need to
import these modules in order to use them in your code. For example, the following code block
shows you how to import standard modules:

import re
import sys
import time
The code samples in this book import one or more of the preceding modules, as well as other

Python modules.

THE help() AND dir() FUNCTIONS

An Internet search for Python-related topics usually returns a number of links with useful
information. Alternatively, you can check the official documentation site: docs.python.org.

In addition, the help() and dir () functions are accessible from the interpreter. The
help () function displays documentation strings, whereas the dir () function displays defined
symbols. For example, if you type help (sys,) you see documentation for the sys module,
whereas dir (sys) displays a list of the defined symbols.

Type the following command in the interpreter to display the string-related methods:

>>> dir (str)

8 e Python for Absolute Beginners

The preceding command generates the following output:

[' add ', ' «class ', ' contains ', ' delattr ', ' doc ',

' eg ', ' format ', ' ge ', ' getattribute ', ' getitem ',

' getnewargs ', ' getslice ', ' gt ', ' hash ', ' init ', '
le ', ' len_ ', ' 1t ', ' mod ', ' mul ', ' ne ', ' new ',

' reduce ', ' reduce ex ', ' repr ', ' rmod ', ' rmul ', '
setattr ', ' sizeof ', ' str ', ' subclasshook ', ' formatter
field name split', ' formatter parser', 'capitalize', 'center', 'count',

'decode', 'encode', 'endswith', 'expandtabs', 'find', 'format', 'index',
'isalnum', 'isalpha', 'isdigit', 'islower', 'isspace', 'istitle',
'isupper', 'join', 'ljust', 'lower', 'lstrip', 'partition', 'replace',
'rfind', 'rindex', 'rjust', 'rpartition', 'rsplit', 'rstrip', 'split',
'splitlines', 'startswith', 'strip', 'swapcase', 'title', 'translate',
'upper', 'zfill']

The preceding list gives you a consolidated list of built-in functions. Although it is clear that
the max () function returns the maximum value of its arguments, the purpose of other functions,
such as filter () or map (), is not immediately apparent (unless you have used them in other
programming languages). The preceding list provides a starting point for finding out more about
various built-in functions that are not discussed in this chapter.

Note that while dir () does not list the names of built-in functions and variables, you can
obtain this information from the standard module builtin that is automatically imported
under the name _ builtins :

>>> dir(_ builtins)

The following statement shows you how to get more information about a function:
help(str.lower)

The output from the preceding command is shown here:

Help on method descriptor:

lower (...)
S.lower () -> string

Return a copy of the string S converted to lowercase.
(END)

Check the online documentation and also experiment with help () and dir () when you
need additional information about a particular function or module.

COMPILE TIME AND RUNTIME CODE CHECKING

Python performs some compile-time checking for potential errors, but most checks (including
type and name) are deferred until code execution. Consequently, if your code references a user-
defined function that that does not exist, the code will compile successfully. In fact, the code will
fail with an exception only when the code execution path references the non-existent function.

Introduction to Python © 9

Although we discuss functions in a subsequent chapter, consider the following function
myFunc that references the non-existent function called DoesNotExist:

def myFunc (x) :
if x ==
print (DoesNotExist (x))
else:
print ('x: ', x)

The preceding code only fails when the myFunc function is passed the value 3, after which
Python raises an error. Later, we discuss how to define and invoke user-defined functions, along
with an explanation of the difference between local versus global variables.

Now that you understand some basic concepts and how to launch your custom modules, the
next section discusses ways to format data.

