

Grokking the SQL Interview
© 2023, Javin Paul

Version 1.0 - August 2023

All rights reserved. This book or any portion thereof may not be reproduced
or used in any manner whatsoever without the express written permission
of the publisher except for the use of brief quotations in a book review.

Table of Content

Overview .. 1

Why Prepare for SQL and Database for Interviews? ... 2
How to prepare SQL for Interviews? .. 3
Which SQL and Database topics to Prepare for Interviews? .. 5

CHAPTER 1: SQL and Database Telephonic Interview Questions 6

1 Difference between UNION and UNION ALL in SQL ... 7
2 Difference between WHERE and HAVING clause in SQL? 10
3 Describe the difference between clustered and non-clustered indexes in a

database? ... 13
4 Write an SQL query to find the second highest salary of an employee

without using TOP or LIMIT? .. 15
5 How to find duplicate rows in the database? ... 16
6 Difference between correlated and non-correlated subquery in SQL? 17
7 How many clustered indexes you can have in a table? .. 20
8 Difference between the PRIMARY key and the UNIQUE key constraint

in SQL? .. 21
9 Difference between view and materialized view in SQL? 23
10 Difference between TRUNCATE, DELETE and DROP in SQL? 25
11 What is Referential Integrity in a relational database? .. 27
12 What is Normalization? ... 29
13 When a table is said to be in 1NF, 2nd NF, and 3rd NF? 33
14 Describe the difference between ISNULL() and COALESCE() in SQL Server? 35
15 How do you ensure that only values between 1 to 5 are allowed in an

integer column? ... 36
16 Difference between CHAR and VARCHAR data types in SQL? 38
17 Difference between VARCHAR and NVARCHAR in SQL Server? 40
18 How do you get Day, Month, and Year from a date in SQL Server? 40
19 How to check if a date is valid in SQL? .. 41
20 Difference between LEFT OUTER JOIN and INNER JOIN in SQL? 43

21 What is SELF JOIN in SQL? .. 44
22 In a classical Employee and Department relationship, write SQL query to

print all departments and number of employees on each department. 44
23 Difference between COUNT(*), COUNT(1), and COUNT(column_ name)

in SQL? .. 45
24 What is Database statistics? How it affects the performance of your Query? 47
25 Suppose you have to create a compound index in a table, involving two

columns like book_id and active. Now you can create them as either
(book_id, active) or (active, book_id), do you think the order of columns
in an index matter? How it will affect your SQL queries? 49

26 What do _ and % are used in the SQL query? ... 50
27 How do you ensure that a particular SQL query will use a particular Index? 51
28 In SQL Server, which one is fastest and slowest between an index seek,

an index scan, and table scan? ... 53
29 What does NULL = NULL will return in SQL? .. 54
30 Write SQL query to find all rows where EMP_NAME, a VARCHAR

column is NULL? .. 55
31 What is the temp table? .. 56
32 What is the fastest way to empty or clear a table? .. 57
33 What is an identity column in SQL Server? How do you return an identity

value from a table? .. 59
34 How do you return an identity value from a table with a trigger? 61
35 How do you return a value from a stored procedure? ... 61
36 How do you return a VARCHAR value from a stored procedure? 63
37 If you have a column that will only have values between 1 and 250 what

data type will you use? .. 63
38 Difference between LEFT and RIGHT OUTER JOIN in SQL? 64
39 Can you write an SQL query to select all last names that start with 'T'? 64
40 How would you select all rows where the date is 20231002? 65
41 What is the difference between a local and global temporary table in

SQL Server? .. 65
42 How do you create a copy of a table in SQL Server? .. 66
43 How do you change the data type of a column in a table in SQL? 67
44 What data type should you use to store monetary values in a table? 68
45 What does SELECT 3/2 will return? 1 or 1.5? ... 69
46 What is the maximum value that Decimal (6, 5) can hold in SQL Server? 70
47 If you have a table with one integer column ID, and it has three values

101, 201, and NULL? What will the following SQL query SELECT *
FROM TestTable where ID !=101 will return? ... 70

48 What is your favorite SQL book? .. 71
49 Tell me two SQL best practices you follow? .. 71
50 What is the different ISOLATION level in the Microsoft SQL Server database? 72
51 If you create a local temp table and then call a proc is the temp table

available inside the proc? ... 74
52 Which date format is the only safe one to use when passing dates as strings? ... 76
53 How do you suppress rows affected messages when executing an insert

statement in SQL Server? ... 76
54 Difference between ANSI-89 and ANSI-92 syntax of writing SQL Join? 77
55 Differences between IN and EXISTS (and NOT IN, and NOT EXISTS) in SQL? 78

CHAPTER 2: SQL JOIN ... 81

1 What is the difference between INNER JOIN and LEFT JOIN in SQL? 84
2 How do you perform a simple INNER JOIN between two tables in SQL? 84
3 Explain the usage of RIGHT JOIN with an example. .. 85
4 How can you perform a FULL JOIN to retrieve all rows from two tables,

even when there are no matches?.. 85
5 What is a SELF JOIN, and in what scenarios is it useful? 85
6 How do you perform a SELF JOIN in SQL? .. 86
7 What is the result of a CROSS JOIN? ... 86
8 How do you perform a CROSS JOIN in SQL? .. 86
9 Explain the concept of Non-Equi Join. .. 86
10 How do you handle NULL values during joins? ... 87
11 What is the difference between an INNER JOIN and an equi-join?.................... 87
12 How can you retrieve records from the left table that do not have

corresponding matches in the right table? ... 87
13 What is the difference between a LEFT JOIN and a RIGHT JOIN? 87
14 How do you perform a multi-table join in SQL? .. 88
15 How can you find records with no matching entries in either of the two

joined tables? .. 88
16 When should you use an INNER JOIN over a LEFT JOIN or RIGHT JOIN? ... 89
17 How can you find records with matching values in one table but not in

another? .. 89
18 What are the key differences between a FULL JOIN and a UNION? 89
19 How do you combine results from multiple queries without using a join? 90
20 What is the difference between a self join and a regular join? 90
21 How can you find the top N employees based on their salary using joins? 90
22 How can you find employees who have the same manager using a self join? 91
23 What is the purpose of using table aliases in SQL joins? 91

24 How can you join three or more tables in a single query?..................................... 92
25 Explain how you can perform a LEFT JOIN between two tables and keep

only the rows that do not match. .. 92
26 Can you use a JOIN without specifying a join condition? If yes, what will

be the result? .. 92
27 What is the benefit of using an equi-join over a non-equi join? 93
28 How do you perform a LEFT JOIN between two tables and include all rows

rom the left table, even if there are multiple matches in the right table? 93
29 How do you perform an anti-join (retrieve records that exist in one table

but not in another)? .. 94
30 How can you find the average salary of employees in each department

using SQL joins? .. 94

CHAPTER 3: SQL QUERIES ... 95

1 Can you write an SQL query to show Employee (names) who have a
bigger salary than their manager? ... 99

2 Write an SQL query to find Employees who have the biggest salary in their
Department? .. 99

3 Write an SQL query to list Departments that have less than 3 people in it?..... 100
4 Write an SQL query to show all Departments along with the number of

people there? .. 101
5 Can you write an SQL query to show all Employees that don't have a

manager in the same department? .. 101
6 Can you write SQL query to list all Departments along with the total

salary there? .. 102
7 How do you find the second highest salary in the employee table? 102
8 How do you find the duplicate rows in a table? .. 103
9 How do you copy all rows of a table using SQL query?(solution) 103
10 How do you remove the duplicate rows from the table? 103
11 How to find 2nd highest salary without using a co-related subquery? 104
12 There exists an Order table and a Customer table, find all Customers

who have never ordered .. 104

CHAPTER 4: Indexes ... 105

1 What is index in database? ... 106
2 What are different types of index in Oracle or SQL Server? 106
3 How does index work? ... 107
4 What is index scan? ... 107
5 What is index seek? ... 107

6 What is difference between index scan and index seek in database? 108
7 What is difference between table scan and index scan? 109
8 What is difference between Clustered and Non-Clustered index in a table? ... 109
9 I have a table which has clustered index on column 1, can I create another

clustered index on column 2? .. 110
10 What is composite index in SQL? ... 111
11 Does the order of columns matter in a composite index? 111
12 What is the disadvantage of having many indices in a table? 112

CHAPTER 5: GROUP BY .. 113

CHAPTER 6: SQL Date and Time Interview Questions 122
1 How do you find all records modified between two dates in SQL? 124
2 How do you extract the year from a date in SQL? .. 125
3 How can you add 3 months to a given date in SQL? .. 125
4 How do you find the number of days between two dates in SQL? 125
5 Explain the difference between DATE and DATETIME data types. 125
6. How do you convert a date to a different date format in SQL? 126
7 How can you find records that fall within a specific month and year? 126
8 How do you handle time zone conversions in SQL? .. 126
9 Can you enforce a constraint to ensure a date column always contains

future dates? ... 127
10 How can you find the first and last day of the current month? 127
11 How do you find records with overlapping date ranges in SQL? 127
12 How can you calculate the age of a person from their birthdate? 128
13 Explain the significance of the UNIX timestamp and how to convert it to

a readable date format. ... 128
14 How do you get the current date and time in SQL? ... 128
15 How can you convert a string to a date in SQL? ... 129
16 How do you find the day of the week for a given date in SQL? 129
17 How do you find the number of weekdays (excluding weekends) between

two dates? ... 130
18 How do you extract the time part from a DATETIME column in SQL? 130
19 How can you find the records with the latest date in a table? 130
20 Explain the concept of leap years and how you would identify if a year is

a leap year in SQL. ... 131

CHAPTER 7: Aggregate Functions ... 132

1 What are aggregate functions in SQL, and what is their purpose? 135
2 List some common aggregate functions in SQL. .. 135

3 How do you use the COUNT function to count the number of rows in a table? 135
4 What is the difference between the COUNT function with DISTINCT

and without DISTINCT? .. 135
5 How can you use the SUM function to calculate the total value of a specific

column? .. 136
6 How do you calculate the average (mean) of a column using the AVG function? 136
7 Explain the usage of the GROUP BY clause with aggregate functions. 136
8 How does the HAVING clause differ from the WHERE clause when

using aggregate functions? ... 136
9 What is the purpose of the ROLLUP operator in aggregate functions? 136
10 Can you use multiple aggregate functions in a single SQL query? 137
11 How do you handle NULL values when using aggregate functions? 137
12 What is string aggregation, and how can you achieve it in SQL? 137
13 How do aggregate functions interact with different types of joins? 137
14 Can you use aggregate functions with window functions? 137
15 How do you optimize the performance of queries using aggregate

functions on large datasets? ... 138
16 What is the purpose of the GROUPING SETS clause in aggregate functions? 138
17 How do you apply aggregate functions in real-world scenarios like

sales analysis or financial reporting? .. 138
18 How are aggregate functions used in data visualization and reporting tools? 138
19 Can you create custom aggregate functions in SQL? ... 138
20 Explain how you use aggregate functions with NoSQL databases. 139

CHAPTER 8: Stored Procedure ... 140

1 What is a stored procedure? .. 143
2 What are the advantages of using stored procedures? ... 143
3 How do you create a stored procedure in SQL? ... 144
4 How do you call a stored procedure from SQL or an application? 144
5 What are input and output parameters in stored procedures? 144
6 How do you handle errors in a stored procedure? ... 144
7 Can a stored procedure call another stored procedure? 144
8 What are the different types of parameters that a stored procedure can have? 145
9 How do you pass multiple values to a stored procedure as a single parameter? 145
10 What is dynamic SQL, and when is it useful in stored procedures? 145
11 How can you improve the performance of a stored procedure? 145
12 How do you grant permissions to execute a stored procedure? 145
13 Can a stored procedure return multiple result sets? .. 146
14 What is the difference between a stored procedure and a user-defined function? 146

15 How do you debug a stored procedure? .. 146
16 What are nested stored procedures? ... 146
17 How do you view the source code of a stored procedure? 146
18 Can you use transactions within a stored procedure? ... 147
19 How do you drop a stored procedure? ... 147
20 What are the best practices for writing efficient and maintainable stored

procedures? .. 147

CHAPTER 9: Triggers and Views ... 148

1 What is a database trigger, and what events can trigger its execution? 151
2 How do you create a trigger in SQL? .. 151
3 What is the difference between a BEFORE trigger and an AFTER trigger? 151
4 In what scenarios are triggers commonly used? ... 151
5 How can you enable or disable a trigger? .. 152
6 What are some potential drawbacks of using triggers?.. 152
7 How do you create a view in SQL? ... 152
8 Can you update data through a view? If yes, what are the restrictions? 152
9 What is the difference between a regular view and a materialized view? 152
10 How can you update a materialized view? ... 153
11 What is a nested view, and how does it differ from a regular view? 153
12 In what situations would you use an indexed view? .. 153
13 How do views contribute to data security and access control? 153
14 Can you combine views with joins in a query? ... 153
15 How does recursion work in views, and what is its use case? 154
16 What is the impact of updating the underlying tables on views? 154
17 How can you handle updates on non-updatable views? 154
18 How do views contribute to data abstraction and query simplification? 154
19 Can you provide an example of a situation where a trigger would be useful?.. 154
20 How would you create an indexed view to improve query performance? 155

CHAPTER 10: Normalization.. 156

1 What is database normalization, and why is it essential in database design? 159
2 Explain the First Normal Form (1NF) and its requirements. 159
3 How does the Second Normal Form (2NF) differ from 1NF, and what

problem does it address? .. 159
4 What is the Third Normal Form (3NF), and what types of dependencies

does it eliminate? .. 160
5 When should you consider moving to Boyce-Codd Normal Form (BCNF)

instead of 3NF? .. 160

6 What is Fourth Normal Form (4NF), and what problem does it address? 160
7 How does Fifth Normal Form (5NF) handle join dependencies? 160
8 What is denormalization, and in what situations is it appropriate to use? 160
9 How does normalization help in avoiding insertion, update, and deletion

anomalies? .. 161
10 What is the purpose of functional dependencies in normalization? 161
11 Can you have multiple candidate keys in a table, and how do they relate to

normalization? ... 161
12 How does normalization impact database query performance? 161
13 What are the potential drawbacks of denormalization? 161
14 In what real-world scenarios is normalization crucial for data integrity? 162
15 How can you decide on the level of normalization required for a specific

database design? .. 162
16 Can you provide an example of a table that violates the First Normal

Form (1NF)? .. 162
17 How would you convert the above table into 1NF? ... 162
18 Explain the process of achieving Second Normal Form (2NF) in a table. 163
19 What is a composite key, and when is it used in normalization? 163
20 How can normalization and denormalization be balanced in a database design? 163

Chapter 11: Transaction ... 164

1 What is a transaction in the context of a database? .. 167
2 Explain the ACID properties of transactions. ... 167
3 What are the different states that a transaction can go through during its

lifecycle? .. 167
4 How do you begin a transaction in SQL, and how do you end it? 168
5 What is the difference between an implicit transaction and an explicit

transaction? .. 168
6 Explain the concept of savepoints in transactions. ... 168
7 What is a deadlock in transactions, and how can it be resolved? 168
8 What are the different isolation levels in transactions, and how do they

affect data consistency and concurrency? .. 169
9 How can you handle errors within transactions to ensure proper rollback

and recovery? ... 169
10 What is the purpose of a transaction log in a database, and how does it

aid in recovery? .. 169
11 How can you implement a two-phase commit (2PC) protocol for

coordinating distributed transactions? .. 169
12 What are the best practices for designing and managing transactions effectively? 170

CHAPTER 12: Window Function and CTE ...171

1 What are Window Functions in SQL, and how are they different from
regular aggregate functions? .. 174

2 Explain the PARTITION BY clause in Window Functions with an example. 174
3 How do you calculate the cumulative salary for each department using

Window Functions? .. 175
4 What is the purpose of the ORDER BY clause in Window Functions? 175
5 How can you find the percentage of total sales for each product using

Window Functions? .. 176
6 What is the difference between ROWS BETWEEN and RANGE

BETWEEN clauses in Window Functions? ... 176
7 How do you find the lead and lag values for a column using Window

Functions? .. 177
8 Explain the concept of Recursive CTEs in SQL. ... 177
9 How do you use a Recursive CTE to traverse a hierarchical table? 178
10 How can you use a CTE to simplify a complex query? .. 179
11 When would you use a CTE instead of a subquery? .. 179
12 How can you use multiple CTEs in a single query? ... 179
13 Can you use a CTE inside another CTE? ... 180
14 How do you perform aggregation on CTEs? ... 180
15 How do you calculate the running total for a column using Window

Functions and CTEs? .. 181
16 How can you use a Window Function with a PARTITION BY clause to

find the highest salary in each department? .. 181
17 How do you calculate the percentage change in sales compared to the

previous month using Window Functions? .. 182
18 How can you use the RANK() function to find the top N employees with

the highest salary? ... 183
19 Explain the concept of a "rolling sum" using Window Functions. 184
20 How do you use the ROWS BETWEEN clause to calculate a "rolling sum"? 184
21 What are the performance considerations when using Window Functions

and CTEs in SQL? ... 185
22 How can you use Window Functions and CTEs together in a single query

to perform advanced analytical calculations? ... 185
23 How do you use Window Functions to find the top N products with the

highest sales, considering ties? .. 186
24 How can you calculate the average salary for each department while

excluding the highest and lowest salaries using Window Functions? 187

25 How do you find the top N products with the highest sales for each
month using Window Functions? .. 188

26 What are the potential use cases for Recursive CTEs, and how do they work? 189
27 How can you use a Recursive CTE to traverse a hierarchical table with

unlimited nesting levels? .. 190
28 How can you use the SUM() function with PARTITION BY and

ORDER BY to calculate the moving average of sales for each product? 191
29 How do you use a CTE to simplify a query that involves multiple subqueries? 192
30 How can you use the ROWS UNBOUNDED PRECEDING and ROWS

UNBOUNDED FOLLOWING clauses in Window Functions? 193
31 How do you use a CTE to simplify a complex hierarchical query for an

organizational chart? .. 194
32 What is the difference between the DENSE_RANK() and RANK()

functions in Window Functions? .. 194
33 How can you use a Window Function to find the percentage of sales

contributed by each product compared to the total sales? 194
34 Can you use Window Functions without the PARTITION BY clause?