FORMATTING TECHNIQUES

Decimal numbers (such as 1.23 and 0.457) contain a decimal point that specify a combination
of integer and decimal value. You can specify the number of decimal places of precision to use
when printing decimal numbers:

>>> x = 1.23456

>>> format(x, '0.2f")

'1.23"

>>> format (x, '0.3f'")

'1.235"

>>> 'value 1is {:0.3f}'.format (x) 'value is 1.235"
>>> from decimal import Decimal

>>> a = Decimal('4.2")

>>> b = Decimal ('2.1")

>>> a + b

Decimal ('6.3")

>>> print(a + b)

6.3

>>> (a + b) == Decimal('6.3")

True

>>> x = 1234.56789

>>> # Two decimal places of accuracy
>>> format(x, '0.2f")

'1234.57"

>>> # Right justified in 10 chars, one-digit accuracy
>>> format (x, '>10.1f")

' 1234.6"

>>> 4 Left justified

>>> format (x, '<10.1f') '1234.6"'
>>> # Centered

>>> format (x, '710.1f') ' 1234.¢6'

>>> # Inclusion of thousands separator
>>> format(x, ',")

'1,234.56789"

>>> format (x, '0,.1f")

'1,234.6"

10 e Python for Absolute Beginners

Working with f-strings

Python supports several ways to print the value of a variable, and this section discusses
f-strings, which is the most recent (and recommended) way to print the contents of a variable.
Listing 1.1 displays the content of fstringsl.py that shows you how to display a numbers and
strings using the “f” style in print () statements.

LISTING 1.1: fstrings1.py

import decimal

numl = 12345
num2 = 12345.678
num3 = decimal.Decimal ("1234.678")

print (f"numl: {numl}")

print (f"numl: {numl:3d}")

print (f"numl: {numl:5f}")

print (f"numl: {numl:.8f}")

print (f"numl: {numl:08}")

print (f"numl: {numl:,}")

print (f"numl: {f'S${numl:.3f}':>10s}")
print (f'numl: {num3:{"4.3" if num3 < 100 else "8.3"}}")
print (f"square:{ (lambda x: x**2) (15)}1")
print (f"cube: {(lambda x: x**3) (15)}")
print ()

fferror:

#print (f"num2: {num2:.3d}")
print (f"num2: {num2:.3f}")
print (f"num2: {num2:0.3f}")
print (f"num2: {num2:8.4f}")
print (f"num2: {num2:2.5f}")

Listing 1.1 contains an import statement, which you will often see in Python scripts because
they provide additional functionality that is not part of the Python programming language. In
this example, the import statement specifies decimal, which is used in one of the variables in
this code sample.

The next portion of Listing 1.1 initializes the variables num1, num2, and num3 with decimal
values, one of which involves the imported decimal library. Next, a block of print () state-
ments displays the values of these three variables using different formats, followed by another
block of print () statements that displays the contents of the variable num2 using different
formats.

Listing 1.1 uses the “f-style” for printing variables, which you can understand by comparing
the contents of each print () statement with its corresponding output. Launch the code in
Listing 1.1, and you will see the following output:

numl: 12345

numl: 12345

numl: 12345.000000
numl: 12345.00000000

Introduction to Python * 11

numl: 00012345
numl: 12,345
numl: $12345.000
numl: 1.23E+3
square:225

cube: 3375

num2: 12345.678
num2: 12345.678
num2: 12345.6780
num2: 12345.67800

Listing 1.2 displays the content of £strings2.py that shows you how to display dates and

text using the “f” style in print () statements.

LISTING 1.2: fstrings2.py

import datetime
today = datetime.datetime.today ()
print (f"today: {today}"

()

print (f"today: {today:%Y

print (f"today: {today:%Y
(M
(D
(

)
print (f"today: {today:%M}")
print (f"today: {today:%D}")
print ()
text "I love deep dish pizza"

print (f"text: {text}")
print (f"{text:"8}")

#error:
#print (f"text: {text:10f}")
fferror:
#print (f"text: {text:10d}")

Listing 1.2 contains an import statement that specifies datetime instead of decimal
because we need this library to initialize the variable today with today's date. The next por-
tion of Listing 1.2 contains a block of print () statements that also use the “f-style” to print the
contents of the variable today using different formats. As you can surmise, the letters v, M, and
D (and their lowercase counterparts) correspond to the year, month, and day, respectively, of a
variable whose value is a legitimate date.

Another code snippet displays the contents of the variable text (which is a string) using two
different formats. The final block is a “commented out” section of code that shows you invalid
printing formats. Launch the code in Listing 1.2, and you will see the following output:

today: 2022-11-27 12:43:04.545559
today: 2022-11-27
today: 2022

12 e Python for Absolute Beginners

today: 43
today: 11/27/22

text: I love deep dish pizza
I love deep dish pizza

WORKING WITH STRINGS

Literal strings in Python 3 are based on Unicode by default, whereas earlier versions of
Python used ASCII. Although Unicode and ASCII are not necessarily important for you to know
right now, they are useful to learn because they occur in other programming languages. A simple
Internet search will yield multiple free articles with detailed explanations.

You can concatenate two strings using the “+” operator. Launch Python from the command
line by typing python, and then type the strings that are displayed inside a pair of quotation
marks, starting with the following example that prints a string and then concatenates two single-
letter strings:

>>> 'abc'
'abc!

>>> 'a' + 'b!
labl

You can use + or * to concatenate identical strings, as shown here:
>>> 'a' + 'a' + 'a'
'aaa'
>>> 'a' * 3
'aaa'

You can assign strings to variables and print them using the print () statement:

>>> print ('abc')

abc

>>> x = 'abc'
>>> print (x)

abc

>>> y = 'def'
>>> print(x + y)
Abcdef

Comparing Strings

You can use the built-in methods lower () and upper () to convert a string to lowercase
and uppercase, respectively:

>>> 'Python'.lower ()
'python'’

>>> 'Python'.upper ()
'"PYTHON'

>>>

Introduction to Python * 13

The methods lower () and upper () are useful for performing a case insensitive compari-
son of two strings. Listing 1.3 shows the content of comparel . py that uses the lower () method
to compare two strings.

LISTING 1.3: compare1.py

x = '"Abc'
y = 'abc'
if(x == y):
print('x and y: identical')
elif (x.lower() == y.lower()):
print('x and y: case insensitive match')
else:

print ('x and y: different')

Since x contains mixed case letters and v contains the same letters but in lowercase form,
Listing 1.3 gives the following output:

x and y: case insensitive match

Two comments about Listing 1.3. First, Python (and many other languages) contain meth-
ods, which are similar to functions, and are discussed in more detail in Chapter 5. Second,
the code contains a conditional block involving if/elif/else statements. Although conditional
logic is discussed in more detail in Chapter 4, this code block is intuitive: “if [...] is true, print
something; otherwise, if [...] is true, print something else; and if neither is true, then print
another message.”

FORMATTING STRINGS

This section contains a code block that has an import statement that imports the string
library. We need this library so that we can invoke the methods string.1lstring (), string.
rstring(),and string.center () for positioning a text string so that it is left-justified, right-
justified, and centered, respectively. As you saw in a previous section, the format () method
exists for advanced interpolation features. Launch Python from the command line and then
enter the following statements in the interpreter:

import string

strl =
print(string.ljust(strl, 10))
print (string.rjust (strl, 40))
print (string.center (strl, 40))

'this is a string'

The output is as follows:

this is a string
this is a string
this is a string

14 e Python for Absolute Beginners

SUMMARY

This chapter started with some Python tools, how to install Python, and how to launch Python
on your machine. You also learned how to launch the Python interpreter and execute Python
statements from inside the interpreter.

Next you learned about identifiers, indentation, and quotations and comments. In addition,
you learned about standard modules, as well as help () and dir (). Then you learned about how
to specify the number of decimal values to display in decimal numbers. You also saw how to work
with strings, and also how to display strings as a left-justified or right-justified string.

CHAPTER

STRING OPERATIONS

his chapter shows you how to work with strings in Python and perform various operations
on strings, such as search and replace operations. This chapter will prepare you for the
additional string-related tasks that are discussed in Chapter 6.

The first part of this chapter shows you how to “slice” and “splice” strings, as well as how to
test for digits and alphabetic characters in a string.

The second part of this chapter shows you how to search and replace a string in other strings,
and then how to remove leading and trailing characters. You will also see how to print text with-
out the newline character and how to perform text alignment.

The third part of this chapter discusses dates and how to convert dates into strings. You will
also learn how to handle user input and deal with exceptions.