If yes, what will be the result? .. 195
35 How can you use the RANK() function with the PARTITION BY clause to

find the top N employees with the highest salary within each department? 195
36 How do you use a Recursive CTE to calculate the total cost of a bill of

materials for a product and all its components? ... 197
37 What are some common performance optimization techniques for

queries involving Window Functions and CTEs? .. 197
38 How can you use the FIRST_VALUE() and LAST_VALUE() functions in

Window Functions to retrieve the first and last values in a partition? 197
39 How do you use Window Functions to calculate the difference between

the sales of each product and the average sales of all products? 198
40 How can you use Window Functions to calculate the difference in sales

between the current and previous months for each product? 199

CHAPTER 13: Deep Dive ... 201

Difference between ROW_NUMBER(), RANK(), and DENSE_RANK() 201
Difference between row_number vs rank vs dense_rank.. 205
Difference between VARCHAR and NVARCHAR in SQL Server? 206
What is difference between SQL, T-SQL and PL/SQL? ... 208
Differences between SQL, T-SQL and PL/ SQL ... 210
How to check for Null in SQL Query? ... 212
Difference between CAST, CONVERT, and PARSE function in Microsoft SQL Server? ... 215
Difference between UNION vs UNION ALL in SQL .. 220

Difference between UNION and UNION ALL command in SQL 225
Difference between table scan, index scan, and index seek in SQL Server Database 227
Difference between table scan, index scan, and index seek in Database 227
Difference between table scan, index scan, and index seek in SQL 230
Difference between ISNULL() and COALESCE() function in SQL? 231
Difference between ISNULL() vs COALESCE() in SQL Server 232
How to Find Nth Highest Salary in MySQL and SQL Server? 236
Difference between VARCHAR and CHAR data type in SQL Server? 238
Similarities between CHAR vs. VARCHAR in SQL .. 240
Difference between WHERE and HAVING clause in SQL? Example 243
Difference between WHERE vs. HAVING in SQL .. 244
Difference between Primary key vs Candidate Key in SQL Database? 246
Difference between Correlated and Non-Correlated Subquery in SQL 247
Difference between Correlated and Regular Subquery in SQL 248
Difference between Self and Equi Join in SQL .. 252
How to remove duplicates from a table? ... 253
How to Find Customers Who Never Order using EXISTS in SQL 260
How to find Duplicate emails in a table? ... 261

CHAPTER 14: Conclusion .. 265

— 1 —

Overview

s a Java developer who has cleared SQL interviews, I can attest that
SQL interviews are not easy, given the vast nature of SQL and the

variety of concepts and topics it covers. When I was preparing for Java
interviews, I was looking for a resource where I learn and prepare SQL
questions from a programmer’s perspective rather than a DBA, but I
couldn’t find any. Grokking the SQL Interview is my effort to fill that gap
and become an excellent resource for anyone looking to master SQL and
prepare for SQL interviews.

Whenever I prepare for Java Interview, I always prepare about SQL and
Linux; these are everywhere. That’s why I decided to cover essential topics
from an interview perspective when I thought to write about this book.

The book covers a wide range of topics, starting with the basics of SQL and
database design, and progressing to more advanced topics like SQL queries,
joins, indexes, group-by and aggregate functions, stored procedures,
triggers and views, database normalization, transactions, window functions,
and common interview questions.

One of the best things about this book is that it includes many real-world
SQL questions commonly asked in job interviews. This means that by
studying the questions and answers in this book, you will be well-prepared
for any SQL interview.

A

GROKKING THE SQL INTERVIEW

— 2 —

Overall, I hope Grokking the SQL Interview is an excellent resource for
anyone looking to master SQL and prepare for SQL interviews. I have tried
my best to cover all the essential topics you need to know to succeed in SQL
interviews. Whether you are a beginner or an experienced SQL developer,
you can use this book to quickly revise and prepare for SQL questions for
software developer and Data Science interviews.

Why Prepare for SQL and Database for
Interviews?
Many Java developers, particularly experienced developers with a couple of
years of experience, think that it's not necessary to prepare for SQL
questions, only to fluff their chances. It doesn’t matter how many years of
experience you have in SQL and Database; you must prepare for interviews.

Why? I suggest preparing because when you work on a vast technology like
Database and SQL, you work on a particular area. It’s almost impossible to
learn all the areas of a specific framework.

For example, if you work in a Java application that uses MySQL on the
backend, you are most likely exposed to writing queries and stored
procedures. Still, you may or may not be involved in the database design
process.

And, believe it or not, interviews are almost always very different from real
jobs. Interviewers expect you to know everything about the technology, even
if certain areas are never used in any project, like normalization and
database design in this case.

If your aim is to clear the interviews because you need that job then you
don’t have any choice; you cannot argue what is right or what is wrong, the
best approach is to prepare hard and prepare well and that’s where this book
can help you.

OVERVIEW

— 3 —

While learning anything quickly is impossible, this book provides a nice
overview of almost all essential SQL and Database concepts. You can easily
finish the book in a few hours or few days, depending on how much time
you spend daily.

If you are going for a Software Developer interview or Data Science
Interview, where SQL and Database is mentioned as a desired skill then I
highly recommend you to go through these questions before attending any
telephonic or face-to-face interview.

While there is no guarantee that the Interviewer will ask any question from
this book, by going through the book, you already know most of the SQL
and Database concepts which you are expected to know.

How to prepare SQL for Interviews?
In order to best prepare for Software Engineer and Data Science SQL
Interviews, you need to have a solid understanding of SQL concepts and
their a couple of popular databases like MySQL, Oracle, Microsfot SQL
Server, and PostgreSQL

Preparing for SQL interviews requires a combination of theoretical
knowledge and practical experience.

Here are some tips to help you prepare for SQL interviews:

• Review SQL basics
Ensure you have a solid understanding of SQL fundamentals,
including data types, operators, and syntax.

• Practice SQL queries
Work on creating and executing SQL queries involving filtering,
sorting, grouping, and joining data from multiple tables.

GROKKING THE SQL INTERVIEW

— 4 —

• Familiarize yourself with popular database management systems.
Get familiar with popular database management systems such as
MySQL, Oracle, and SQL Server.

• Learn about database normalization.
Understand the basic principles of database normalization, which is
organizing data to minimize redundancy.

• Understand data modeling
Learn about data modeling, which involves creating a conceptual
model of the data to be stored in a database.

• Brush up on statistics and data analysis.
Many SQL interviews will involve statistical and data analysis
questions, so it's important to understand these topics well.

• Practice with sample SQL interview questions
There are many resources available online where you can find
sample SQL interview questions to practice with.

Remember that SQL interviews are not just about memorizing syntax and
queries but also about being able to think critically and solve complex
problems. With practice and preparation, you can develop the skills needed
to ace your SQL interview. If you are short of time, then there is no choice
but to go through the question as soon as possible so that you can revise the
essential concepts and at least have some idea about it.

Reviewing this book will not only help you gain both confidence and
knowledge to answer the questions, but more importantly, it will allow you
to drive the Java interview in your favor. This is the single most important
tip I can give you as a Java developer.

Always remember your answers drive interviews, and these questions will
empower you to drive the Interviewer to your stronger areas.

OVERVIEW

— 5 —

All the best for the SQL interview, and if you have any questions or feedback,
you can always contact me on Twitter at javinpaul or comment on my blogs
Javarevisited and Java67.

Which SQL and Database topics to
Prepare for Interviews?
These are the key SQL and database topics which you need to prepare for
any technical interviews:

• SQL and Database Basics

• SQL JOINs

• SQL Queries from Interviews

• Indexes

• GROUP BY

• Aggregate Functions

• Stored Procedure

• Trigger and View

• Advanced SQL Questions

• Conclusion

These are also the topics which you need to prepare Data Scientist
interviews, which means you can kill two birds in one stone. I mean, by
preparing for Software development interview you can also get yourself
ready for potential Data Scientist jobs.

— 6 —

CHAPTER 1:

SQL and Database
Telephonic Interview
Questions

atabase and SQL is a very important skill, not just for DBA or Database
admins but also for any application developer like Java, .NET, or Web

developers. This is why you would often see questions from SQL and
Database in Programming interviews.

For DBAs, SQL is more important than a programmer because it being their
primary skill, they are also expected to know more than a common Java or
.NET developer. Since no Java interview is just about Java questions, I often
receive requests from my reader about SQL questions like how to solve a
particular query or some tricky questions based upon database indexes.

We will kick start our journey with common SQL questions. So, these are
50 standard SQL and Database interview questions often asked in the
telephonic round of DBA and Programmer interviews. Phone interviews
differ slightly from face-to-face interviews and tend to be more specific.

Since this is usually a screening round to weed out unsuitable candidates,
the interviewer often likes to cover as many concepts as possible. That's why

D

SQL AND DATABASE TELEPHONIC INTERVIEW QUESTIONS

— 7 —

it becomes a test of general knowledge of the developer about a particular
skill than the depth of his knowledge.

As I mentioned, on phone interviews, Interviewers are usually in a hurry;
they want to hear the correct and concise answer, and not blah blah blah
answers; because of that, I have kept answers short and sweet. One more
reason for keeping your answer short and specific is to avoid getting shot by
providing additional information which is not accurate.

At the same time, It's also hard for any SQL developer to go through five-
page articles to revise some 30 most frequently asked SQL questions, keep
answers to the point helps them a lot.

So, let's start our journey with these beautiful databases and SQL interview
questions, I am sure you will also learn new things.

Question 1
Difference between UNION and UNION ALL in SQL

Short answer - UNION doesn't include duplicate records, UNION ALL
does. Both can be used to combine results from multiple queries.

Long answer - In SQL, both UNION and UNION ALL are used to combine
the results of two or more SELECT queries into a single result set. However,
there is a significant difference between the two:

1. UNION:

• UNION combines the results of multiple SELECT queries and
removes duplicate rows from the final result set.

• It performs an implicit DISTINCT operation on the result set,
ensuring that only distinct rows are included.

• It is useful when you want to combine and eliminate duplicate data
from multiple tables or queries.

GROKKING THE SQL INTERVIEW

— 8 —

2. UNION ALL:

• UNION ALL also combines the results of multiple SELECT queries,
but it includes all rows, even if there are duplicates.

• It does not perform any duplicate elimination, resulting in faster
performance compared to UNION, especially when dealing with
large datasets.

• It is useful when you want to combine and preserve all rows,
including duplicates, from multiple tables or queries.

Example:

Consider two tables, employees and contractors, with similar structures:

1. employees table:

emp_id emp_name emp_salary

1 John 50000

2 Jane 55000

3 Mary 60000

4 Peter 52000

2. contractors table:

contractor_id contractor_name contractor_salary

101 Sam 48000

102 Kate 51000

103 Alice 48000

104 Mike 52000

SQL AND DATABASE TELEPHONIC INTERVIEW QUESTIONS

— 9 —

1. Using UNION:

Result:

emp_id emp_name emp_salary

1 John 50000

2 Jane 55000

3 Mary 60000

4 Peter 52000

101 Sam 48000

102 Kate 51000

103 Alice 48000

104 Mike 52000

As you can see, UNION combined the data from both tables and removed
duplicates (e.g., contractor with salary 48000 is only shown once).

2. Using UNION ALL:

GROKKING THE SQL INTERVIEW

— 10 —

Result:

emp_id emp_name emp_salary

1 John 50000

2 Jane 55000

3 Mary 60000

4 Peter 52000

101 Sam 48000

102 Kate 51000

103 Alice 48000

104 Mike 52000

In this case, UNION ALL also combined the data from both tables but
retained duplicates in the result set. As a result, contractor with salary 48000
is shown twice, as there are two contractors with that salary.

Question 2
Difference between WHERE and HAVING clause in SQL?

Short answer - In case of WHERE filtering applies before aggregation while
in case of HAVING, filtering applies after aggregation

Long answer - The WHERE and HAVING clauses are both used in SQL to
filter data, but they serve different purposes:

1. WHERE Clause:

• The WHERE clause is used to filter rows before they are grouped or
aggregated in the query.

SQL AND DATABASE TELEPHONIC INTERVIEW QUESTIONS

— 11 —

• It operates on individual rows of the table and filters rows based on
specified conditions.

• It is typically used with non-aggregate functions and helps to reduce
the number of rows considered for grouping and aggregation.

2. HAVING Clause:

• The HAVING clause is used to filter the result of a grouped query,
specifically after the GROUP BY clause has been applied.

• It operates on groups of rows and filters groups based on specified
conditions.

• It is used in combination with aggregate functions (e.g., COUNT,
SUM, AVG, etc.) and allows you to filter the grouped data based on
aggregate results.

Example:

Consider a table named employees with the following data:

emp_id emp_name department salary

1 John HR 50000

2 Jane IT 55000

3 Mary HR 60000

4 Peter IT 52000

1. Using WHERE clause:

Suppose we want to retrieve the employees who belong to the HR
department and have a salary greater than 55000:

GROKKING THE SQL INTERVIEW

— 12 —

Result:

emp_id emp_name department salary

3 Mary HR 60000

In this example, the WHERE clause filters individual rows of the employees
table based on the conditions specified (department = 'HR' and salary >
55000).

2. Using HAVING clause:

Suppose we want to retrieve the departments with an average salary greater
than 51000:

Result:

department avg_salary

HR 55000

IT 53500

In this example, the HAVING clause operates on the result of the grouped
query (after applying GROUP BY department) and filters the groups based
on the condition specified (AVG(salary) > 51000).

In summary, the WHERE clause filters individual rows before grouping,
while the HAVING clause filters groups after grouping has been applied in
the query.

SQL AND DATABASE TELEPHONIC INTERVIEW QUESTIONS

— 13 —

Question 3
Describe the difference between clustered and non-clustered indexes
in a database?

Short answer - Clustered index defined the order in which data is physically
stored in the table. Since data can be sorted in only one way physically, there
is only one clustered index per table and that's usually the primary key. You
can have multiple non-clustered indexes to speed up your queries.

Long answer - In SQL, both clustered and non-clustered indexes are used
to improve the performance of database queries by providing quick access
to data. However, there are significant differences between the two:

1. Clustered Index:

• A clustered index determines the physical order of data rows in a
table. Each table can have only one clustered index.

• When a table has a clustered index, the rows are stored in the order
of the clustered index key. This means that the data is physically
organized on disk based on the values in the indexed column.

• Due to the physical ordering, the retrieval of rows using a clustered
index is faster when querying on the indexed column.

• Creating or rebuilding a clustered index can be more time-
consuming, as it affects the physical order of data in the table.

Example:

Consider a table named employees with the following data:

emp_id emp_name department salary

1 John HR 50000

2 Jane IT 55000

GROKKING THE SQL INTERVIEW

— 14 —

emp_id emp_name department salary

3 Mary HR 60000

4 Peter IT 52000

If we create a clustered index on the emp_id column:

The data in the employees table will be physically sorted based on the values
in the emp_id column. Any query that uses the emp_id column as a search
criteria will benefit from faster data retrieval.

2. Non-Clustered Index:

• A non-clustered index is a separate data structure that contains a
copy of the indexed columns along with a pointer to the actual data
rows in the table.

• A table can have multiple non-clustered indexes, allowing for
different indexing strategies to optimize various queries.

• Non-clustered indexes do not affect the physical order of data in the
table; instead, they provide a quick lookup path to the actual data
rows.

• Non-clustered indexes are generally faster to create or rebuild
compared to clustered indexes.

Example:

If we create a non-clustered index on the salary column:

SQL AND DATABASE TELEPHONIC INTERVIEW QUESTIONS

— 15 —

The index will contain a copy of the salary column along with pointers to
the actual rows in the employees table. Any query that uses the salary
column in a search or join operation will benefit from faster data retrieval.

In summary, a clustered index determines the physical order of data in a
table and can only be created on one column, while a non-clustered index is
a separate data structure that allows for multiple indexing strategies and
does not affect the physical order of data. The choice between a clustered
and non-clustered index depends on the specific database design and the
types of queries that need optimization.

Question 4
Write an SQL query to find the second highest salary of an employee
without using TOP or LIMIT?

You can use correlated queries to solve this problem. You can find the
second highest salary of an employee without using TOP or LIMIT by using
the following SQL query:

In this query, we are using a subquery to find the maximum salary in the
employees table. Then, we are selecting all distinct salary values that are less
than the maximum salary. Finally, we order the results in descending order
and use LIMIT 1 to get the second highest salary.

GROKKING THE SQL INTERVIEW

— 16 —

Question 5
How to find duplicate rows in the database?

To find duplicate rows in a database table, you can use SQL queries with the
GROUP BY and HAVING clauses.

The GROUP BY clause groups the rows with identical values, and the
HAVING clause filters the groups to show only those with more than one
occurrence.Here's an example of how to find duplicate rows in a table:

Suppose we have a table named employees with the following data:

emp_id emp_name department salary

1 John HR 50000

2 Jane IT 55000

3 Mary HR 60000

4 Peter IT 52000

5 Alice HR 50000

6 Tom IT 52000

7 Emma HR 60000

To find duplicate rows based on the salary and department columns, you
can use the following SQL query:

SQL AND DATABASE TELEPHONIC INTERVIEW QUESTIONS

— 17 —

The result of the query will be:

salary department duplicate_count

50000 HR 2

60000 HR 2

52000 IT 2

In this example, the query groups the rows based on the salary and
department columns and counts the occurrences of each group. The
HAVING COUNT(*) > 1 condition filters the groups to show only those
with more than one occurrence, indicating that these are the duplicate rows
in the table.

Please note that the example assumes you are using SQL, and the syntax may
vary slightly depending on the database management system you are using
(e.g., MySQL, SQL Server, PostgreSQL, etc.). Additionally, the duplicate
criteria can be based on different combinations of columns as needed for
your specific use case.

Question 6
Difference between correlated and non-correlated subquery in SQL?

In SQL, subqueries are queries that are nested within another query.
Subqueries can be classified into two types: correlated subqueries and non-
correlated subqueries. The main difference between them lies in how they
interact with the outer query:

1. Non-Correlated Subquery:

• A non-correlated subquery is an independent query that can be
executed on its own without reference to the outer query.

GROKKING THE SQL INTERVIEW

— 18 —

• The subquery is evaluated first, and its result is then used in the
outer query to filter or perform other operations.

• Non-correlated subqueries are executed only once, regardless of the
number of rows in the outer query, making them generally more
efficient.

Example of a non-correlated subquery:

Consider a table named employees with the following data:

emp_id emp_name department salary

1 John HR 50000

2 Jane IT 55000

3 Mary HR 60000

4 Peter IT 52000

Suppose we want to find all employees whose salary is greater than the
average salary of all employees. We can use a non-correlated subquery for
this:

In this example, the subquery (SELECT AVG(salary) FROM employees) is
evaluated only once and provides the average salary value. The outer query
then uses this value to filter the employees whose salary is greater than the
average.

SQL AND DATABASE TELEPHONIC INTERVIEW QUESTIONS

— 19 —

2. Correlated Subquery:

• A correlated subquery is a subquery that depends on the values from
the outer query to execute.

• For each row processed by the outer query, the subquery is re-
evaluated with the specific values from the current row of the outer
query.

• Correlated subqueries can lead to decreased performance, especially
when dealing with large datasets, as they may be executed multiple
times.

Example of a correlated subquery:

Suppose we want to find all employees whose salary is greater than the
average salary of their respective departments. We can use a correlated
subquery for this:

In this example, the subquery (SELECT AVG(salary) FROM employees e2
WHERE e1.department = e2.department) is correlated to the outer query
by the department column. For each row processed by the outer query (e1),
the subquery is re-evaluated with the specific department value from the
current row of the outer query.