Before you read this chapter, please keep in mind that you will see a mixture of code samples
involving Python features that are discussed in more detail in subsequent chapters. In some
cases, you will see functionality that is more advanced, such as that shown in the final section
marked “optional.” The intent is to make you aware of features in Python that you can follow up
by reading online articles that describe their purpose.

WORKING WITH STRINGS

As you learned in Chapter 1, literal strings in Python 3 are Unicode by default. You can
concatenate two strings using the “+” operator. The following example prints a string and then
concatenates two single-letter strings:

>>> 'abc!
'abc!

>>> 'a' + 'b!
Vabl

You can use + or * to concatenate identical strings, as shown here:

>>> laV + laV + laV
'aaa'

>>> 'ag' * 3

'aaa'

16 e Python for Absolute Beginners

You can assign strings to variables and print them using the print () command:

>>> print ('abc')

abc

>>> x = 'abc'
>>> print (x)

abc

>>> y = 'def'
>>> print(x + vy)
Abcdef

You can “unpack” the letters of a string and assign them to variables, as shown here:

>>> str = "World"
>>> x1,x2,x3,x4,x5 = str
>>> x1

lwl

>>> x2

lol

>>> x3

lrl

>>> x4

lll

>>> x5

ldl

The preceding code snippets shows you how easy it is to extract the letters in a text string. You
can also extract substrings of a string as shown in the following examples:

>>> x = "abcdef"
>>> x[0]

lal

>>> x[-1]

lfl

>>> x[1:3]

lbcl

>>> x[0:2] + x[5:]
'abf'

However, your code will fail with an error if you attempt to subtract two strings:

>>> 'a' - 'b!
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
TypeError: unsupported operand type(s) for -: 'str' and 'str'

Fortunately, the try/except construct enables you to handle the preceding type of excep-
tion, as you will see in Chapter 3.

Formatting Strings

In Chapter 1, you saw examples of how to format strings. In addition, Python strings support the
functions 1just (), rjust (), and center () for positioning a text string so that it is left-justified,
right-justified, and centered, respectively. Enter the following statements in the interpreter:

String Operations © 17

import string

strl =
print(strl.ljust(10))
print (strl.rjust (40))
print(strl.center (40))

'this is a string'

The output is as follows:
this is a string

this is a string
this is a string

The next portion of this chapter shows you how to “slice” text strings by specifying ranges of
characters in text strings.

SLICING AND SPLICING STRINGS

Python enables you to extract substrings of a string (called slicing) using array notation. Slice
notation is start:stop:step, where the start, stop, and step values are integers that specify
the start value, end value, and increment value, respectively. The default value for step is 1,
and it is often omitted. The interesting part about slicing is that you can use the value -1, which
operates from the right side instead of the left side of a string. Some examples of slicing a string

are here:
textl = "this is a string"
print ('First 7 characters:',textl[0:7])

(
print ('Characters 2-4:',textl[2:4])
print ('Right-most character:', textl[-11])
print ('Right-most 2 characters:',textl[-3:-1])

The output from the preceding code block is as follows:

First 7 characters: this is
Characters 2-4: is
Right-most character: g
Right-most 2 characters: in

As a teaser preview, here are some examples of how to specify subranges of Python lists (with
more details in Chapter 5):

nums = [1,2,3,4,5,6,7]
v = nums/[:3]

w = nums[3:]

X = nums[:-1]

y = nums[2:4]

z = nums[::-1]

str = "comprehension"
v = str[:3]

[
w = str[3:]
X = str[::3]

18 e Python for Absolute Beginners

y = str[:-1]
z = str[::-1]

str = "RED"
y = 3*str
z = str*3

Testing for Digits and Alphabetic Characters

Python enables you to examine each character in a string and then test whether that charac-
ter is a digit or an alphabetic character.

Listing 2.1 shows the content of char_types.py that illustrates how to determine whether
a string contains digits or characters. (If you are unfamiliar with the conditional “if” statement in
Listing 2.1, it is discussed in Chapter 4.)