In summary, the main difference between correlated and non-correlated
subqueries is that correlated subqueries depend on the values from the outer
query and are re-evaluated for each row of the outer query, while non-

GROKKING THE SQL INTERVIEW

— 20 —

correlated subqueries are independent and executed only once. Non-
correlated subqueries are generally more efficient, but correlated subqueries
are necessary when you need to access values from the outer query within
the subquery's logic.

Question 7
How many clustered indexes you can have in a table?

Short answer - This is a tricky question, you can only have one clustered
index per table.

Long answer - In most relational database management systems (RDBMS),
a table can have only one clustered index. The clustered index determines
the physical order of data rows in the table, and each table can be physically
organized in only one way.

However, it's essential to note that a table can have multiple non-clustered
indexes. Non-clustered indexes are separate data structures that provide
quick access paths to the data rows in the table. While there can be multiple
non-clustered indexes, there can be only one clustered index per table.

The limitation of one clustered index per table is mainly due to the fact that
the physical order of data rows can only be maintained in one specific
way.

Having multiple clustered indexes would require storing the same data in
multiple physical orders, which would be inefficient and impractical. Hence,
the single clustered index restriction is enforced to maintain data
consistency and storage efficiency.

In summary, a table in most RDBMS can have only one clustered index, but
it can have multiple non-clustered indexes to optimize query performance
for various columns and criteria.

SQL AND DATABASE TELEPHONIC INTERVIEW QUESTIONS

— 21 —

Question 8
Difference between the PRIMARY key and the UNIQUE key
constraint in SQL?

In SQL, both the PRIMARY key and the UNIQUE key constraint are used
to enforce uniqueness in a table's column(s). However, there are some key
differences between them:

1. PRIMARY Key Constraint:

• The PRIMARY key constraint is used to uniquely identify each row
in a table. It ensures that the values in the specified column(s) are
unique and not NULL.

• Each table can have only one PRIMARY key constraint, and it must
be defined when the table is created.

• A PRIMARY key column cannot have duplicate or NULL values.

• The PRIMARY key also creates a clustered index on the specified
column(s), which determines the physical order of data in the table
for efficient data retrieval.

Example:

In this example, the emp_id column is designated as the PRIMARY key,
ensuring that each employee's ID is unique and not NULL.

GROKKING THE SQL INTERVIEW

— 22 —

2. UNIQUE Key Constraint:

• The UNIQUE key constraint is used to enforce uniqueness in a
column(s) but does not necessarily identify each row uniquely.

• A table can have multiple UNIQUE key constraints, and they can be
defined when the table is created or added later.

• A UNIQUE key column can have unique values, but it can allow
NULL values (except in the case of a composite UNIQUE key where
all columns must be unique and not NULL).

• A UNIQUE key creates a non-clustered index on the specified
column(s) to optimize data retrieval.

Example:

In this example, the email column has a UNIQUE key constraint, ensuring
that each email address is unique in the table, but it can allow NULL values.

In summary, both the PRIMARY key and the UNIQUE key constraint
ensure uniqueness in column(s) of a table. The PRIMARY key uniquely
identifies each row and creates a clustered index, while the UNIQUE key
constraint enforces uniqueness but does not necessarily identify each row
uniquely and creates a non-clustered index.

The choice between using a PRIMARY key or a UNIQUE key depends on
the specific requirements and data model of the table.

SQL AND DATABASE TELEPHONIC INTERVIEW QUESTIONS

— 23 —

Question 9
Difference between view and materialized view in SQL?

In SQL, both views and materialized views are database objects used to
provide a logical representation of data from one or more underlying tables.
However, there are significant differences between the two:

1. View:

• A view is a virtual table that does not store data on its own. It is
defined by a query that retrieves data from one or more base tables.

• Views are used to simplify complex queries, encapsulate data access
logic, and provide a security mechanism by restricting access to
specific columns or rows of a table.

• Whenever you query a view, the underlying query is executed, and
the data is generated on-the-fly based on the latest data in the base
tables. The view's data is always up-to-date with the underlying
tables.

• Views are suitable for scenarios where real-time data is needed, and
you want to hide the complexity of underlying tables.

Example of creating a view:

In this example, the employee_details view provides a simplified
representation of the data in the employees table, containing only the
emp_id, emp_name, and department columns.

GROKKING THE SQL INTERVIEW

— 24 —

2. Materialized View:

• A materialized view is a physical copy of the result set of a query. It
stores the data in a separate table and keeps the data updated
periodically or on-demand based on a defined refresh schedule.

• Materialized views are used to improve query performance by
precomputing and storing the results of complex and resource-
intensive queries. They are beneficial for scenarios where you need
to access the same query result multiple times or when the
underlying data changes infrequently.

• The data in a materialized view is not always up-to-date with the
underlying tables; it depends on the last refresh or update time.
Therefore, materialized views are suitable for scenarios where near-
real-time data is sufficient.

Example of creating a materialized view:

In this example, the mv_employee_details materialized view stores a
physical copy of the emp_id, emp_name, and department columns from
the employees table. The data in the materialized view must be refreshed
periodically to stay up-to-date.

In summary, the key difference between a view and a materialized view is
that a view is a virtual table that does not store data, while a materialized
view is a physical copy of the query result stored in a separate table. Views
provide real-time data, while materialized views offer improved query
performance by precomputing and storing query results, but they may have
slightly stale data depending on the refresh schedule.

SQL AND DATABASE TELEPHONIC INTERVIEW QUESTIONS

— 25 —

Question 10
Difference between TRUNCATE, DELETE and DROP in SQL?

Delete removes record but also put an entry into log segment so you can roll
back, truncate removes all rows of a table without logging each record on
log segment, DROP removes table itself.

In SQL, TRUNCATE, DELETE, and DROP are used to remove data or
database objects, but they serve different purposes and have different effects:

1. TRUNCATE:

• TRUNCATE is used to delete all the rows from a table while keeping
the table structure intact.

• It is a data manipulation language (DML) command that is typically
faster than the DELETE command because it does not log
individual row deletions and does not generate as much undo/redo
data.

• The TRUNCATE command cannot be used on tables with foreign
key constraints, and it also cannot be rolled back.

• When you use TRUNCATE, the table's identity counter (if any) is
reset, and the table becomes empty.

Example of using TRUNCATE:

TRUNCATE TABLE employees;

This command will remove all rows from the employees table, but the table
structure will remain unchanged.

2. DELETE:

• DELETE is used to remove specific rows from a table based on
specified conditions.

GROKKING THE SQL INTERVIEW

— 26 —

• It is a DML command that is slower than TRUNCATE because it
logs individual row deletions, generates undo/redo data, and
performs additional checks for constraints and triggers.

• DELETE can be used with a WHERE clause to specify the
conditions for row deletion.

• The DELETE command can be rolled back using the ROLLBACK
statement.

Example of using DELETE:

DELETE FROM employees WHERE department = 'HR';

This command will delete all rows from the employees table where the
department is 'HR'.

3. DROP:

• DROP is used to remove database objects such as tables, views,
indexes, or stored procedures.

• It is a data definition language (DDL) command that completely
removes the object from the database.

• DROP cannot be rolled back, and once an object is dropped, it is
permanently deleted from the database.

• Be cautious when using DROP as it can lead to data loss if not used
carefully.

Example of dropping a table:

DROP TABLE employees;

This command will remove the employees table and all its data and
structure from the database.

SQL AND DATABASE TELEPHONIC INTERVIEW QUESTIONS

— 27 —

In summary, TRUNCATE is used to remove all rows from a table, DELETE
is used to remove specific rows based on conditions, and DROP is used to
remove entire database objects. The choice of which command to use
depends on the specific requirements and the impact you want to have on
the data or database structure.

Question 11
What is Referential Integrity in a relational database?

Short answer - It's a rule which ensures that when a record is deleted from
the primary table, all associated records are deleted from the related table. It
ensures data integrity.

Long answer - Referential Integrity is a concept in a relational database that
ensures the consistency and validity of data relationships between tables. It
is based on the idea of maintaining accurate and reliable relationships
among related data across different tables. The primary goal of referential
integrity is to prevent orphaned or invalid data and maintain the integrity
of the data model.

In a relational database, Referential Integrity is typically enforced using
Foreign Key constraints. A Foreign Key is a column or set of columns in a
table that refers to the Primary Key of another table. It establishes a
relationship between the two tables, where the Foreign Key column(s) in
one table hold values that match the Primary Key column(s) in the
referenced table.

The key aspects of Referential Integrity are as follows:

1. Primary Key - Foreign Key Relationship:

• The Primary Key column(s) in a table serve as the unique identifier
for each row in that table.

GROKKING THE SQL INTERVIEW

— 28 —

• The Foreign Key column(s) in another table reference the Primary
Key column(s) of the related table.

• This relationship ensures that each value in the Foreign Key
column(s) of the referencing table has a corresponding value in the
Primary Key column(s) of the referenced table.

2. Maintaining Data Integrity:

• Referential Integrity ensures that data relationships between tables
are maintained accurately.

• It prevents the creation of Foreign Key values in the referencing
table that do not exist in the Primary Key of the referenced table,
thereby avoiding orphaned or invalid data.

3. Enforcing Constraints:

• Foreign Key constraints are used to enforce Referential Integrity
rules in the database.

• These constraints can be declarative (defined explicitly) or implicit
(created automatically by the database based on the schema).

4. Cascading Actions:

• Referential Integrity constraints can include cascading actions that
define how updates or deletions in the referenced table affect the
referencing table.

• Common cascading actions include CASCADE (update/delete the
referencing rows), SET NULL (set referencing rows to NULL), and
RESTRICT (prevent update/delete if referenced rows exist).

By enforcing Referential Integrity, the database ensures that data
relationships are reliable and consistent, thereby maintaining data accuracy
and validity. It is an essential concept in relational database design and helps
prevent data inconsistencies and integrity issues across related tables.

SQL AND DATABASE TELEPHONIC INTERVIEW QUESTIONS

— 29 —

Question 12
What is Normalization?

Short answer - A way to avoid duplication of data in tables.

Long answer - Normalization is the process of organizing and structuring a
relational database to reduce data redundancy and improve data integrity.
It involves dividing a database into multiple related tables and applying
specific rules (normal forms) to ensure that each table serves a single
purpose and contains non-redundant data. The main goal of normalization
is to eliminate data anomalies and ensure that each piece of data is stored in
one place only.

There are different levels of normalization known as normal forms, with
each successive normal form building upon the previous ones. The most
commonly used normal forms are First Normal Form (1NF), Second
Normal Form (2NF), Third Normal Form (3NF), BCNF, and so on.

Let's illustrate normalization with an example:

Consider an unnormalized table named Students with the following
columns:

Student_ID Student_Name Course_Code Course_Name Instructor Instructor_Email

101 John CS101 Intro to CS Prof. Smith smith@example.com

101 John MATH101 Math Basics Prof. Johnson johnson@example.com

102 Alice CS101 Intro to CS Prof. Smith smith@example.com

103 Bob MATH101 Math Basics Prof. Johnson johnson@example.com

This table exhibits data redundancy as both Student_ID and Course_Code
are duplicated, leading to potential inconsistencies and anomalies.

GROKKING THE SQL INTERVIEW

— 30 —

Normalization Process:

Step 1: First Normal Form (1NF)

• In 1NF, we ensure that each cell in the table holds only atomic values
(single values).

• To achieve 1NF, we can split the original table into two separate
tables: Students and Courses.

Students Table:

Student_ID Student_Name

101 John

102 Alice

103 Bob

Courses Table:

Course_Code Course_Name Instructor Instructor_Email

CS101 Intro to CS Prof. Smith smith@example.com

MATH101 Math Basics Prof. Johnson johnson@example.com

Step 2: Second Normal Form (2NF)

• In 2NF, we ensure that each non-key attribute (column) is fully
dependent on the entire primary key.

• The Courses table already satisfies 2NF since all non-key attributes
(Course_Name, Instructor, Instructor_Email) are dependent on
the whole primary key (Course_Code).

SQL AND DATABASE TELEPHONIC INTERVIEW QUESTIONS

— 31 —

Step 3: Third Normal Form (3NF)

• In 3NF, we ensure that there is no transitive dependency between
non-key attributes.

• To achieve 3NF, we can further split the Courses table into two
separate tables: Courses and Instructors.

Courses Table:

Course_Code Course_Name Instructor_Code

CS101 Intro to CS 1

MATH101 Math Basics 2

Instructors Table:

Instructor_Code Instructor Instructor_Email

1 Prof. Smith smith@example.com

2 Prof. Johnson johnson@example.com

Now, the data is organized into normalized tables, eliminating data
redundancy and ensuring data integrity. Each table serves a single purpose,
and data is not duplicated across multiple rows. The relational database is
now in Third Normal Form (3NF).

Let’s further apply normalization to achieve higher normal forms:

Step 4: Boyce-Codd Normal Form (BCNF)

• In BCNF, we ensure that every determinant (candidate key) in a
table uniquely determines all non-key attributes.

• In the Students table, the Student_ID is the primary key, and it
uniquely determines the Student_Name.

GROKKING THE SQL INTERVIEW

— 32 —

• Since there is only one determinant, the table already satisfies
BCNF.

Step 5: Fourth Normal Form (4NF)

• In 4NF, we ensure that there are no multi-valued dependencies
within a table.

• In our example, there is no multi-valued dependency within any
table, so the database satisfies 4NF.

Step 6: Fifth Normal Form (5NF)

• In 5NF, we address cases where a table has join dependencies
between multi-valued dependencies.

• In our example, there are no such cases, so the database satisfies
5NF.

The final normalized database would look like this:

Students Table:

Student_ID Student_Name

101 John

102 Alice

103 Bob

Courses Table:

Course_Code Course_Name Instructor_Code

CS101 Intro to CS 1

MATH101 Math Basics 2

SQL AND DATABASE TELEPHONIC INTERVIEW QUESTIONS

— 33 —

Instructors Table:

Instructor_Code Instructor Instructor_Email

1 Prof. Smith smith@example.com

2 Prof. Johnson johnson@example.com

By following the normalization process and dividing the data into separate
related tables, we have eliminated data redundancy, reduced update
anomalies, and ensured data integrity. Each table serves a single purpose,
and the relationships between the tables are defined by appropriate foreign
key constraints.

Normalization is an essential practice in database design to create well-
structured and efficient databases, making it easier to maintain, update, and
retrieve data accurately.

Question 13
When a table is said to be in 1NF, 2nd NF, and 3rd NF?

A table is said to be in First Normal Form (1NF), Second Normal Form
(2NF), and Third Normal Form (3NF) based on specific criteria related to
data organization and dependencies. Each normal form builds upon the
previous one, and a higher normal form indicates a higher level of data
integrity and a reduction in data redundancy and anomalies. Here's an
overview of each normal form:

1. First Normal Form (1NF):

• A table is in 1NF if it satisfies the following conditions:

o Each column in the table holds atomic (single) values, meaning
no column contains multiple values or sets.

GROKKING THE SQL INTERVIEW

— 34 —

o Each cell in the table contains a single value (no repeating
groups or arrays).

2. Second Normal Form (2NF):

• A table is in 2NF if it satisfies the conditions of 1NF and meets an
additional criterion:

o It should have a composite primary key (composed of two or
more columns).

o All non-key attributes (columns) in the table should be fully
dependent on the entire primary key, not just on part of it.

3. Third Normal Form (3NF):

• A table is in 3NF if it satisfies the conditions of 1NF and 2NF and
meets one more criterion:

o It should have no transitive dependencies.

o Transitive dependencies occur when a non-key attribute
depends on another non-key attribute rather than directly on
the primary key.

In summary, a table is in 1NF if it has atomic values and no repeating
groups, 2NF if it has a composite primary key and all non-key attributes
depend on the entire primary key, and 3NF if it has no transitive
dependencies.

Achieving higher normal forms ensures better data organization, reduces
data redundancy, and helps maintain data integrity in a relational database.

It is considered good practice to normalize a database to at least the Third
Normal Form to avoid data anomalies and ensure efficient data
management.

SQL AND DATABASE TELEPHONIC INTERVIEW QUESTIONS

— 35 —

Question 14
Describe the difference between ISNULL() and COALESCE() in SQL
Server?

Both ISNULL() and COALESCE() are used in SQL Server to handle NULL
values, but they have some differences in functionality:

1. ISNULL() Function:

• ISNULL() is a built-in SQL Server function that returns the
specified replacement value if the expression evaluates to NULL.
Otherwise, it returns the original expression.

• It takes two arguments: the expression to be evaluated and the
replacement value.

• ISNULL() is specific to SQL Server and can only handle two
arguments.

Example using ISNULL():

In this example, if column_name is NULL, the result will be 'Not available';
otherwise, the result will be the value of column_name.

2. COALESCE() Function:

• COALESCE() is a standard SQL function supported by various
database management systems, including SQL Server.

• It takes multiple arguments and returns the first non-NULL expression
from the list. If all arguments are NULL, it returns NULL.

• Unlike ISNULL(), COALESCE() can handle multiple arguments
and will evaluate and return the first non-NULL value encountered.

GROKKING THE SQL INTERVIEW

— 36 —

Example using COALESCE():

In this example, COALESCE() will return the first non-NULL value among
column1, column2, and column3. If all three columns are NULL, it will
return 'Not available'.

Key Differences:

• ISNULL() takes two arguments, while COALESCE() can take
multiple arguments.

• ISNULL() returns the replacement value if the expression is NULL;
COALESCE() returns the first non-NULL value from the list of
expressions.

• ISNULL() is specific to SQL Server, while COALESCE() is a
standard SQL function supported by many database systems.

In SQL Server, both functions can be useful for handling NULL values, but
COALESCE() offers more flexibility when dealing with multiple
expressions and provides a standard approach that can be easily ported to
other SQL-compliant databases.

Question 15
How do you ensure that only values between 1 to 5 are allowed in an
integer column?

To ensure that only values between 1 to 5 are allowed in an integer column,
you can use a combination of CHECK constraint and a BETWEEN clause.
The CHECK constraint allows you to define a condition that must be true
for any data to be inserted or updated in the column. In this case, you can
use the CHECK constraint to enforce the range of values.

SQL AND DATABASE TELEPHONIC INTERVIEW QUESTIONS

— 37 —

Here's an example of how to create a table with an integer column that
allows only values between 1 to 5:

In this example, the your_table has an integer column named
your_column, and the CHECK constraint ensures that only values between
1 and 5 (inclusive) are allowed in this column. Any attempt to insert or
update a value outside this range will result in a constraint violation error,
and the operation will be rejected.

Let's demonstrate how you can insert valid and invalid values:

Valid Insert:

Invalid Insert:

By using the CHECK constraint with the BETWEEN clause, you can ensure
that only valid values are allowed in the integer column, maintaining data
integrity and preventing incorrect data from being entered into the table.

GROKKING THE SQL INTERVIEW

— 38 —

Question 16
Difference between CHAR and VARCHAR data types in SQL?

Short answer - CHAR is fixed length, VARCHAR is variable length

Long answer - In SQL, CHAR and VARCHAR are both data types used to
store character strings, but they have some key differences in terms of
storage and behavior:

1. CHAR Data Type:

• CHAR stands for "character" and is used to store fixed-length
strings.