LISTING 2.1: char_types.py

strl = "4"

str2 = "4234"
str3 = "b"

strd = "abc"
str5 = "alb2c3"

if(strl.isdigit()):
print ("this is a digit:",strl)

if(str2.isdigit()):
print ("this is a digit:",str2)

if (str3.isalpha()):
print ("this is alphabetic:",str3)

if(strd.isalpha()):
print ("this is alphabetic:",str4)

if (not strb.isalpha()):
print ("this is not pure alphabetic:",strb)

print ("capitalized first letter:",strb5.title())

Listing 2.1 initializes some variables, followed by two conditional tests that check whether
strl and str2 are digits using the isdigit () function. The next portion of Listing 2.1 checks
if str3, str4, and str5 are alphabetic strings using the isalpha () function. The output of
Listing 2.1 is as follows:

this is a digit: 4

this is a digit: 4234

this is alphabetic: b

this is alphabetic: abc

this is not pure alphabetic: alb2c3
capitalized first letter: A1B2C3

String Operations © 19

SEARCH FOR AND REPLACE A STRING IN OTHER STRINGS

Python provides methods for searching and replacing a string in a second text string.
Listing 2.2 shows the content of find_pos1.py, which shows how to use the find () function to
search for the occurrence of one string in another string.

LISTING 2.2: find_pos1.py

iteml = 'abc'

item2 = 'Abc'

text = 'This is a text string with abc'
posl = text.find(iteml)

pos2 text.find (item2)

print ('posl="',posl)
print ('pos2="',pos2)

Listing 2.2 initializes the variables iteml, item2, and text, and then searches for the index
of the contents of iteml and item? in the string text. The find () function returns the column
number where the first successful match occurs; otherwise, the find () function returns a -1 if a
match is unsuccessful. The output from launching Listing 2.2 is here:

posl= 27
pos2= -1

Listing 2.3 displays the content of replacel.py, which shows how to replace one string
with another string.

LISTING 2.3: replace1.py

text = 'This is a text string with abc'
print ('text:', text)

text = text.replace('is a', 'was a')
print ('text:', text)

Listing 2.3 starts by initializing the variable text and then printing its contents. The next
portion of Listing 2.3 replaces the occurrence of “is a” with “was a” in the string text, and then
prints the modified string. The output from launching Listing 2.3 is as follows:

text: This is a text string with abc
text: This was a text string with abc

REMOVE LEADING AND TRAILING CHARACTERS

Python provides the functions strip(), lstrip(), and rstrip() to remove characters
in a text string. Listing 2.4 shows the content of removel.py, which gives the code for how to
search for a string.

20 ¢ Python for Absolute Beginners

LISTING 2.4: removel.py

text ="' leading and trailing white space !
print('textl:', 'x',text,'y")

text = text.lstrip()
print ('text2:','x',text,'y")

text = text.rstrip()
print ('text3:','x',text,'y")

Listing 2.4 starts by concatenating the letter x and the contents of the variable text, and then
printing the result. The second part of Listing 2.4 removes the leading white spaces in the string
text and then appends the result to the letter x. The third part of Listing 2.4 removes the trailing
white spaces in the string text (note that the leading white spaces have already been removed)
and then appends the result to the letter x. The output from launching Listing 2.4 is here:

textl: x leading and trailing white space %

text2: x leading and trailing white space y
text3: x leading and trailing white space y

If you want to remove extra white spaces inside a text string, use the replace () function as
discussed in the previous section.

PRINTING TEXT WITHOUT NEWLINE CHARACTERS

If you need to suppress white space and a new line between objects output with multiple
print statements, you can use concatenation or the write () function. The first technique is to
concatenate the string representations of each object using the str () function prior to printing
the result. For example, run the following statement:

X = str(9)+str (0xff)+str(-3.1)
print('x: ',x)

The output is shown here:

X: 9255-3.1

The preceding line contains the concatenation of the numbers 9 and 255 (which is the deci-
mal value of the hexadecimal number 0xff) and -3.1.