• When you define a column with the CHAR data type, you need to
specify a fixed length for the string, and all values stored in that
column will be padded with spaces to fill the entire defined length.

• The storage space for CHAR columns is fixed and does not vary
based on the actual length of the string. This means that if you define
a CHAR(10) column and store a 5-character string in it, it will still
occupy 10 characters of storage (5 characters plus 5 spaces).

• Due to the fixed-length nature of CHAR, it is more suitable for
storing values with a consistent length.

Example of CHAR:

SQL AND DATABASE TELEPHONIC INTERVIEW QUESTIONS

— 39 —

2. VARCHAR Data Type:

• VARCHAR stands for "variable-length character" and is used to
store strings of varying lengths.

• Unlike CHAR, VARCHAR does not pad values with extra spaces
and only uses the required amount of storage for each string.

• When you define a column with the VARCHAR data type, you need
to specify a maximum length for the string, but the actual storage
space used will depend on the length of the data stored.

• The storage space for VARCHAR columns is more efficient for
variable-length data, as it avoids wasting space on padding.

Example of VARCHAR:

In summary, the main difference between CHAR and VARCHAR in SQL
is that CHAR stores fixed-length strings with padding, while VARCHAR
stores variable-length strings without padding.

The choice between the two data types depends on the nature of the data
being stored and the expected lengths of the strings. If you have data with
consistent lengths, CHAR might be more suitable, whereas for variable-
length data, VARCHAR is generally a better choice due to its efficient use
of storage.

GROKKING THE SQL INTERVIEW

— 40 —

Question 17
Difference between VARCHAR and NVARCHAR in SQL Server?

Short answer - NVARCHAR supports Unicode while VARCHAR doesn’t

Long answer - In SQL Server, VARCHAR and NVARCHAR are both used
to store character data, but they differ in how they handle character
encoding. VARCHAR stores data using the database's default encoding
(e.g., ASCII or UTF-8), while NVARCHAR uses a variable-length Unicode
encoding (UTF-16), allowing storage of multi-byte characters.
NVARCHAR is ideal for internationalization and multilingual data, but it
consumes more storage space than VARCHAR. Use VARCHAR for single-
byte character sets and NVARCHAR for multi-byte character sets to ensure
proper handling of character data in the database.

Question 18
How do you get Day, Month, and Year from a date in SQL Server?

Short answer - By using the DATEPART() function

Long answer - In SQL Server, you can extract the day, month, and year
components from a date using various built-in functions. Here's how you
can do it:

1. Get Day: To extract the day from a date, you can use the DAY()
function. It returns the day of the month as an integer value ranging
from 1 to 31.

SQL AND DATABASE TELEPHONIC INTERVIEW QUESTIONS

— 41 —

2. Get Month: To extract the month from a date, you can use the
MONTH() function. It returns the month as an integer value
ranging from 1 to 12.

3. Get Year: To extract the year from a date, you can use the YEAR()
function. It returns the year as an integer value.

Just replace your_date_column with the actual column name containing
the date you want to extract the components from, and your_table with the
appropriate table name. The result will give you the day, month, and year
components of the date in separate columns.

Question 19
How to check if a date is valid in SQL?

In SQL, you can check if a date is valid using the TRY_CAST() or
TRY_CONVERT() function.

These functions attempt to convert the input expression to the specified data
type and return NULL if the conversion fails.

To check if a date is valid, you can try to cast or convert the date string to a
date data type (e.g., DATE, DATETIME, SMALLDATETIME, etc.).

If the conversion is successful, the date is valid; otherwise, it will return
NULL.

GROKKING THE SQL INTERVIEW

— 42 —

Here's an example using TRY_CAST() to check if a date string is valid:

In this example, TRY_CAST() attempts to convert the @dateString to a
DATE data type. If the conversion is successful, it means the date is valid,
and the code inside the IF block will be executed. Otherwise, it will go to the
ELSE block, indicating that the date is invalid.

You can also use TRY_CONVERT() function in a similar manner:

Both TRY_CAST() and TRY_CONVERT() are helpful when dealing with
user inputs or data from external sources, as they provide a safe way to
handle date conversions and check for valid dates.

SQL AND DATABASE TELEPHONIC INTERVIEW QUESTIONS

— 43 —

Question 20
Difference between LEFT OUTER JOIN and INNER JOIN in SQL?

In SQL, both LEFT OUTER JOIN and INNER JOIN are used to combine
data from two or more tables, but they produce different results:

1. INNER JOIN: An INNER JOIN returns only the rows that have
matching values in both tables based on the specified join condition.
It effectively filters out rows where there is no match in the joined
table. In other words, an INNER JOIN produces a result set that
contains only the rows with matching keys in both tables.

Example:

In this example, only the rows where there is a match between the
employees table and the departments table on the department_id column
will be returned.

2. LEFT OUTER JOIN: A LEFT OUTER JOIN returns all the rows
from the left (first) table and the matching rows from the right
(second) table. If there is no match in the right table, NULL values
will be returned for columns from the right table. It keeps all the
rows from the left table regardless of whether there is a matching
row in the right table.

Example:

GROKKING THE SQL INTERVIEW

— 44 —

Question 21
What is SELF JOIN in SQL?

When we join two instances of tables it's called self-join. For example, if the
table contains employee name and role then you can use self-joincopy to
find all employees who are managers.

Question 22
In a classical Employee and Department relationship, write SQL
query to print all departments and number of employees on each
department.

To print all departments along with the number of employees in each
department, you can use a LEFT OUTER JOIN and the COUNT()
function. Assuming you have two tables named departments and
employees with a foreign key department_id in the employees table that
references the department_id in the departments table, you can use the
following SQL query:

Explanation:

1. We start with the departments table, aliasing it as d, and then
perform a LEFT OUTER JOIN with the employees table, aliasing it
as e, using the common column department_id.

2. The LEFT OUTER JOIN ensures that all departments from the
departments table are included in the result, even if there are no
matching employees in the employees table.

SQL AND DATABASE TELEPHONIC INTERVIEW QUESTIONS

— 45 —

3. We use the COUNT(e.employee_id) function to count the number
of employees for each department. The COUNT() function will
only count non-NULL values, so it will accurately count the number
of employees in each department.

4. The GROUP BY d.department_name groups the result by
department name, so we get the count of employees for each
department.

The query will provide a result set with two columns: department_name
and num_of_employees, showing all departments and the corresponding
number of employees in each department.

Question 23
Difference between COUNT(*), COUNT(1), and COUNT(column_
name) in SQL?

Short answer - COUNT(*) includes null values while counting but
COUNT(1), and COUNT(column_name) doesn't take null values into
consideration during counting.

Long answer:

In SQL, COUNT(*), COUNT(1), and COUNT(column_name) are all used
with the COUNT() aggregate function to count the number of rows in a
result set or the number of non-null values in a specific column. However,
they have slight differences in their behavior:

1. COUNT(*):

• COUNT(*) counts the total number of rows in the result set,
including rows with NULL values in all columns.

• It does not consider individual column values but simply counts the
rows that satisfy the conditions in the query.

GROKKING THE SQL INTERVIEW

— 46 —

• It is usually the fastest option for counting rows because it does not
involve evaluating any column values.

Example:

SELECT COUNT(*) AS total_rows FROM employees;

2. COUNT(1):

• COUNT(1) is similar to COUNT(*), as it also counts the total
number of rows in the result set, including rows with NULL values
in all columns.

• Instead of considering individual column values, it uses the constant
value "1" for each row in the result set, effectively counting the rows
without evaluating any column values.

• Like COUNT(*), it is a fast option for counting rows.

Example:

SELECT COUNT(1) AS total_rows FROM employees;

3. COUNT(column_name):

• COUNT(column_name) counts the number of non-null values in
the specified column. It excludes rows with NULL values in the
specified column from the count.

• It is used when you want to count the occurrences of non-null values
in a particular column.

Example:

SELECT COUNT(employee_id) AS non_null_employee_ids
FROM employees;

In summary, COUNT(*) and COUNT(1) are used to count all rows in the
result set, while COUNT(column_name) is used to count the non-null values

SQL AND DATABASE TELEPHONIC INTERVIEW QUESTIONS

— 47 —

in a specific column. All three options have their specific use cases, and the
choice depends on what you want to count in your SQL query. For counting
all rows, COUNT(*) is the most commonly used and efficient option.

Question 24
What is Database statistics? How it affects the performance of your
Query?

One of the first thing I do when my app become slow is to update the statistics
on DB. It immediately boost the performance for one reason or other.

Database statistics refer to the information and metrics about the data
distribution and structure within a database. These statistics are typically
collected and maintained by the database management system (DBMS) and
are used by the query optimizer to determine the most efficient execution
plan for a given SQL query.

When you execute a query in a database, the query optimizer's role is to
analyze various possible execution plans and choose the one that is likely to
result in the fastest and most efficient execution. The optimizer relies heavily
on database statistics to make these decisions.

How Database Statistics Affect Query Performance:

1. Query Plan Selection: The query optimizer uses statistics to estimate
the number of rows that will be returned by each step of the query
execution plan. It then evaluates various possible plans and selects the
one with the lowest estimated cost. Accurate statistics lead to better
choices of query plans and, therefore, faster query execution.

2. Index Selection: Database statistics help the optimizer determine
which indexes are the most selective for a given query. A more
selective index reduces the number of rows that need to be scanned,
leading to faster data retrieval.

GROKKING THE SQL INTERVIEW

— 48 —

3. Join Order: In queries with multiple tables, the optimizer needs to
decide the order in which to join the tables. Statistics on table sizes
and data distribution are crucial in making the most efficient join
order decisions.

4. Predicate Evaluation: Statistics allow the optimizer to estimate the
selectivity of various predicates in the query's WHERE clause. This
helps in determining which parts of the query filter out the most
data, guiding the optimizer to create more efficient execution plans.

5. Memory and Resource Allocation: Accurate statistics help the
optimizer estimate the memory and resources required for query
execution. This enables the DBMS to allocate appropriate resources
for optimal performance.

As I said, regularly updating statistics is important to maintain the query
performance, especially in databases with large amounts of data that
undergo frequent data changes (inserts, updates, and deletes). Outdated or
inaccurate statistics may cause the optimizer to generate suboptimal query
execution plans, leading to performance degradation.

Database administrators can use database-specific commands or built-in
functions to update statistics periodically or automatically to ensure the
optimizer has the most up-to-date information for query optimization.

Pro tip

if you run import jobs make sure you include a command to update the
statistics after data is imported like

UPDATE STATISTICS table_name [{
index_or_statistics_name }]

SQL AND DATABASE TELEPHONIC INTERVIEW QUESTIONS

— 49 —

Question 25
Suppose you have to create a compound index in a table, involving two
columns like book_id and active. Now you can create them as either
(book_id, active) or (active, book_id), do you think the order of
columns in an index matter? How it will affect your SQL queries?

Yes, the order of columns in a compound index can matter, and it can
significantly affect the performance of SQL queries. The order of columns
in an index impacts how the index is utilized by the query optimizer for
different types of queries.

When creating a compound index involving two columns like book_id and
active, the choice of the order of these columns can lead to different index
structures and query optimizations:

1. (book_id, active) Index: This index order is more suitable when
queries frequently involve filtering by book_id and then further
filter by active. For example, if you have queries like:

In this case, the (book_id, active) index can be highly effective, as it
can quickly locate the rows with the specific book_id and then
further narrow down the results based on the active status.

2. (active, book_id) Index: On the other hand, this index order is more
appropriate when queries often involve filtering by active and then
by book_id. For example, if you have queries like:

In this scenario, the (active, book_id) index would be more
efficient, as it can quickly find the rows with the desired active status
and then further filter by book_id.

GROKKING THE SQL INTERVIEW

— 50 —

Keep in mind that the order of columns in the index should be based on the
query patterns and the filtering conditions you expect to see in your
application. In some cases, it might be beneficial to create multiple indexes
with different column orders to optimize different query patterns.

However, creating too many indexes can also have downsides, such as
increased storage and maintenance overhead, so it's essential to strike a
balance and consider the most common and performance-critical query
scenarios when designing compound indexes.

Question 26
What do _ and % are used in the SQL query?

Short answer - They are used in the LIKE operators while writing SQL
queries. The underscore is used to match one character, while % is used for
any number of characters.

Long Answer - In SQL queries, both _ (underscore) and % (percent sign)
are special characters used in conjunction with the LIKE operator in the
WHERE clause for pattern matching in string comparisons.

1. Underscore (_) Wildcard: The underscore (_) is used as a wildcard
that represents any single character. When used in a LIKE
comparison, it matches exactly one character at the position where
it appears.

For example, suppose you want to find all names that start with "J" and have
exactly four characters in total:

SELECT * FROM employees WHERE name LIKE 'J___';

This query will retrieve all records where the name starts with "J" and has
exactly four characters after the initial "J."

SQL AND DATABASE TELEPHONIC INTERVIEW QUESTIONS

— 51 —

2. Percent Sign (%) Wildcard: The percent sign (%) is used as a wildcard
that represents any sequence of characters (including zero characters).
When used in a LIKE comparison, it matches any number of
characters, including none, at the position where it appears.

For example, suppose you want to find all names that start with "A":

SELECT * FROM employees WHERE name LIKE 'A%';

This query will retrieve all records where the name starts with "A," followed
by any sequence of characters.

You can also use the % wildcard in combination with other characters to
create more complex patterns. For instance, %n% will match any name that
contains the letter "n" at any position.

Keep in mind that the LIKE operator is not case-sensitive by default in most
database systems. If you need case-sensitive matching, you can use
appropriate collations or convert the strings to a specific case using
functions like LOWER() or UPPER() before performing the comparison.

Question 27
How do you ensure that a particular SQL query will use a particular
Index?

Short answer - You can use SQL hints for that purpose.

Long answer - In SQL, you cannot directly force a query to use a specific
index. The query optimizer in the database management system (DBMS) is
responsible for choosing the most efficient execution plan, including which
indexes to use, based on the available statistics and the complexity of the
query.

GROKKING THE SQL INTERVIEW

— 52 —

However, you can influence the query optimizer's decision and encourage
it to use a particular index by following these best practices:

• Create the Right Index: Ensure that you have appropriate indexes
on the columns used in the query's WHERE, JOIN, and ORDER
BY clauses. The presence of a suitable index increases the chances
of the query optimizer selecting it.

• Statistics: Keep the statistics up-to-date for the tables and indexes.
The query optimizer relies on statistics to estimate the cost of
different execution plans and make informed decisions.

• Index Hints: Some database systems provide index hints that allow
you to suggest which index to use in a query. However, using hints
should be a last resort, as the query optimizer is generally good at
choosing efficient execution plans.

• Rewrite the Query: Sometimes, rewriting the query can influence
the query optimizer's choices. Small changes in the query logic
might lead to different execution plans, which may make better use
of certain indexes.

• Covering Indexes: Create covering indexes that include all the
columns required by the query. This allows the query to retrieve all
the necessary data directly from the index without accessing the
actual table, improving performance.

• Avoid Indexing Overkill: Having too many indexes on a table can
increase the overhead of maintaining them and might confuse the
query optimizer. Keep indexes selective and remove unused or
redundant indexes.

• Remember that the query optimizer's decision to use an index is
based on the overall cost estimation for the execution plan. Even
if you encourage the use of a specific index, the optimizer may still

SQL AND DATABASE TELEPHONIC INTERVIEW QUESTIONS

— 53 —

choose a different index or even perform a full table scan if it deems
it more efficient. Trust the optimizer's capabilities, and focus on
providing the right indexes and maintaining up-to-date statistics to
help it make informed choices. Only consider using index hints as a
last resort and after thorough performance testing to ensure that
they indeed improve query performance.

Question 28
In SQL Server, which one is fastest and slowest between an index seek,
an index scan, and table scan?

Short answer - In a general, the table scan is slower than the index scan and
index seek. Your goal should be to write queries that can take advantage of
the index by using index scan and index seek for faster retrieval. You can
use the SQL EXPLAIN command to retrieve the query plans and find out
whether indexes are used for your query or not.

Long answer - In SQL Server, the speed of an operation varies depending on
the size of the data and the specific query being executed. However, in general,
the fastest operation is an Index Seek, followed by an Index Scan, and the
slowest operation is a Table Scan.

1. Index Seek:

• An Index Seek is the fastest operation because it directly navigates
to the specific rows in the table using the index key. It is efficient for
queries that have selective criteria, as it minimizes the number of
rows to be retrieved.

2. Index Scan:

• An Index Scan is the second fastest operation. It reads all the rows
in an index (or a range of index entries) that match the query's filter
conditions. While not as efficient as an Index Seek, it is still faster

GROKKING THE SQL INTERVIEW

— 54 —

than a Table Scan because it involves reading only a subset of data
from the index.

3. Table Scan:

• A Table Scan is the slowest operation. It reads all the rows from a
table, whether or not they match the query's filter conditions. It is
the least efficient operation, as it involves reading the entire table,
which can be very time-consuming for large tables.

The performance of these operations can be influenced by factors such as the
size of the table, the distribution of data, the presence of suitable indexes, and
the complexity of the query. It's essential to create appropriate indexes and
write efficient queries to ensure that SQL Server can use Index Seeks and
Index Scans whenever possible, as they are more efficient than Table Scans.

The SQL Server query optimizer plays a crucial role in determining which
operation to use based on statistics, available indexes, and query complexity.
By ensuring proper indexing and writing well-optimized queries, you can
improve query performance and reduce the likelihood of Table Scans,
which tend to be the slowest operation.

Question 29
What does NULL = NULL will return in SQL?

In SQL, the expression NULL = NULL will not return TRUE, as you might
expect. Instead, it will return NULL.

The reason for this behaviour is that NULL represents an unknown or
missing value, and SQL uses a three-valued logic system where the result of
comparisons involving NULL can be TRUE, FALSE, or NULL.

When you compare two NULL values using the equals (=) operator, SQL
cannot determine whether they are equal or not because they are both

SQL AND DATABASE TELEPHONIC INTERVIEW QUESTIONS

— 55 —

unknown. As a result, the comparison returns NULL as an indicator of
uncertainty.

To check for NULL values in SQL, you should use the IS NULL or IS NOT
NULL operators:

• IS NULL: Used to check if a value is NULL.

• IS NOT NULL: Used to check if a value is not NULL.

For example:

In this query, we are selecting all records from the employees table where
the department_id column has a NULL value. This is the correct way to
handle NULL comparisons in SQL.

Question 30
Write SQL query to find all rows where EMP_NAME, a VARCHAR
column is NULL?

This is a simple question often asked beginners to check whether they know
how to check for NULL in SQL or not. The trick here is to use "IS NULL"
instead of the "=" operator to find all rows where EMP_NAME is NULL.

Here is the SQL query for this

GROKKING THE SQL INTERVIEW

— 56 —

Question 31
What is the temp table?

Short answer - A temp table or a temporary table is a base table that is not
stored in the database and only exists while the current database session is
active. Once the database connection is closed, all temp tables are lost. They
may look similar to view but they are not. A view exists only for a single query
but you can use a temporary table as a regular table until your session is active.