Incidentally, you can use the str() function with modules and user-defined classes. An
example involving the built-in module sys is as follows:

>>> import sys
>>> print (str(sys))
<module 'sys' (built-in)>

The following code snippet illustrates how to use the write () function to display a string:

import sys
write = sys.stdout.write

String Operations © 21

write('123")
write ('123456789")

The output is here:

1233
1234567899

WORKING WITH DATES

Python provides a rich set of date-related functions, and this section provides one such exam-
ple. Listing 2.5 shows the content of the script datetime2.py, which displays various date-
related values, such as the current date and time; the day of the week, month, and year; and the
time in seconds since the beginning of the epoch.

LISTING 2.5: datetime2.py

import time
import datetime

print ("Time in seconds since the epoch: %s" Stime.time())
print ("Current date and time: " , datetime.datetime.now())

print ("Or like this: " ,datetime.datetime.now().strftime ("%y-%m-%d-%H-%M"))

print ("Current year: ", datetime.date.today().strftime("%Y"))

print ("Month of year: ", datetime.date.today().strftime("%B"))

print ("Week number of the year: ", datetime.date.today().strftime ("SW"))
print ("Weekday of the week: ", datetime.date.today().strftime ("%w"))
print ("Day of year: ", datetime.date.today().strftime ("%3"))

print ("Day of the month : ", datetime.date.today().strftime ("%d"))

print ("Day of week: ", datetime.date.today().strftime ("%A"))

Listing 2.6 displays the output generated by running the code in Listing 2.5.

LISTING 2.6: datetime2.out

Time in seconds since the epoch: 1375144195.66
Current date and time: 2023-07-29 17:29:55.664164
Or like this: 23-07-29-17-29

Current year: 2023

Month of year: July

Week number of the year: 30

Weekday of the week: 1

Day of year: 210

Day of the month : 29

Day of week: Monday

22 ¢ Python for Absolute Beginners
Python allows you to perform arithmetic calculations with date-related values, as shown in
the following code block:

>>> from datetime import timedelta
>>> a = timedelta (days=2, hours=6)

>>> b = timedelta (hours=4.5)
>>>c =a + b

>>> c.days

2

>>> c.seconds

37800

>>> c.seconds / 3600

10.5

>>> c.total seconds() / 3600
58.5

Converting Strings to Dates

Listing 2.7 shows the content of string2date.py, which illustrates how to convert a string
to a date and how to calculate the difference between two dates.

LISTING 2.7: string2date.py

from datetime import datetime

text = '2024-08-13"

y = datetime.strptime (text, '%Y-%m-%d')
z = datetime.now ()

diff =y - z

print ('Date difference:',diff)

The output from Listing 2.7 is shown here:

Date difference: -210 days, 18:58:40.197130

EXCEPTION HANDLING

Chapter 1 mentioned that try/except blocks are useful for handling exceptions in Python,
and this section contains more details regarding exceptions. As a side comment, JavaScript
allows you to add numbers and strings, whereas you cannot add a number and a string in
Python.

However, you can “catch” an attempt to add a number and a string via the try/except con-
struct, which is similar to the try/catch construct in languages such as JavaScript and Java. An
example of a try/except block for handling an error involving the addition of a number and a
string is here:

try:
x = 4
y = 'abc'
z =x +vy
except:

print 'cannot add incompatible types:', x, y

String Operations ® 23

When you run the preceding code, the print () statement in the except code block is
executed because the variables x and y have incompatible types.

As you saw earlier in the chapter, subtracting two strings is not supported in Python, and
attempting to do so will result in an exception:

>>> 'a' - 'b'!
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
TypeError: unsupported operand type(s) for -: 'str' and 'str'

A simple way to handle this situation is to use a try/except block:

>>> try:
print('a' - 'b'")
except TypeError:
print ('TypeError exception while trying to subtract two strings')
except:
print ('Exception while trying to subtract two strings')

The output from the preceding code block is as follows:
TypeError exception while trying to subtract two strings

The preceding code block specifies the finer-grained exception called TypeError, followed
by a “generic” except code block to handle all other exceptions that might occur during the
execution of your code. (This style is similar to the exception handling in Java code.)

Listing 2.8 shows the content of exceptionl.py, which illustrates how to handle various
types of exceptions.