Long answer - A temporary table, often referred to as a "temp table," is a
special type of table that exists only for the duration of a database session or
transaction. Temporary tables are commonly used to store intermediate
results or temporary data during the execution of complex queries or stored
procedures.There are two main types of temporary tables:

1. Local Temporary Table:

• A local temporary table is created using a single "#" symbol before
the table name (e.g., #temp_table). It is visible only within the
session or connection that created it.

• Once the session or connection that created the local temporary
table is closed or disconnected, the table is automatically dropped,
and its data is lost.

2. Global Temporary Table:

• A global temporary table is created using a double "##" symbol
before the table name (e.g., ##temp_table). It is visible across
different sessions or connections within the same database.

• The global temporary table persists until all sessions that have
referenced it are closed or disconnected. Once the last session using
the global temporary table ends, the table is automatically dropped,
and its data is lost.

SQL AND DATABASE TELEPHONIC INTERVIEW QUESTIONS

— 57 —

Temporary tables offer several benefits:

• They can improve query performance by allowing the storage of
intermediate results during complex operations.

• Temporary tables can be used to break down complex tasks into
smaller, more manageable steps.

• They provide isolation for each session, so different users or
applications can use temporary tables independently without
interfering with each other's data.

• Temporary tables can be used to store temporary data for reporting
or data manipulation tasks.

However, it's essential to use temporary tables judiciously, as they consume
resources and can impact database performance if not managed properly.
Ensure that you drop temporary tables when they are no longer needed to
avoid unnecessary resource usage. Additionally, temporary tables are
typically not recommended for long-term data storage or as a replacement
for permanent tables in the database schema.

Question 32
What is the fastest way to empty or clear a table?

Short answer - You can use the truncate command to empty or clear the
table. It's faster than delete because it doesn't log each deleted entry on a
log, that's why you cannot roll back it. So be careful while using truncate to
clear or empty a table.

Long answer - The fastest way to empty or clear a table in most relational
database systems, including SQL Server, is to use the TRUNCATE TABLE
statement. The TRUNCATE TABLE statement removes all rows from a
table quickly and efficiently, and it is typically faster than using the DELETE
statement, especially for large tables.

GROKKING THE SQL INTERVIEW

— 58 —

Here's the syntax for the TRUNCATE TABLE statement:

TRUNCATE TABLE table_name;

Replace table_name with the name of the table you want to empty.

Advantages of using TRUNCATE TABLE over DELETE:

• Speed: TRUNCATE TABLE is faster because it does not generate
individual row delete operations and does not log individual row
deletions. It deallocates the data pages of the table directly, resulting
in quicker completion.

• Minimal Logging: TRUNCATE TABLE is a minimally logged
operation. In most cases, it only logs the deallocation of the data
pages, making it faster and consuming less transaction log space
than DELETE.

• No Rollback: TRUNCATE TABLE cannot be rolled back, which is
an advantage in situations where you want to quickly remove all
data from the table without the possibility of reverting the
operation.

However, there are a few important considerations when using
TRUNCATE TABLE:

• Cannot be used with Referential Integrity: You cannot use
TRUNCATE TABLE on a table that has foreign key constraints
referencing it. In such cases, you would need to use DELETE or
remove the foreign key constraints temporarily.

• Resets Identity Columns: If the table has an identity column, using
TRUNCATE TABLE will reset the identity seed back to its original
starting value. Be cautious if you have other tables referencing this
identity value.

SQL AND DATABASE TELEPHONIC INTERVIEW QUESTIONS

— 59 —

• Requires Appropriate Permissions: Ensure that you have the
necessary permissions to truncate the table, as this operation is a
powerful one that clears all data.

In summary, if you need to quickly empty or clear a table and you don't have
foreign key constraints referencing it, the TRUNCATE TABLE statement
is the fastest and most efficient option. However, be mindful of the
considerations mentioned above and verify that it aligns with your specific
use case.

Question 33
What is an identity column in SQL Server? How do you return an
identity value from a table?

In SQL Server, an identity column is a special type of column that
automatically generates a unique value for each new row added to a table. It
is commonly used to provide a unique and sequential identifier for the rows
in a table. The values in an identity column are typically used as primary
keys for the table.

To define an identity column in SQL Server, you use the IDENTITY
property in the CREATE TABLE statement or alter an existing column
using the ALTER TABLE statement.

Here's the syntax for creating an identity column:

In this example, column_name is the name of the column you want to
define as an identity column. data_type is the data type of the column, and

GROKKING THE SQL INTERVIEW

— 60 —

PRIMARY KEY indicates that the identity column will be the primary key
for the table. The IDENTITY(1,1) specifies the seed value and the
increment value for the identity column. In this case, the identity starts at 1
and increments by 1 for each new row.

To return the identity value from a table after inserting a new row, you can
use one of the following methods:

1. @@IDENTITY: The @@IDENTITY system function returns the
last generated identity value in the current session and current
scope. It is essential to be cautious with @@IDENTITY when there
are triggers or other operations that may affect the identity value. It
might not return the value you expect in certain scenarios.

2. SCOPE_IDENTITY (): The SCOPE_IDENTITY () function
returns the last generated identity value within the current scope,
but it takes into account triggers. It is generally considered safer and
more reliable than @@IDENTITY.

3. OUTPUT Clause: The OUTPUT clause can be used with the
INSERT statement to return the identity value(s) of the inserted
row(s) directly in the query result.

SQL AND DATABASE TELEPHONIC INTERVIEW QUESTIONS

— 61 —

You should choose the appropriate method based on your specific use case
and the behaviour you need for returning the identity value after an insert
operation.

Question 34
How do you return an identity value from a table with a trigger?

Short answer - In SQL Server, you can use a function like @@IDENTITY to
generate identity values.

Example - SELECT @@IDENTITY AS 'Identity';

Long answer – see previous questions

Question 35
How do you return a value from a stored procedure?

Short answer - In SQL Server, you can either use the OUTPUT parameter
or use the return statement to return a value from a stored procedure.

Long answer - In SQL Server, you can return a value from a stored procedure
using the RETURN statement or by using an OUTPUT parameter.

1. Using the RETURN Statement:

The RETURN statement is used to return an integer value from a stored
procedure. This value is typically used to indicate the status of the procedure

GROKKING THE SQL INTERVIEW

— 62 —

execution. By convention, a value of 0 indicates successful execution, and
non-zero values indicate various error conditions.

Here's an example of a stored procedure that uses the RETURN statement:

To execute the stored procedure and retrieve the returned value, you use the
following:

2. Using OUTPUT Parameters:

OUTPUT parameters are used to pass values from a stored procedure back
to the calling code. Unlike the RETURN statement, you can use OUTPUT
parameters to return multiple values from a stored procedure.

Here's an example of a stored procedure with an OUTPUT parameter:

SQL AND DATABASE TELEPHONIC INTERVIEW QUESTIONS

— 63 —

To execute the stored procedure and retrieve the values returned through
OUTPUT parameters, you use the following:

Remember that RETURN statements can only return a single integer value,
while OUTPUT parameters can return multiple values of different data
types. Choose the appropriate method based on the number and type of
values you need to return from the stored procedure.

Question 36
How do you return a VARCHAR value from a stored procedure?

Hint - using OUTPUT parameter return clause as shown above

Question 37
If you have a column that will only have values between 1 and 250 what
data type will you use?

If you are using SQL Server database then you can use the TINYINT
datatype which can accommodate numbers between 0 and 255 and it needs
1 byte for storage.

GROKKING THE SQL INTERVIEW

— 64 —

This question is asked to test your knowledge of SQL data type and whether
you can choose the right data type for a given requirement or not. Your goal
should be to use a data type that can accommodate a given range. You can
also ask questions that whether it's fixed or it can change in the future.

Question 38
Difference between LEFT and RIGHT OUTER JOIN in SQL?

Both are outer joins, in LEFT outer join, all rows from the left side table
will be included, and only matching rows from the other side of the table
are included. In case of RIGHT outer join, all rows of the right side of the
table on join condition are included.

Question 39
Can you write an SQL query to select all last names that start with 'T'?

Here's an SQL query to select all last names that start with 'T':

In this query:

1. The SELECT statement retrieves the last_name column from the
employees table.

2. The WHERE clause filters the results to include only rows where
the last_name starts with the letter 'T'. The LIKE 'T%' condition
specifies that the last_name should begin with 'T', followed by any
characters.

This query will return all last names that start with the letter 'T' from the
employees table.

SQL AND DATABASE TELEPHONIC INTERVIEW QUESTIONS

— 65 —

Question 40
How would you select all rows where the date is 20231002?

To select all rows where the date is '2023-10-02', you would use the following
SQL query:

Replace your_table with the actual name of your table and date_column
with the name of the column that holds the date values.

This query will retrieve all rows from the specified table where the date in
the date_column is '2023-10-02'.

Question 41
What is the difference between a local and global temporary table in
SQL Server?

I did explained this before on previous question but here it is again:

In SQL Server, local and global temporary tables are two types of temporary
tables that serve different purposes:

1. Local Temporary Table:

• Local temporary tables are created using a single hash (#) sign as a
prefix in their name (e.g., #temp_table).

• They are only visible and accessible within the current session
(connection) that creates them.

• Local temporary tables are automatically dropped when the session
that created them is closed or when the user explicitly drops them.

GROKKING THE SQL INTERVIEW

— 66 —

• They are useful for temporary data storage within a specific session,
such as in stored procedures or user-defined functions.

2. Global Temporary Table:

• Global temporary tables are created using a double hash (##) sign as
a prefix in their name (e.g., ##temp_table).

• They are visible and accessible across multiple sessions and
connections within the same database.

• Global temporary tables are automatically dropped when the last
session that references them is closed or when the user explicitly
drops them.

• They are suitable for scenarios where temporary data needs to be
shared among multiple sessions or connections, such as in complex
queries or data manipulation tasks.

In summary, the main differences between local and global temporary tables
lie in their scope and lifespan. Local temporary tables are limited to a single
session and are dropped when the session ends, while global temporary
tables can be accessed by multiple sessions and are dropped when the last
session that references them is closed.

Question 42
How do you create a copy of a table in SQL Server?

To create a copy of a table in SQL Server, you can use various methods,
depending on your requirements and the complexity of the table structure.
Here are a few approaches:

1. Using SELECT INTO Statement:

SELECT * INTO new_table FROM old_table;

SQL AND DATABASE TELEPHONIC INTERVIEW QUESTIONS

— 67 —

This creates a new table new_table with the same structure as old_table and
copies all data into it.

2. Using INSERT INTO Statement:

INSERT INTO new_table SELECT * FROM old_table;

This inserts all data from old_table into an existing new_table.

Question 43
How do you change the data type of a column in a table in SQL?

To change the data type of a column in a table in SQL, you can use the
ALTER TABLE statement along with the ALTER COLUMN clause. Here's
the general syntax:

ALTER TABLE table_name ALTER COLUMN column_name
new_data_type;

Replace table_name with the name of the table containing the column,
column_name with the name of the column you want to modify, and
new_data_type with the desired new data type.

For example, if you want to change the data type of a column named age in
a table named employees to INT, the SQL statement would be:

ALTER TABLE employees ALTER COLUMN age INT;

Keep in mind the following considerations:

1. Data Conversion: Changing data types might result in data loss or
truncation if the new data type cannot accommodate the existing
data.

GROKKING THE SQL INTERVIEW

— 68 —

2. Constraints and Indexes: If the column has constraints, indexes, or
other dependent objects, you might need to drop and recreate them
after altering the column's data type.

3. Potential Downtime: Depending on the database system and the
amount of data, changing a data type can require significant
processing time and might cause downtime for the table.

4. Testing: Always perform such operations in a controlled
environment, and it's a good practice to back up your data before
making significant changes.

5. Impacted Queries: Changing a column's data type might affect
queries, so be sure to review and update any affected parts of your
application.

Make sure to review the documentation for your specific database system
to understand any nuances or limitations related to altering column data
types.

Question 44
What data type should you use to store monetary values in a table?

When storing monetary values in a table, it is recommended to use the
DECIMAL (also known as NUMERIC) data type. This data type is
specifically designed for precise decimal arithmetic and is suitable for
representing fixed-point numbers, such as monetary values.

In SQL Server, the DECIMAL data type requires two parameters:

1. Precision (p): The total number of digits that can be stored, both to
the left and right of the decimal point.

2. Scale (s): The number of decimal places that are stored to the right
of the decimal point.

SQL AND DATABASE TELEPHONIC INTERVIEW QUESTIONS

— 69 —

For example, if you want to store monetary values with up to 10 digits in
total and up to 2 decimal places, you might define the column as
DECIMAL(10, 2).

Here's an example of creating a table with a column to store monetary
values:

Using the DECIMAL data type ensures accurate representation of
monetary values and helps prevent rounding errors that can occur with
floating-point data types like FLOAT or REAL.

Question 45
What does SELECT 3/2 will return? 1 or 1.5?

In most programming languages including Java and database systems,
including SQL Server, when you perform an arithmetic operation like
division on integers, the result is treated as an integer division, and any
fractional part is truncated (rounded down).

So, in the case of SELECT 3/2, the result will be 1, not 1.5. The fractional
part 0.5 is truncated, and only the integer part of the division result is
returned.

If you want to perform a division that results in a decimal or floating-point
value, you should use decimal or floating-point literals or variables, like
SELECT 3.0 / 2 or SELECT 3 / 2.0, which will give you the result 1.5.

GROKKING THE SQL INTERVIEW

— 70 —

Question 46
What is the maximum value that Decimal (6, 5) can hold in SQL
Server?

In SQL Server, the Decimal (p, s) data type represents a fixed precision and
scale decimal number. The p parameter specifies the total number of digits
that the number can hold (precision), and the s parameter specifies the
number of decimal places (scale).

For Decimal (6, 5), this means it can hold a total of 6 digits, with 5 of those
digits being reserved for decimal places. The remaining digit is used for the
non-decimal part.

The maximum value that a Decimal (6, 5) can hold is determined by its
precision and scale. In this case, with a precision of 6 and a scale of 5, the
maximum value can be represented as:

0.99999

This value is derived from the fact that there are 6 total digits, with 5 of them
after the decimal point. The largest value that can be represented is where
all the available digits are set to 9 in the decimal places.

Please note that the actual range of values might be constrained by other
factors such as the available memory and storage.

Question 47
If you have a table with one integer column ID, and it has three values
101, 201, and NULL? What will the following SQL query SELECT *
FROM TestTable where ID !=101 will return?

The SQL query SELECT * FROM TestTable WHERE ID != 101 will return
the rows where the ID column is not equal to 101. However, it's important
to note that when comparing with NULL values, the result might not be as

SQL AND DATABASE TELEPHONIC INTERVIEW QUESTIONS

— 71 —

straightforward as expected due to the three-valued logic used in SQL (True,
False, and Unknown).

Given the table with values 101, 201, and NULL:

• 101 is not equal to 101 (False)

• 201 is not equal to 101 (True)

• NULL is not equal to 101 is evaluated as Unknown

So, the result of the query will be:

• One row with ID = 201

Rows with NULL values are not included in the result set because
comparisons involving NULL values often result in Unknown, and rows for
which the comparison result is Unknown are not included in the output
according to SQL's three-valued logic.

Question 48
What is your favorite SQL book?

This one is an easy question and the interviewer just wants to know whether
you have read any book or not. You can name the SQL book you have read,
if you haven't read any SQL book so far then I highly recommend you to
read Head First SQL if you are learning SQL from scratch and Joe Celko's
SQL Puzzles if you already know SQL and looking for some SQL puzzles to
test your SQL query skills.

Question 49
Tell me two SQL best practices you follow?

Short answer - creating indexes and using them on SQL queries,
normalization, and updating statistics regularly.

GROKKING THE SQL INTERVIEW

— 72 —

Long answer – Here are two SQL best practices that are widely recommended:

1. Parameterized Queries: Always use parameterized queries or
prepared statements to prevent SQL injection attacks. Instead of
embedding user inputs directly into SQL statements, pass them as
parameters. Parameterization not only safeguards your database
from malicious input but also improves query performance by
allowing the database to cache query plans. Example in SQL Server
using T-SQL:

2. Use Indexes Wisely: Employ appropriate indexes on columns that

are frequently used in search, join, or filter operations. Indexes
enhance query performance by reducing the need for full table
scans. However, avoid excessive indexing, as it can lead to increased
storage requirements and slower write operations. Regularly
monitor and analyse query execution plans to ensure that indexes
are being used effectively. Example:

By following these best practices, you can improve the security,
performance, and maintainability of your SQL code and database systems.

Question 50
What is the different ISOLATION level in the Microsoft SQL Server
database?

In Microsoft SQL Server, isolation levels define how transactions interact
with each other in a multi-user environment. Different isolation levels

SQL AND DATABASE TELEPHONIC INTERVIEW QUESTIONS

— 73 —

provide varying degrees of transaction isolation and concurrency control.
Here are the standard isolation levels available in SQL Server:

1. READ UNCOMMITTED:

• Least restrictive isolation level.

• Allows transactions to read uncommitted changes made by other
transactions, leading to potential dirty reads, non-repeatable reads,
and phantom reads.

2. READ COMMITTED:

• Default isolation level.

• Allows transactions to read only committed data, avoiding dirty
reads. However, it may still experience non-repeatable reads and
phantom reads.

3. REPEATABLE READ:

• Prevents other transactions from updating or inserting new rows
that would affect the result set of the current transaction.

• Guarantees consistent results for read operations, but can still lead
to phantom reads (newly inserted rows).

4. SERIALIZABLE:

• Provides the highest level of isolation.

• Prevents other transactions from updating, inserting, or deleting
rows that would affect the result set of the current transaction.

• Offers the highest data integrity but can lead to decreased
concurrency due to locking.

GROKKING THE SQL INTERVIEW

— 74 —

5. SNAPSHOT:

• Uses row versioning to allow each transaction to see a snapshot of
the data as it existed at the start of the transaction.

• Helps to prevent blocking and provides a higher level of
concurrency than SERIALIZABLE.

6. READ COMMITTED SNAPSHOT:

• Similar to READ COMMITTED, but uses row versioning to avoid
blocking.

• Provides a balance between isolation and concurrency.

Isolation levels affect how locks are acquired and released, impacting the
trade-off between data consistency and concurrency. Choosing the
appropriate isolation level depends on the specific requirements of your
application and the potential impact on performance and concurrency. It's
important to carefully consider the implications of each isolation level and
test their behaviour in your specific use case.

Question 51
If you create a local temp table and then call a proc is the temp table
available inside the proc?

Yes, if you create a local temporary table (#table_name) and then call a
stored procedure in the same session, the temporary table will be available
inside the stored procedure.

Local temporary tables are session-specific, meaning they are accessible only
within the context of the session that created them, including any stored
procedures called from that session.

SQL AND DATABASE TELEPHONIC INTERVIEW QUESTIONS

— 75 —

Here's an example scenario:

In this example, the temporary table #TempTable is created in the main
session, data is inserted into it, and then the stored procedure
YourStoredProcedure is called.

Inside the stored procedure, the temporary table is still accessible, and you can
perform operations on it.

Remember that local temporary tables are automatically dropped when the
session that created them ends.

This means that after the session ends (when the connection is closed), the
temporary table will no longer exist.

GROKKING THE SQL INTERVIEW

— 76 —

Question 52
Which date format is the only safe one to use when passing dates as
strings?

When passing dates as strings in SQL queries, the safest date format to use
is the ISO 8601 format, specifically the "YYYY-MM-DD" format for dates
and "YYYY-MM-DDTHH:MM:SS" format for timestamps with time zone
information. For example:

• Date: "2023-08-05"

• Timestamp: "2023-08-05T15:30:00"

The ISO 8601 format is widely supported across different database systems
and programming languages, making it less prone to ambiguity or
misinterpretation. It's also less affected by regional date format settings.
Using this format helps ensure consistent and correct date parsing
regardless of the environment.

It's important to note that using the ISO 8601 format may still require
proper handling and conversion in your code to ensure that the passed
string is correctly interpreted as a date or timestamp by the database system
you are using.

Question 53
How do you suppress rows affected messages when executing an insert
statement in SQL Server?

In SQL Server, you can suppress the "rows affected" messages when
executing an INSERT statement by using the SET NOCOUNT ON
statement before your INSERT statement. This prevents SQL Server from
sending the informational message indicating the number of rows affected
by the statement.

SQL AND DATABASE TELEPHONIC INTERVIEW QUESTIONS

— 77 —

Here's an example of how to do it:

By setting NOCOUNT to ON, you will suppress the "X rows affected"
message for the current session, making the output cleaner, especially when
you are performing bulk inserts or other operations where you don't need
the row count information. Remember to set NOCOUNT back to OFF
afterward to restore the default behavior.

Note that this technique is specific to SQL Server. Other database systems
may have different methods or settings to achieve similar results.

Question 54
Difference between ANSI-89 and ANSI-92 syntax of writing SQL
Join?

The ANSI-89 syntax uses the WHERE clause to specify join conditions,
often resulting in less readable and harder-to-maintain code. It lacks explicit
JOIN keywords, leading to confusion between filtering and joining. In
contrast, the ANSI-92 (or SQL-92) syntax employs explicit JOIN keywords
(INNER, LEFT, RIGHT, FULL), separating join conditions from filtering
conditions, enhancing code clarity and maintainability. ANSI-92 supports
more complex joins, reducing ambiguity and improving query
optimization. It's the recommended choice for modern SQL queries due to
its structured and versatile approach to joining tables.

GROKKING THE SQL INTERVIEW

— 78 —

Question 55
Differences between IN and EXISTS (and NOT IN, and NOT EXISTS)
in SQL?

IN and EXISTS are SQL operators that are used to filter and compare values
in different ways. Similarly, NOT IN and NOT EXISTS are used for
negating those comparisons. Let's explore the differences between them:

1. IN Operator: The IN operator is used to compare a value with a set
of values or a subquery and returns true if the value matches any
value in the set. Example:

This query retrieves all employees from the departments with IDs
101, 102, or 103.

2. EXISTS Operator: The EXISTS operator is used to check for the
existence of rows in a subquery and returns true if the subquery
returns any result. Example:

This query retrieves all orders where there is a corresponding
customer in the customers table.

3. NOT IN Operator: The NOT IN operator is used to compare a
value with a set of values or a subquery and returns true if the value
does not match any value in the set.

SQL AND DATABASE TELEPHONIC INTERVIEW QUESTIONS

— 79 —

Example:

This query retrieves all students whose age is not 18, 19, or 20.

4. NOT EXISTS Operator: The NOT EXISTS operator is used to
check for the absence of rows in a subquery and returns true if the
subquery does not return any result. Example:

This query retrieves all products that have not been ordered.

Key Differences:

• IN and NOT IN compare values directly, while EXISTS and NOT
EXISTS are used for existence checks based on subqueries.

• IN and NOT IN are typically used for comparing values from a list,
while EXISTS and NOT EXISTS are often used for correlated
subqueries (subqueries that reference columns from the outer
query).

• EXISTS and NOT EXISTS are usually more efficient for checking
existence compared to IN and NOT IN because they stop processing
once a match is found.

In summary, IN and NOT IN are used to compare values against a list of
values, whereas EXISTS and NOT EXISTS are used for checking the
existence of rows based on the result of a subquery. The choice between
them depends on the specific scenario and the desired outcome.

GROKKING THE SQL INTERVIEW

— 80 —

That's all on this list of frequently asked database and SQL interview
questions. This is like a warm up for the topic-wise questions we are going
to cover but if you are in hurry, you can complete this chapter and get ready
for your interview in quick time.

We have also covered a lot of SQL Server questions in this list and some
questions from Oracle Database but most of the questions are applicable to
all the databases including MySQL. As I said, you can use this list to quickly
revise the essential SQL and Database concepts before you go for the
interview.

— 81 —

CHAPTER 2

SQL JOIN

n the world of relational databases, the ability to combine data from
multiple tables is a fundamental and powerful feature. SQL Joins allow

you to merge information from two or more tables based on common
columns, enabling you to create a unified view of your data and extract
meaningful insights.

Whether you are an aspiring data analyst or a seasoned database
administrator, understanding SQL Joins is essential for querying complex
datasets efficiently and effectively.

In this chapter, we will explore the concept of SQL Joins and delve into the
various types of joins, preparing you to confidently tackle SQL Join-related
interview questions. By the end of this chapter, you will have a
comprehensive understanding of the intricacies involved in connecting
tables, optimizing joins, and combining data seamlessly.

Important Topics to Prepare on Joins:

1. Inner Join: Understanding the most common type of join, the Inner
Join, and how it returns only the rows that have matching values in
both tables. Learn how to write inner join queries using the JOIN
keyword or the explicit INNER JOIN syntax.

I

GROKKING THE SQL INTERVIEW

— 82 —

2. Left Join (Left Outer Join): Exploring the Left Join, which returns
all the rows from the left table and the matching rows from the right
table. If there are no matches in the right table, NULL values are
returned. Learn how to perform left joins using the LEFT JOIN
keyword.

3. Right Join (Right Outer Join): Understanding the Right Join,
which is the reverse of the Left Join, returning all rows from the right
table and matching rows from the left table. If there are no matches
in the left table, NULL values are returned. Master the usage of
RIGHT JOIN to fetch data accordingly.

4. Full Join (Full Outer Join): Exploring the Full Join, which returns
all rows when there is a match in either the left or right table. If there
are no matches in both tables, NULL values are returned. Learn how
to perform Full Joins using FULL JOIN or combining Left and Right
Joins.

5. Cross Join (Cartesian Join): Understanding the Cross Join, a join
that returns the Cartesian product of both tables, combining every
row from the first table with every row from the second table.
Master the usage of CROSS JOIN and its potential implications on
query performance.

6. Self Join: Delving into the Self Join, a special case where a table is
joined with itself, typically to compare records within the same
table. Understand the syntax and scenarios where self joins are
useful.

7. Joining Multiple Tables: Learning how to join more than two tables
in a single query to build complex relationships and retrieve data
from interconnected datasets. Understand the order of joins and the
importance of parentheses in multiple join queries.

SQL JOIN

— 83 —

8. Using Aliases: Discovering the usage of table aliases to simplify
query syntax and improve readability, especially when joining
multiple tables or when a table is used more than once in a query.

9. Using Join Conditions: Mastering the art of specifying join
conditions using the ON clause or USING clause (for equi-joins).
Learn how to handle complex join conditions and troubleshoot
common join errors.

10. Nested Joins: Understanding nested joins and their role in
optimizing query performance. Explore the importance of indexing
and its impact on join efficiency.

11. Anti-Join and Semi-Join: Introducing the concepts of Anti-Join
and Semi-Join, which are used to find records that do not match or
partially match between two tables, respectively.

12. Non-Equi Join: Exploring Non-Equi Joins, where join conditions
use operators other than equality, such as greater than or less than.

13. Performance Considerations: Understanding the importance of
choosing the right join type to optimize query performance,
considering the size of the tables and the data distribution.

14. NULL Handling: Learning how to handle NULL values during
joins, including strategies to deal with NULLs in joined columns.

15. Applying Joins in Real-World Scenarios: Analyzing real-world
examples where SQL Joins are crucial for combining data from
multiple tables to answer complex business questions.

SQL Joins are a vital tool in the arsenal of any SQL professional. Whether
you're seeking to consolidate data, perform data analysis, or generate
meaningful reports, understanding the various types of joins and their
appropriate use-cases is indispensable. By mastering SQL Joins, you will

GROKKING THE SQL INTERVIEW

— 84 —

become adept at navigating through intricate database relationships and
enhancing your problem-solving abilities in SQL.

Let's embark on this journey into the world of SQL Joins, empowering you
to build seamless connections between tables and unlock the true potential
of your data!

Below are 30 frequently asked SQL questions based upon Joins along with
their answers:

Question 1
What is the difference between INNER JOIN and LEFT JOIN in SQL?

INNER JOIN returns only the rows with matching values in both tables,
while LEFT JOIN returns all rows from the left table and the matching rows
from the right table. If there are no matches in the right table for a left join,
NULL values are returned.

Question 2
How do you perform a simple INNER JOIN between two tables in
SQL?

You can use the JOIN keyword or the INNER JOIN keyword followed by
the ON clause specifying the join condition.

For example:

SELECT * FROM table1
JOIN table2
ON table1.column_name = table2.column_name;

SQL JOIN

— 85 —

Question 3
Explain the usage of RIGHT JOIN with an example.

RIGHT JOIN returns all rows from the right table and the matching rows
from the left table. If there are no matches in the left table, NULL values are
returned.

For example:

SELECT * FROM employees
RIGHT JOIN departments
ON employees.department_id =
departments.department_id;

Question 4
How can you perform a FULL JOIN to retrieve all rows from two
tables, even when there are no matches?

You can use the FULL JOIN or combine the LEFT JOIN and RIGHT JOIN
using the UNION operator.

For example:

SELECT * FROM table1
FULL JOIN table2
ON table1.column_name = table2.column_name;

Question 5
What is a SELF JOIN, and in what scenarios is it useful?

A SELF JOIN is a join where a table is joined with itself. It is useful in
scenarios where you need to compare records within the same table, such as
finding employees who share the same manager.

GROKKING THE SQL INTERVIEW

— 86 —

Question 6
How do you perform a SELF JOIN in SQL?

You can use table aliases to distinguish between the two instances of the
same table.

For example:

SELECT e1.employee_id, e1.name AS employee_name,
e2.name AS manager_name
FROM employees e1
JOIN employees e2
ON e1.manager_id = e2.employee_id;

Question 7
What is the result of a CROSS JOIN?

A CROSS JOIN (also known as a Cartesian Join) returns the Cartesian
product of both tables, combining every row from the first table with every
row from the second table.

Question 8
How do you perform a CROSS JOIN in SQL?

You can use the CROSS JOIN keyword to perform a cross join.

For example:

SELECT * FROM table1 CROSS JOIN table2;

Question 9
Explain the concept of Non-Equi Join.

A Non-Equi Join uses join conditions other than equality. For example,
using greater than or less than operators to compare values between tables.

SQL JOIN

— 87 —

Question 10
How do you handle NULL values during joins?

To handle NULL values during joins, you can use the IS NULL or IS NOT
NULL condition in the WHERE clause or coalesce NULL values using the
COALESCE function.

Question 11
What is the difference between an INNER JOIN and an equi-join?

An INNER JOIN is a type of equi-join, which means the join condition uses
the equality operator (=) to match values between tables.

Question 12
How can you retrieve records from the left table that do not have
corresponding matches in the right table?

You can use a LEFT JOIN and specify a condition in the WHERE clause to
filter out rows where the right table's columns are NULL.

For example:

SELECT * FROM table1
LEFT JOIN table2
ON table1.column_name = table2.column_name
WHERE table2.column_name IS NULL;

Question 13
What is the difference between a LEFT JOIN and a RIGHT JOIN?

The difference lies in the order of tables in the join. LEFT JOIN returns all rows
from the left table and matching rows from the right table, while RIGHT JOIN
returns all rows from the right table and matching rows from the left table.

GROKKING THE SQL INTERVIEW

— 88 —

Question 14
How do you perform a multi-table join in SQL?

You can perform a multi-table join by chaining multiple JOIN clauses
together or using parentheses to group joins.

For example:

SELECT * FROM table1
JOIN table2 ON table1.column_name =
table2.column_name
JOIN table3 ON table2.column_name =
table3.column_name;
-- OR SELECT * FROM (table1 JOIN table2 ON
table1.column_name = table2.column_name) JOIN table3
ON table2.column_name = table3.column_name;

Question 15
How can you find records with no matching entries in either of the
two joined tables?

You can use a FULL JOIN and specify a condition in the WHERE clause to
filter out rows where either the left or right table's columns are NULL.

For example:

SELECT * FROM table1
FULL JOIN table2 ON table1.column_name =
table2.column_name
WHERE table1.column_name IS NULL OR
table2.column_name IS NULL;

SQL JOIN

— 89 —

Question 16
When should you use an INNER JOIN over a LEFT JOIN or RIGHT
JOIN?

Use an INNER JOIN when you want to retrieve only the rows that have
matching values in both tables. Use LEFT JOIN when you want all rows
from the left table and matching rows from the right table. Use RIGHT JOIN
when you want all rows from the right table and matching rows from the
left table.

Question 17
How can you find records with matching values in one table but not
in another?

You can use a LEFT JOIN and specify a condition in the WHERE clause to
filter out rows where the right table's columns are NULL.

For example:

SELECT * FROM table1
LEFT JOIN table2 ON table1.column_name =
table2.column_name
WHERE table2.column_name IS NULL;

Question 18
What are the key differences between a FULL JOIN and a UNION?

FULL JOIN combines data from both tables, retaining non-matching rows
with NULLs, while UNION combines the result sets of two or more SELECT
queries, removing duplicate rows.

GROKKING THE SQL INTERVIEW

— 90 —

Question 19
How do you combine results from multiple queries without using a
join?

You can use the UNION operator to combine results from multiple SELECT
queries.

For example:

SELECT column_name FROM table1
UNION
SELECT column_name FROM table2;

Question 20
What is the difference between a self join and a regular join?

A self join is a join where a table is joined with itself, while a regular join is
a join between two different tables. Self joins are useful when comparing
records within the same table.

Question 21
 How can you find the top N employees based on their salary using
joins?

You can use the ORDER BY clause in combination with the LIMIT or TOP
clause (depending on the database system) to find the top N employees
based on their salary.

For example, in MySQL or PostgreSQL:

SELECT employee_id, name, salary
FROM employees
ORDER BY salary DESC LIMIT N;

SQL JOIN

— 91 —

In SQL Server:

SELECT TOP N employee_id, name, salary
FROM employees
ORDER BY salary DESC;

Question 22
How can you find employees who have the same manager using a self
join?

You can use a self join on the manager_id column to find employees who
share the same manager.

For example:

SELECT e1.employee_id, e1.name AS employee_name,
e2.name AS manager_name
FROM employees e1
JOIN employees e2 ON e1.manager_id = e2.manager_id
WHERE e1.employee_id <> e2.employee_id;

Question 23
What is the purpose of using table aliases in SQL joins?

Table aliases provide a shorthand notation for table names, improving
query readability and reducing the amount of typing. They are especially
useful when dealing with self joins or joining multiple tables.

GROKKING THE SQL INTERVIEW

— 92 —

Question 24
How can you join three or more tables in a single query?

You can use multiple JOIN clauses to join three or more tables together.

For example:

SELECT * FROM table1
JOIN table2 ON table1.column_name =
table2.column_name
JOIN table3 ON table2.column_name =
table3.column_name;

Question 25
Explain how you can perform a LEFT JOIN between two tables and
keep only the rows that do not match.

To perform a LEFT JOIN and keep only the rows with no match, you can
specify a condition in the WHERE clause that checks for NULL values in
the right table's columns.

For example:

SELECT * FROM table1
LEFT JOIN table2 ON table1.column_name =
table2.column_name
WHERE table2.column_name IS NULL;

Question 26
Can you use a JOIN without specifying a join condition? If yes, what
will be the result?

Yes, you can use a CROSS JOIN (Cartesian Join) without specifying a join
condition. The result will be a combination of every row from the first table
with every row from the second table, resulting in a large result set.

SQL JOIN

— 93 —

Question 27
What is the benefit of using an equi-join over a non-equi join?

Equi-joins are more straightforward and easier to read than non-equi joins.
Additionally, equi-joins are often more efficient and can take advantage of
indexes.

Question 28
How do you perform a LEFT JOIN between two tables and include all
rows from the left table, even if there are multiple matches in the right
table?

To include all rows from the left table, even with multiple matches in the
right table, you can use the GROUP BY clause along with aggregate
functions like GROUP_CONCAT() (MySQL) or STRING_AGG()
(PostgreSQL).

For example:

SELECT t1.column_name, GROUP_CONCAT(t2.column_name)
AS matching_values
FROM table1 t1
LEFT JOIN table2 t2 ON t1.column_name =
t2.column_name
GROUP BY t1.column_name;

GROKKING THE SQL INTERVIEW

— 94 —

Question 29
How do you perform an anti-join (retrieve records that exist in one
table but not in another)?

You can perform an anti-join by using a LEFT JOIN and checking for NULL
values in the right table's columns in the WHERE clause.

For example:

SELECT * FROM table1
LEFT JOIN table2 ON table1.column_name =
table2.column_name
WHERE table2.column_name IS NULL;

Question 30
How can you find the average salary of employees in each department
using SQL joins?

You can use a combination of the AVG() aggregate function and a JOIN to
calculate the average salary of employees in each department.

For example:

SELECT d.department_id, d.department_name,
AVG(e.salary) AS avg_salary
FROM departments d
JOIN employees e ON d.department_id =
e.department_id
GROUP BY d.department_id, d.department_name;

These 30 SQL Join questions and their corresponding answers cover a wide
range of scenarios and concepts related to SQL Joins. Practicing these
questions will enhance your understanding of SQL joins, allowing you to
confidently handle interview questions and real-world data manipulation
challenges.

— 95 —

CHAPTER 3

SQL QUERIES

very programming job interview has at least one or two questions that
require you to write SQL queries for a given requirement and many

developers struggle there. It's easy to answer theoretical questions like what
is the difference between clustered and non-clustered index (see) or what is
the difference between correlated and non-correlated subqueries (see), but
when it comes time to actually write SQL queries to solve problems, it's not
that easy, especially if you haven't done your homework and practice.

In order to learn fast, start with a small table with a few columns which
include data types like number, date, and String, which have fewer number
data so that you can quickly understand and expect what should be output.
Includes some NULL, empty, and out of bound values to really test your
queries.

Considering all these together today I am going to share SQL script to create
a sample table to practice writing SQL queries for interviews. In this article,
you will find an SQL script to create a table and populate it with sample data
and then write SQL queries to solve some common problems from
Interviews.