LISTING 2.8: exception1.py
import sys

try:
f open ('myfile.txt")
s f.readline ()
i = int(s.strip())
except IOError as err:
print ("I/0O error: {0}".format (err))
except ValueError:
print ("Could not convert data to an integer.")
except:
print ("Unexpected error:", sys.exc info() [0])
raise

Listing 2.8 contains a try block followed by three except statements. If an error occurs in
the try block, the first except statement is compared with the type of exception that occurred.
If there is a match, then the subsequent print statement is executed, and the program termi-
nates. If not, a similar test is performed with the second except statement. If neither except
statement matches the exception, the third except statement handles the exception, which
involves printing a message and then “raising” an exception.

24 « Python for Absolute Beginners

Note that you can also specify multiple exception types in a single statement, as shown here:

except (NameError, RuntimeError, TypeError):
print ('One of three error types occurred')

The preceding code block is more compact, but you do not know which of the three error
types occurred. Python allows you to define custom exceptions, but this topic is beyond the

scope of this book.

HANDLING USER INPUT

Python enables you to read user input from the command line via the input () function or the
raw_input () function. Typically, you assign user input to a variable that contains all the charac-
ters that users enter from the keyboard. User input terminates when users press the <return>key
(which is included with the input characters). Listing 2.9 displays the content of user inputl.
py that prompts users for their name and then uses interpolation to display a response.

LISTING 2.9: user_input1.py

userInput = input ("Enter your name: ")

print ("Hello %s, my name is Python" userlInput)

The output of Listing 2.10 is as follows (assume that the user entered the word Dave):
Hello Dave, my name is Python

The print () statement in Listing 2.9 uses string interpolation via %s, which substitutes the
value of the variable after the % symbol. This functionality is obviously useful when you want to
specify something that is determined at run-time. User input can cause exceptions (depending
on the operations that your code performs), so it is important to include exception-handling code.

Listing 2.10 shows the content of user input2.py, which prompts users for a string and
attempts to convert the string to a number in a try/except block.

LISTING 2.10: user_input2.py

userInput = input ("Enter something: ")
try:

x = 0 + eval (userInput)

print ('you entered the number:',userInput)
except:

print (userInput, 'is a string')

Listing 2.10 adds the number 0 to the result of converting a user’s input to a number. If the
conversion was successful, a message with the user’s input is displayed. If the conversion failed,
the except code block consists of a print statement that displays a message.

This code sample uses the eval () function, which should be avoided so that your code does

NOTE .
not evaluate arbitrary (and possibly destructive) commands.

String Operations ® 25

Listing 2.11 shows the content of user input3.py, which prompts users for two numbers
and attempts to compute their sum in a pair of try/except blocks.

LISTING 2.11: user_input3.py

sum = 0
msg = 'Enter a number:'
vall = input (msg)
try:
sum = sum + eval (vall)
except:
print(vall, 'is a string')
exit ()
msg = 'Enter a number:'
val2 = input (msqg)
try:
sum = sum + eval (val2)
except:
print(val2,'is a string')
exit ()

print ('The sum of',vall, 'and',val2,'is', sum)

Listing 2.11 contains two try blocks, each of which is followed by an except statement.
The first try block attempts to add the first user-supplied number to the variable sum, and the
second try block attempts to add the second user-supplied number to the previously entered
number.

An error message occurs if either input string is not a valid number; if both are valid num-
bers, a message is displayed containing the input numbers and their sum.

COMMAND-LINE ARGUMENTS (OPTIONAL)

Python provides a getopt module to parse command-line options and arguments, and the
sys module provides access to any command-line arguments via the sys . argv. This serves two

purposes:

* sys.argv is the list of command-line arguments.
® len(sys.argv) is the number of command-line arguments.

Here, sys.argv[0] is the program name: if the program is called test.py, it matches the
Vﬂueofsys.argv[OL

Now you can provide input values for a program on the command line instead of providing
input values by prompting users for their input. As an example, consider the script test.py
shown here:

26 ° Python for Absolute Beginners

#!/usr/bin/python

import sys

print ('Number of arguments:',len(sys.argv), 'arguments')
print ('Argument List:', str(sys.argv))

Run above script as follows:
python test.py argl arg2 arg3
This will produce following result:

Number of arguments: 4 arguments.
Argument List: ['test.py', 'argl', 'arg2', 'arg3']

Listing 2.12 shows the content of he11o.py, which illustrates how to use sys.argv to check
the number of command line parameters.