E

GROKKING THE SQL INTERVIEW

— 96 —

SQL Script to create a table and Populate
data
In this section, we'll see our SQL script for creating and populating the
sample table required for running SQL queries. I have chosen Employee
and Department table to teach you how to write SQL queries because it
is one of the most popular SQL query examples and most of the developers,
students, and technical guys are familiar with this scheme.

This is also the example many of you have used in your academics so it's
quite easy to understand and correlate. Remember, understanding schema
and data is very important not only to write correct SQL queries but also to
verify that your SQL query is correct by looking at the output.

The SQL queries are written for Microsoft SQL Server database and tested
on the same, but you can easily run on Oracle, MySQL, or any other
database of your choice by removing T-SQL code e.g. the one which checks
if a table already exists, and then drop and re-create it.

Most of the code is standard ANSI SQL, hence it will run as it is on any other
database. If you still face any problems then you can also check this guide to
migrate SQL Server queries to Oracle.

SQL scripts to create tables
USE Test
GO
-- drop Employee table if already exists
IF OBJECT_ID('dbo.Employee', 'U') IS NOT NULL
BEGIN
 PRINT 'Employee Table Exists, dropping it now'
 DROP TABLE Employee;
END

SQL QUERIES

— 97 —

-- drop Department table if already exists
IF OBJECT_ID('dbo.Department', 'U') IS NOT NULL
BEGIN
 PRINT 'Department Table Exists, dropping it now'
 DROP TABLE Department;
END
-- create table ddl statments
CREATE TABLE Employee(emp_id INTEGER PRIMARY KEY,
dept_id INTEGER,
 mngr_id INTEGER, emp_name VARCHAR(20), salary
INTEGER);
CREATE TABLE Department(dept_id INTEGER PRIMARY KEY,
dept_name VARCHAR(20));
-- alter table to add foreign keys
ALTER TABLE Employee ADD FOREIGN KEY (mngr_id)
 REFERENCES Employee(emp_id);
ALTER TABLE Employee ADD FOREIGN KEY (dept_id)
REFERENCES Department(dept_id);
-- populating department table with sample data
INSERT INTO Department (dept_id, dept_name)
VALUES
(1, 'Finance'),
(2, 'Legal'),
(3, 'IT'),
(4, 'Admin'),
(5, 'Empty Department');
-- populating employee table with sample data
INSERT INTO Employee(emp_id, dept_id, mngr_id,
emp_name, salary)
VALUES(1, 1, 1, 'CEO', 100),
(2, 3, 1, 'CTO', 95),
(3, 2, 1, 'CFO', 100),
(4, 3, 2, 'Java Developer', 90),
(5, 3, 2, 'DBA', 90),
(6, 4, 1, 'Adm 1', 20),
(7, 4, 1, 'Adm 2', 110),

GROKKING THE SQL INTERVIEW

— 98 —

(8, 3, 2, 'Web Developer', 50),

(9, 3, 1, 'Middleware', 60),
(10, 2, 3, 'Legal 1', 110),
(11, 3, 3, 'Network', 80),
(12, 3, 1, 'UNIX', 200);

This query runs on the Test database, if you don't have the Test database
in your SQL Server instance then either create it or remove the "USE
Test" to run on any database of your choice, you can also change the name
of the database and keep the "USE".

When you run this script, it will create and populate the data the first time.
When you run it again, it will drop and recreate the tables again, as shown
in the following output:

Employee Table Exists, dropping it now
Department Table Exists, dropping it now
(5 row(s) affected)
(12 row(s) affected)

In this script, I have followed the naming convention and tricks which I
discussed earlier in my article, a better way to write SQL queries. All the
keyword is on the capital case while table names and column names are in
small and camel case.

This improves the readability of SQL queries by clearing highlight which
ones are keywords and which ones are object names even if syntax highlight
is not available.

This example shows that just following some simple SQL best practices can
seriously improve the queries you write. If you are interested in learning
more SQL best practices, I suggest reading SQL Anti patterns, an interesting
book for both beginners and experienced programmers.

SQL QUERIES

— 99 —

It's time to write SQL queries now. This section contains 6 SQL query
Interview questions that will test many of your SQL skills like joins,
grouping, and aggregating data, how you handle nulls in SQL etc. It doesn't
test all skills e.g. correlated subqueries, but you can take a look at questions
like how to find Nth highest salary of employees to learn that.

This section contains 6 problems for which you need to write SQL queries,
the solution is provided in the next section but I suggest you try to solve
these problems first before looking at the solution.

Question 1
Can you write an SQL query to show Employee (names) who have a
bigger salary than their manager?

In this problem, you need to compare employees' salaries to their manager's
salary. To achieve this, you need two instances of the same table. Also in
order to find a Manager you need to compare employee id with manager id,
this is achieved by using the self-join in SQL, where two instances of the
same table are compared.

-- Employees (names) who have a bigger salary than their
manager
SELECT a.emp_name FROM Employee a JOIN Employee b
ON a.mngr_id = b.emp_id
WHERE a.salary > b.salary;

Question 2
Write an SQL query to find Employees who have the biggest salary in
their Department?

This is a little bit complex problem to solve, you first need to find the
maximum salary of each department, but the department doesn't have the

GROKKING THE SQL INTERVIEW

— 100 —

salary, it is the employee who has the salary. So we need to create a virtual
table where we should have both department and salary.

This can be achieved by joining both Employee and Department table on
dept_id and then using GROUP by clause to group salary on dept_id.
Now, someone can question why we didn't

Since we need to print the name of the employee who has the highest salary,
we need to compare each employee's salary with the department's highest
salary which we have just calculated. This can be done by keeping the result
of the previous query in a temp table and then joining it again with the
Employee table.

-- Employees who have the biggest salary in their Department
SELECT a.emp_name, a.dept_id
FROM Employee a JOIN
(SELECT a.dept_id, MAX(salary) as max_salary
FROM Employee a JOIN Department b ON a.dept_id = b.dept_id
GROUP BY a.dept_id) b
ON a.salary = b.max_salary AND a.dept_id = b.dept_id;

Question 3
Write an SQL query to list Departments that have less than 3 people
in it?

This is a rather simple SQL query interview question to solve.

You just need to know how to use the COUNT() function and GROUP BY
clause.

-- Departments that have less than 3 people in it
SELECT dept_id, COUNT(emp_name) as 'Number of Employee'
FROM Employee
GROUP BY dept_id
HAVING COUNT(emp_name) < 3;

SQL QUERIES

— 101 —

Question 4
Write an SQL query to show all Departments along with the number
of people there?

This is a tricky problem, candidates often use inner join to solve the
problem, leaving out empty departments.

-- All Department along with the number of people there
SELECT b.dept_name, COUNT(a.dept_id) as 'Number of
Employee'
FROM Employee a FULL OUTER JOIN Department b ON
a.dept_id=b.dept_id
GROUP BY b.dept_name;

Question 5
Can you write an SQL query to show all Employees that don't have a
manager in the same department?

This is similar to the first SQL query interview question, where we have used
self-join to solve the problem. There we compared the salary of employee
and here we have compared their department.

-- Employees that don't have a manager in the same
department
SELECT a.emp_name FROM Employee a JOIN Employee b
ON a.mngr_id = b.emp_id
WHERE a.dept_id != b.dept_id;

GROKKING THE SQL INTERVIEW

— 102 —

Question 6
Can you write SQL query to list all Departments along with the total
salary there?

This problem is similar to the 4th question in this list. Here also you need to
use OUTER JOIN instead of INNER join to include empty departments
which should have no salaries.

-- All Department along with the total salary there
SELECT b.dept_name, SUM(a.salary) as 'Total Salary'
FROM Employee a FULL OUTER JOIN Department b ON
a.dept_id = b.dept_id
GROUP BY b.dept_name;

Question 7
How do you find the second highest salary in the employee table?

There are many ways to find the second highest salary in the employee table,
e.g. you can either use the co-related subquery, or you can use a ranking
function like row_number() and rank().

The question can be even trickier by adding duplicates, e.g. two employees
with the same salary. In that case, you can choose between the ranking
function to satisfy the requirement.

I have already written a detailed blog post about this topic, please see here
for a couple of examples of finding the second highest salary in the employee
table.

SQL QUERIES

— 103 —

Question 8
How do you find the duplicate rows in a table?

Again, like the previous question, there are several ways to find the duplicate
rows in a table, e.g. you can use a ranking function like row_number
which assign row number depending upon the value you ask, and for the
same values as in the case of duplicate rows, the row number will be same.

You can also the group by clause to detect duplicates e.g.

select emp_name, count(*) from employee group by
emp_name having count(*) > 1

This one of the classic ways to find the duplicate rows in a table, and it will
work in almost all databases like Oracle, SQL Server, or MySQL.

Question 9
How do you copy all rows of a table using SQL query?(solution)

Question 10
How do you remove the duplicate rows from the table?

This is the follow-up previous question and much tougher than the previous
one, especially if you are not familiar with the ranking functions like
row_number.

If you only know about the GROUP BY clause, then you will struggle to
remove duplicate rows because if you remove by emp_id, both rows will be
removed. Here you must use the row_number() function, the duplicate
rows will have row number > 1 like

select emp_name, row_number() over (order by emp_name
desc) row_number
from Employee

GROKKING THE SQL INTERVIEW

— 104 —

This will print something like below.

John 1

Heroku 1

David 1

David 2

Here second David is duplicate, and you can easily remove it by giving
conditions like delete from table where row_number> 1.

10. How do you join more than two tables in SQL query? (solution)

Question 11
How to find 2nd highest salary without using a co-related subquery?
(solution)

Question 12
There exists an Order table and a Customer table, find all Customers
who have never ordered (solution)

Don't scroll down to look at the solution until you try solving all the
problems by yourself. Some of the questions are tricky, so please pay special
attention to them. It's not a real interview you can take your time because
all the hard work your mind will put now to find answers by its own will
always remain there and that's the real learning you will get by doing this
exercise.

— 105 —

CHAPTER 4

Indexes

 good understanding of Index is very important for any programmer
working with database and SQL. It doesn't matter whether you are

working as DBA or Application developer, working in Oracle, MySQL, or
Microsoft SQL Server or any other database, you must have good
understanding of how index works in general.

You should know different types of index and their pros and cons, how your
database or Query engine chooses indexes and the impact of table scan,
index scan, and index seek. You should also be able to build upon your
knowledge to optimize your SQL queries as well as troubleshoot a
production issue involving long running queries or poor performing
queries. This is also a great skill for experience developers with 5 to 6 years
of experience under his belt.

Since many programmers just have shallow understating of index, they
began to show gaps when they face index based question on SQL Job
interviews. I have taken many interviews and I am surprise that many
programmer doesn't even know what is index seek and index scan and
which one is faster? They are not even able to tell whether order of columns
matter in a composite index or not etc?

A

GROKKING THE SQL INTERVIEW

— 106 —

These are very common question and if you have work in SQL or database,
you might have faced those situations already.

In this article, I have compiled such question to bring them together and
give them a nice overview. To keep the article short and simple, I haven't
gone into too much detail but I have pointed resource to learn more if you
are curious about it.

Here is my collection of some of the most common, frequently asked
questions on database index.

These questions will help you to refresh your knowledge of how index work
in general, barring the database differences. Btw, this list is by no means
complete and if you have any good index based question then feel free to
share with us.

Question 1
What is index in database?

An index is a object in database which help you to retrieve data faster.
Similar to index pages of book, index are stored in separate place than data
and they point to the data. Though it’s not mandatory to have an index in a
table, you often need index for faster retrieval of data using SELECT queries.
You can create index on a column or a set of columns in a given table. The
SQL clause CREATE INDEX is used to create index in a table.

Question 2
What are different types of index in Oracle or SQL Server?

There are mainly two types of indices in any database, clustered and non-
clustered, but if you want to divide on number of columns then you can also
say that you have a index which is based uopn just one column and then you
have a composite index which is based upon a set of columns.

INDEXES

— 107 —

Question 3
How does index work?

When you create an index, there are arranged in a tree structure, so that you
can navigate them in logN time. A data structure like B-Tree is used to store
index but that may vary depending upon the database. Each node in index
tree reference to other node and nodes at the leaf contains pointer to actual
data. When you fire a SELECT query to retrieve some data, SQL query
engine uses this tree to retrieve selective data. Whenever you add or remove
data, this index tree is re-arranged.

Question 4
What is index scan?

When you try to retrieve data from a table which has index but you didn't
provide any condition using WHERE clause then it uses index scan to
search for rows in index pages. For example, if you want all employees from
an employee table e.g.

select * from Organization.dbo.Employee;

Then it can use index-scan if you have a clustered index on Employee e.g.
on EmployeeId. It's generally faster than table scan but slower than index
seek.

Question 5
What is index seek?

The index seek is faster than index-scan because instead of scanning
through all index, you directly retrieve data using pointer stored in index.
This is actually the fastest way to retrieve data in a large table. This works
when you have to retrieve 10 to 20% of data e.g. by specifying conditions in

GROKKING THE SQL INTERVIEW

— 108 —

WHERE clause. For example, following query will use index seek, if you
have an index on EmployeeId

select * from Organization.dbo.Empoloyee where
EmployeeId=2

You can even see the actual Execution Plan in Microsoft SQL Server
Management Studio by pressing Ctrl + A and then running the queries as
shown below:

Question 6
What is difference between index scan and index seek in database?

The key difference between index scan and index seek is that seek is faster
than index scan. Former is generally used when you retrieve 90% to 100%
data e.g. queries without WHERE clause, while index seek is used when you
selectively retrieve data e.g. by specifying conditions using WHERE or
HAVING clause.

INDEXES

— 109 —

Question 7
What is difference between table scan and index scan?

There are two main ways to retrieve data from a table e.g. by using table scan
or by using index. If your table is small then table scan is probably the fastest
way but its in-efficient for a large table because you have to perform a lot of
IO.

In a table scan, SQL query engine, searches all records to find the matching
rows, while in index-scan it searches through index pages. If you don't have
index in your table then table scan is used, but if you have clustered index
then it is used even when you don't specify any condition in WHERE clause.

For example, select * from Books will use table scan if there is
clustered index in table but will use index-scan if there is a clustered index
in the table.

Question 8
What is difference between Clustered and Non-Clustered index in a
table?

There are two types of indexes in a table, clustered and non-clustered. The
Clustered index specifies the actual physical ordering of record in disk e.g.
if you have a Book table then you can arrange them using title or ISBN
number, if you create clustered index on title then they will be arranged and
stored in disk in that order.

On the other hand, non-clustered index create an alternative index tree to
facilitate faster retrieval of data. Since Clustered index define physical
ordering, there can only be one clustered index in a table but you can have
as many non-clustered index as you want.

GROKKING THE SQL INTERVIEW

— 110 —

Here is a nice diagram which clearly shows the difference between clustered
and non-clustered or secondary indices in SQL:

Question 9
I have a table which has clustered index on column 1, can I create
another clustered index on column 2?

No, you can only have one clustered index per table, so you cannot create
second one, it's not allowed.

INDEXES

— 111 —

Question 10
What is composite index in SQL?

An index may contain one or multiple columns. If a index contains multiple
columns then it is known as composite index. For example,

-- Create a non-clustered index on a table or view
CREATE INDEX index1 ON table1 (col1);

is normal index and this one is a composite index:

-- Create a non-clustered index with a unique
constraint
-- on 3 columns and specify the sort order for each
column
CREATE UNIQUE INDEX i1 ON t1 (col1 DESC, col2 ASC,
col3 DESC);

This index is based upon three column col1, col2, and col3.

Question 11
Does the order of columns matter in a composite index?

Yes, the order of columns matters in a composite index. For example, if you
have both firstname and lastname column in table and you create index on
(firstname, lastname) then it can also be used in queries when you specify
just one column, for example:

select * from Employee where firstname = 'John';

This query will use your composite index but following query will not use it
because the mandatory column firstname is not available:

select * from Employee where lastname = 'kohli'

Hence, order of columns matters in composite index.

GROKKING THE SQL INTERVIEW

— 112 —

Question 12
What is the disadvantage of having many indices in a table?

Even though, index make data retrieval fast, especially in large table, you
should be careful with so many index. Since index are re-arrange on every
insert, update, and delete operation, there is a cost associated with them. If
you execute more insert, update, and delete query than select then they will
be slower because the time it will take to re-arrange all those index tree.

Index data structure also take space in your database, so if you have multiple
index tree then obviously more space will be needed.

That's all about some of the frequently asked SQL and database interview
questions based upon Index. As I said, it's very important for every
programmer working with database and SQL to have a good understanding
of index because it directly affects the performance of your application. A
person with good knowledge of index not only write faster SQL queries but
also quickly to diagnose any performance issue with their SQL queries.

We can't depend upon Database administrator or DBAs for everything,
hence I advise every application developer to learn more about how index
working their respective database and fill the gaps in their knowledge. You
can also checkout following resources to improve you understanding of
indexes in major databases like Oracle, MySQL, and Microsoft SQL Server.

— 113 —

CHAPTER 5

GROUP BY

HE GROUP BY clause in SQL is another important command to
master for any programmer. We often use the GROUP BY command

along with a select clause for reporting purposes, since the GROUP BY
clause is mainly used to group related data together it's one of the most
important SQL commands for reporting purposes.

Many queries that require the use of aggregate function like sum(), avg(), or
count() requires the grouping of data using the GROUP BY clause. SQL
queries which involve GROUP BY and HAVING clauses are also a bit
confusing for many programmers who don't have hands-on experience in
SQL and are often used as SQL interview questions to filter.

In this article, we will see some examples of the GROUP BY clause in SQL
which help you to understand where to use group by clause and how to use
GROUP BY along with the SELECT clause. You will also learn some SQL
rules related to the GROUP BY clause which is available in some databases
particularly in MySQL as a group by extensions.

Now it's time to see the GROUP BY clause in action. The following are some
examples of how you can use GROUP BY to aggregate data and then apply
filtering on aggregated or grouped data by using the HAVING clause.

T

GROKKING THE SQL INTERVIEW

— 114 —

1. Group By clause Example 1 - Finding duplicate

One of the popular use of the GROUP BY clause is finding duplicate records
in the database. Following SQL query will list employees which are duplicate
in terms of salary

mysql> select emp_name, count(emp_name)
 from employee group by emp_name having
count(emp_name)>1;
+----------+-----------------+
| emp_name | count(emp_name) |
+----------+-----------------+
| James | 2 |
+----------+-----------------+
1 row in set (0.00 sec)

This was a rather simple example of finding duplicate records in the
database. If you need to decide whether an employee is duplicate or not
based upon more than one field then it's important to include all those in
the group by clause, otherwise, you will get an incorrect count. You can
further see my article about how to find duplicate records in the database
for more details.

2. Group By clause Example 2 - Calculating Sum

Another popular example of the group by clause is using an aggregate
function like sum() and avg(). If you know, the GROUP BY clause in
SQL allows you to perform queries like finding how much each department
is paying to employees i.e. total salaries per department.