LISTING 2.12: hello.py

import sys

def main () :
if len(sys.argv) >= 2:
name = sys.argv[l]
else:
name = 'World'

print ('Hello', name)

Standard boilerplate to invoke the main() function
if name == "' main ':
main ()

Listing 2.12 defines the main () function that checks the number of command-line param-
eters. If this value is at least 2, then the variable name is assigned the value of the second parame-
ter (the first parameteris hello.py), otherwise name is assigned the value He1lo. The print ()
statement then prints the value of the variable name.

In brief, when a module is run directly, the special variable ~ name is setto main_ .
You will often see the following type of code in a module:

if name == "' main
do something here
print ('Running directly')

The preceding code snippet allows Python to determine whether a module was launched
from the command line or imported into another module. The preceding code snippet is used in
the final portion of Listing 2.12 to determine whether to execute the main () function.

String Operations © 27

SUMMARY

This chapter started by showing you how to “slice” and “splice” strings, as well as how to test
for digits and alphabetic characters in a string. Next, you learned how to search and replace a
string in other strings, and then how to remove leading and trailing characters.

Then you learned how to print text without a new line character and how to perform text
alignment. In addition, you saw how to work with dates and how to convert dates into strings. In
addition, you learned how to handle user input and deal with exceptions using a try/except
block. Finally, you learned how to work with command line arguments.

CHAPTER

WOoORKING WiTH LOOPS

loops. You will also see examples of nested loops.
The first part of this chapter explains the precedence of operators, followed by a section

that contains reserved words (i.e., words that you cannot use as variables in your Python code).

The second part of this chapter briefly discusses lists and various operations that you can
perform on lists. This material is helpful for code samples involving lists that are discussed in
subsequent chapters.

The third part of this chapter discusses for loops, along with code samples that show you how
to use a try/except code blockin a for loop. You will also see an example of a nested loop.

The fourth section contains examples of while loops, such as determining whether a positive
integer is a prime number.

This chapter shows you various types of loops in Python, such as for loops and while

PRECEDENCE OF OPERATORS

When you have an expression involving numbers, you might remember that multiplica-
tion (“*”) and division (*/”) have higher precedence than addition (“+”) or subtraction (“-”).
Exponentiation has even higher precedence than these four arithmetic operators.

However, instead of relying on precedence rules, it is simpler (as well as safer) to use paren-
theses. For example, (x/y)+10 is more explicit than x/y+10, even though they are equivalent
expressions.

As another example, the following two arithmetic expressions are the equivalent, but the
second is less error prone than the first because the latter contains parentheses:

x/y+3*z/8+x*y/z-3%x
(x/y)+(3*%z) /84 (x*y) /z— (3*%)

The following website contains precedence rules for operators in Python:

http:/www.mathes.emory.edu/~valerie/courses/fall10/155/resources/op_precedence.html

30 ¢ Python for Absolute Beginners

RESERVED WORDS

Every programming language has a set of reserved words, which is a set of words that cannot
be used as identifiers, and Python is no exception. The reserved words are and, exec, not,
assert, finally, or, break, for, pass, class, from, print, continue, global,
raise, def, if, return, del, import, try, elif, in, while, else, is, with, except,
lambda, and yield.

If you inadvertently use a reserved word as a variable, you will see an “invalid syntax” error
message instead of a “reserved word” error message. For example, suppose you create a script
testl.py with the following code:

break = 2
print ('break =', break)

If you run the preceding code, you will see the following output:

File "testl.py", line 2
break = 2

A

SyntaxError: invalid syntax

However, a quick inspection of the code reveals the fact that you are attempting to use the
reserved word break as a variable.

WORKING WITH LISTS

Python supports a 1ist data type, along with a rich set of list-related functions. Since lists
are not typed, you can create a list of different data types, as well as multidimensional lists. The
next several sections show you how to manipulate list structures.

Lis