In order to write an SQL query to find the total salary per department, we
need to group by the department and use sum(salary) in the select list
as shown in the following SQL query :

GROUP BY

— 115 —

mysql> select dept_id, sum(salary) as total_salary
from employee group by dept_id;
+---------+--------------+
| dept_id | total_salary |
+---------+--------------+
1	3200
2	2850
3	2200
4	2250
+---------+--------------+
4 rows in set (0.00 sec)

Then you can further filter records by using having clauses to perform
queries like finding all departments whose total salary expenditure is more
than 3000. Here is an SQL query for that :

mysql> select dept_id, sum(salary) as total_salary
 from employee group by dept_id having
sum(salary) > 3000;
+---------+--------------+
| dept_id | total_salary |
+---------+--------------+
| 1 | 3200 |
+---------+--------------+
1 row in set (0.01 sec)

This is your most expensive department in terms of salary. It's stood to know
the useful aggregate function like count and sum.

GROKKING THE SQL INTERVIEW

— 116 —

3. How to calculate average using group by clause

Similar to the previous group by clause example, instead of sum() we can
also use avg() to perform queries like finding out average salary of
employees per department. Once again we need to group by the department
and this time instead of sum() aggregate function we need to use the
avg() function as shown in the below query :

mysql> select dept_id, avg(salary) as average_salary
from employee group by dept_id;
+---------+----------------+
| dept_id | average_salary |
+---------+----------------+
1	1066.6667
2	1425.0000
3	1100.0000
4	750.0000
+---------+----------------+
4 rows in set (0.00 sec)

Similarly, you can use having clause to further filter down this result set like
finding a department whose average salary is below 1000. Here is an SQL
query for that :

mysql> select dept_id, avg(salary) as average_salary
 from employee group by dept_id having
avg(salary) < 1000;
+---------+----------------+
| dept_id | average_salary |
+---------+----------------+
| 4 | 750.0000 |
+---------+----------------+
1 row in set (0.00 sec)

This is your most poorly paid department. There is no point going into that
department and exploring further.

GROUP BY

— 117 —

4. Group By example 4 - Counting records

Similar to aggregate function sum() and avg(), another kind of aggregate
query is very popular like counting records.

One example of this kind of group by the query is how to find the number of
employees per department?

In this case, we need to group by the department and need to use the
count() aggregate function for counting employees as shown in the below
SQL query :

mysql> select dept_id, count(emp_id) as
number_of_employees
 from employee group by dept_id;
+---------+---------------------+
| dept_id | number_of_employees |
+---------+---------------------+
1	3
2	2
3	2
4	3
+---------+---------------------+
4 rows in set (0.00 sec)

While using the count() function in SQL, it's worth noting the difference
between count() and count(field) which could give different
counts based upon which column on which you are counting and whether
that column contains NULL or not.

Just remember count() also counts NULL values in a column. NULLs are
very special in SQL and you should have a good knowledge of how to use
Null and how to compare them.

GROKKING THE SQL INTERVIEW

— 118 —

5. How to use Group By clause with more than one column

In many practical cases, we use a group by clause with more than one
column. While using two or three-column in the group by clause order is
very important. The column which comes first on the group by clause will
be grouped first and then the second column will be used to do grouping on
that group. For example in the following SQL query result set is first
grouped by dept_id and then each group is again grouped by emp_id.

mysql> select dept_id, emp_id from employee group by
dept_id, emp_id;
+---------+--------+
| dept_id | emp_id |
+---------+--------+
1	101
1	102
1	110
2	103
2	104
3	105
3	108
4	106
4	107
4	109
+---------+--------+
10 rows in set (0.00 sec)

Another example of using multiple columns in group by clause is finding
duplicate records in the table, where you must use all columns which are
required to be the same for a record to be called duplicates

GROUP BY

— 119 —

Important points about Group By clause
in SQL
Now it's time to revise and revisit some of the important things about the
GROUP BY clause in SQL statements.

1. You can not use a non-aggregated column name in the select list if it is
not used in Group By clause. For example following SQL query is illegal and
will not run because it has used a non-aggregate column emp_id in the select
list which is not named in Group By clause, in this SQL query only
dept_id is used in group by clause.

mysql> select emp_id, dept_id, max(salary)
 from employee
 group by dept_id;
ERROR 1055 (42000): 'test.employee.emp_id' isn't in
GROUP BY

but MySQL database permits it by its group by extension functionality
which is disabled in the above scenario by enabling ONLY_FULL_
GROUP_BY SQL mode.

2. In standard SQL you cannot use a non-aggregated column name in the
Having clause which is not used in group by clause, MySQL database also
allows it similar to the previous group by extension. Following SQL query is
invalid because we are using max_salary in having a clause that is not used
in group by clause.

mysql> select dept_id, max(salary) as max_salary
 from employee
 group by dept_id having max_salary > 1000;

ERROR 1463 (42000): Non-grouping field 'max_salary'
is used in HAVING clause

GROKKING THE SQL INTERVIEW

— 120 —

3. Another rule of using group by clause in standard SQL is that you cannot
use an alias in the HAVING clause, the previous SQL query is also an
example of this group by rule. This is also allowed in the MySQL database.

You can disable all MySQL group by extension features by using
ONLY_FULL_GROUP_BY SQL mode in MySQL. In order to change SQL
mode from the MySQL command line you can use the following MySQL
commands :

mysql> SET GLOBAL
sql_mode='STRICT_TRANS_TABLES,NO_AUTO_CREATE_USER,

NO_ENGINE_SUBSTITUTION,ONLY_FULL_GROUP_BY';
Query OK, 0 rows affected (0.00 sec)

mysql> SELECT @@GLOBAL.sql_mode;
+---
--------------------------------+
| @@GLOBAL.sql_mode
|
+---
--------------------------------+
|
ONLY_FULL_GROUP_BY,STRICT_TRANS_TABLES,NO_AUTO_CREAT
E_USER,NO_ENGINE_SUBSTITUTION |
+---
--------------------------------+
1 row in set (0.00 sec)

You can also set MySQL SQL mode for a single client session by using the
word SESSION instead of GLOBAL as shown below :

mysql> SET SESSION
sql_mode='STRICT_TRANS_TABLES,NO_AUTO_CREATE_USER,

NO_ENGINE_SUBSTITUTION,ONLY_FULL_GROUP_BY';
Query OK, 0 rows affected (0.00 sec)

GROUP BY

— 121 —

mysql> SELECT @@GLOBAL.sql_mode;
+---
--------------------------------+
| @@GLOBAL.sql_mode
|
+---
--------------------------------+
|
ONLY_FULL_GROUP_BY,STRICT_TRANS_TABLES,NO_AUTO_CREAT
E_USER,NO_ENGINE_SUBSTITUTION |
+---
--------------------------------+
1 row in set (0.00 sec)

Also just changing MySQL SQL mode to Global will not take effect in the
current session until you restart a new session. In order to enable
ONLY_FULL_GROUP_BY in the current MySQL session using the above
query.

That's all on the GROUP BY clause example in SQL queries. We have seen
where to use the GROUP BY command and How to use the GROUP BY
clause to group data in SQL. As I said GROUP BY and HAVING clause is
one of the must-know for any programmers as it's quite common in the SQL
world and particularly important for reporting purposes.

— 122 —

CHAPTER 6

SQL Date and Time
Interview Questions

elcome to the SQL Date and Time Interview Questions chapter of
this book! In the world of data manipulation and analysis,

understanding how to work with dates and times is of paramount
importance.

As the saying goes, "time is money," and this holds true especially in the
realm of database management and querying. In today's competitive job
market, employers often seek candidates with a strong grasp of SQL's date
and time functions, as these skills play a crucial role in handling time-
sensitive data effectively.

In this chapter, we will delve into the essential aspects of SQL date and time
handling, preparing you to confidently tackle interview questions related to
this critical topic.

Whether you are a seasoned SQL professional looking to refresh your
knowledge or a job seeker preparing for upcoming technical interviews, this
chapter will serve as a comprehensive guide to mastering date and time
manipulations in SQL.

W

SQL DATE AND TIME INTERVIEW QUESTIONS

— 123 —

Key Topics and Concepts to Prepare:
Date and Time Data Types: Understanding the various date and time data
types supported by SQL databases, such as DATE, TIME, DATETIME,
TIMESTAMP, etc., and knowing when to use each type appropriately.

Date and Time Functions: Familiarizing yourself with the wide array of
SQL functions designed to extract, manipulate, and format date and time
values. Some crucial functions include DATEPART, EXTRACT,
DATEADD, DATEDIFF, TO_DATE, TO_CHAR, and many more.

Date and Time Arithmetic: Learning how to perform arithmetic operations
with dates and times, such as calculating the difference between two dates,
adding or subtracting days, months, or years, and finding the day of the
week.

Time Zones and Time Zone Conversions: Understanding the challenges of
working with time zones in a globalized world and how to handle time zone
conversions within SQL queries.

Date and Time Constraints: Exploring the concept of date and time
constraints, including defining constraints on columns to ensure the
validity and integrity of date and time data stored in a database.

Date and Time Formatting: Gaining insights into formatting date and time
values for display purposes, including custom date formats and converting
between different date formats.

Handling Time Intervals: Grasping the methods to manage and perform
calculations with time intervals, such as finding overlapping time periods or
determining the duration between two events.

GROKKING THE SQL INTERVIEW

— 124 —

Date and Time in Joins and Conditions: Understanding how to use date
and time values effectively in JOIN clauses, WHERE clauses, and other
conditional statements to filter and combine data accurately.

Best Practices: Learning industry best practices for working with dates and
times, optimizing queries, and ensuring efficient date-related operations in
SQL databases.

Whether you aspire to work as a database administrator, data analyst, or any
other SQL-related role, proficiency in SQL date and time operations is an
indispensable skill. So, let's dive into the world of date and time
manipulation in SQL, explore its nuances, and equip ourselves with the
knowledge to excel in SQL date and time interview questions.

Now, let’s see a frequently asked SQL questions related to Date and Time:

Question 1
How do you find all records modified between two dates in SQL?

This is one of the tricky SQL questions. It looks simple, but when you go
and write the SQL query, you will find that it's not working as expected. For
example, many programmers will use the "between" SQL clause to find
all the rows modified between two dates e.g.

select * from Orders where order_date between
'20160901' and '20160930'

This will work well in most cases, but if there is an order where order_date
is midnight of 1st October, then it will also be picked. You can be more
precise by using the logical operator, as shown below:

select * from Orders where order_date >='20160901' and
order_date < '20160930'

SQL DATE AND TIME INTERVIEW QUESTIONS

— 125 —

Question 2
How do you extract the year from a date in SQL?

You can extract the year from a date using the YEAR() function.

For example:

SELECT YEAR(date_column) FROM table_name;

Question 3
How can you add 3 months to a given date in SQL?

You can add 3 months to a date using the DATEADD() function.

For example:

SELECT DATEADD(MONTH, 3, date_column) FROM table_name;

Question 4
How do you find the number of days between two dates in SQL?

You can find the number of days between two dates using the DATEDIFF()
function.

For example:

SELECT DATEDIFF(DAY, start_date, end_date) FROM
table_name;

Question 5
Explain the difference between DATE and DATETIME data types.

DATE stores only the date without any time information, while
DATETIME stores both the date and the time.

GROKKING THE SQL INTERVIEW

— 126 —

Question 6.
How do you convert a date to a different date format in SQL?

You can use the CONVERT() or FORMAT() function to convert a date to
a different format. For example:

SELECT CONVERT(varchar, date_column, 105)
FROM table_name;
-- OR SELECT FORMAT(date_column, 'dd-MM-yyyy') FROM
table_name;

Question 7
How can you find records that fall within a specific month and year?

You can use the MONTH() and YEAR() functions in combination with the
WHERE clause. For example:

SELECT * FROM table_name
WHERE MONTH(date_column) = 7 AND YEAR(date_column) =
2023;

Question 8
How do you handle time zone conversions in SQL?

To handle time zone conversions, you can use the AT TIME ZONE clause
(for SQL Server) or the AT TIME ZONE function (for PostgreSQL).

For example:

SELECT date_column AT TIME ZONE 'UTC' AS
converted_date FROM table_name;

SQL DATE AND TIME INTERVIEW QUESTIONS

— 127 —

Question 9
Can you enforce a constraint to ensure a date column always contains
future dates?

Yes, you can use a constraint with the CHECK keyword to enforce this.

For example:

ALTER TABLE table_name
ADD CONSTRAINT future_date_constraint CHECK
(date_column > GETDATE());

Question 10
How can you find the first and last day of the current month?

You can use the EOMONTH() function to find the last day and then
subtract the number of days in the month minus one to find the first day.

For example:

SELECT DATEADD(DAY, 1, EOMONTH(GETDATE(), -1)) AS
first_day_of_month, EOMONTH(GETDATE()) AS
last_day_of_month;

Question 11
How do you find records with overlapping date ranges in SQL?

You can use the BETWEEN operator to check for overlapping date ranges.

For example:

SELECT * FROM table_name
WHERE start_date BETWEEN '2023-01-01'
AND '2023-12-31'
OR end_date BETWEEN '2023-01-01' AND '2023-12-31';

GROKKING THE SQL INTERVIEW

— 128 —

Question 12
How can you calculate the age of a person from their birthdate?

You can use the DATEDIFF() function to calculate the difference in years
between the birthdate and the current date.

For example:

SELECT DATEDIFF(YEAR, birthdate, GETDATE()) AS age FROM
table_name;

Question 13
Explain the significance of the UNIX timestamp and how to convert
it to a readable date format.

The UNIX timestamp represents the number of seconds that have elapsed
since January 1, 1970 (UTC). To convert it to a readable date format, you
can use the FROM_UNIXTIME() function (for MySQL) or the
TO_TIMESTAMP() function (for PostgreSQL). For example:

SELECT FROM_UNIXTIME(unix_timestamp_column) AS readable_date
FROM table_name; -- OR SELECT
TO_TIMESTAMP(unix_timestamp_column) AS readable_date FROM
table_name;

Question 14
How do you get the current date and time in SQL?

You can use the GETDATE() or CURRENT_TIMESTAMP function to get
the current date and time. For example:

SELECT GETDATE() AS current_date_time; -- OR SELECT
CURRENT_TIMESTAMP AS current_date_time;

SQL DATE AND TIME INTERVIEW QUESTIONS

— 129 —

Question 15
How can you convert a string to a date in SQL?

You can use the CAST() or CONVERT() functions to convert a string to a
date.

For example:

SELECT CAST('2023-07-16' AS DATE) AS converted_date;

 -- OR SELECT CONVERT(DATE, '2023-07-16') AS
converted_date;

Question 16
How do you find the day of the week for a given date in SQL?

You can use the DATEPART() function with the dw parameter to find the
day of the week (Sunday = 1, Monday = 2, etc.). For example:

SELECT DATEPART(dw, date_column) AS day_of_week FROM
table_name;

Can you explain the importance of using the UTC_TIMESTAMP()
function when dealing with international applications?

The UTC_TIMESTAMP() function returns the current date and time in
Coordinated Universal Time (UTC). Using UTC ensures consistency across
different time zones, making it essential when dealing with international
applications to avoid confusion and data inconsistencies

GROKKING THE SQL INTERVIEW

— 130 —

Question 17
How do you find the number of weekdays (excluding weekends)
between two dates?

You can use a combination of DATEDIFF() and DATEPART() functions
to find the number of weekdays between two dates. For example:

SELECT (DATEDIFF(dd, start_date, end_date) + 1)
- (DATEDIFF(wk, start_date, end_date) * 2)
- CASE
 WHEN DATEPART(dw, start_date) = 1
 THEN 1
 ELSE 0
 END
- CASE WHEN DATEPART(dw, end_date) = 7
 THEN 1
 ELSE 0
 END AS weekdays_count
FROM table_name;

Question 18
How do you extract the time part from a DATETIME column in SQL?

You can use the CONVERT() function with a style parameter of 108 to
extract the time part. For example:

SELECT CONVERT(TIME, datetime_column, 108) AS
extracted_time
FROM table_name;

Question 19
How can you find the records with the latest date in a table?

You can use the MAX() function to find the latest date in a table. For example:

SELECT MAX(date_column) AS latest_date
FROM table_name;

SQL DATE AND TIME INTERVIEW QUESTIONS

— 131 —

Question 20
Explain the concept of leap years and how you would identify if a year
is a leap year in SQL.

Leap years are years with an extra day, February 29, to keep the calendar
year synchronized with the astronomical year. In SQL, you can identify a
leap year by checking if the year is divisible by 4, except for years divisible
by 100, which are not leap years unless they are also divisible by 400. For
example:

SELECT
 CASE
 WHEN (year_column % 4 = 0
 AND year_column % 100 != 0) OR (year_column
% 400 = 0)
 THEN 'Leap Year'
 ELSE 'Not a Leap Year'
 END
AS leap_year_status FROM table_name;

These 20 SQL Date and Time Interview Questions cover a wide range of
topics, from basic date and time manipulations to more advanced functions
and constraints. Familiarizing yourself with these concepts and practicing
their implementation will undoubtedly boost your confidence when facing
date and time-related interview questions in SQL. Remember that hands-on
practice with real-world scenarios will reinforce your understanding and
help you excel in SQL interviews. Good luck!

— 132 —

CHAPTER 7

Aggregate Functions

ggregate functions are essential tools in database management that allow
you to perform calculations on sets of data and return single values as

results. These functions enable you to summarize, group, and analyze data
efficiently, making them invaluable for generating meaningful insights from
large datasets. Common aggregate functions include SUM, COUNT, AVG,
MIN, MAX, and more, each serving a specific purpose in data analysis.

In this chapter, we will explore the world of aggregate functions and delve
into the key topics that form the foundation of effective data summarization
and analysis. Whether you are a database professional, a data analyst, or a
developer, understanding aggregate functions is crucial for gaining valuable
information from databases.

Important Topics to Prepare on Aggregate Functions:

1. Introduction to Aggregate Functions: Understanding the concept
of aggregate functions, their role in data summarization, and the
benefits they offer.

2. Common Aggregate Functions: Familiarizing yourself with
essential aggregate functions, such as SUM, COUNT, AVG, MIN,
MAX, and their syntax in SQL.

A

AGGREGATE FUNCTIONS

— 133 —

3. Grouping Data: Learning how to use GROUP BY clauses to group
data based on specific columns for aggregation.

4. HAVING Clause: Understanding the HAVING clause, which filters
the results of the GROUP BY operation based on specific conditions.

5. Distinct vs. All: Differentiating between using DISTINCT and ALL
keywords with aggregate functions to control duplicate values.

6. NULL Handling: Grasping how aggregate functions treat NULL
values and the use of the COALESCE or NULLIF functions to
manage NULLs.

7. Combining Aggregate Functions: Learning how to use multiple
aggregate functions in a single query to generate comprehensive
data summaries.

8. Nested Aggregations: Understanding the challenges and solutions
when applying aggregate functions within subqueries or nested
queries.

9. Rollup and Cube: Exploring the ROLLUP and CUBE operators for
generating multiple levels of subtotal and grand total summaries.

10. String Aggregation: Learning techniques to concatenate strings
from multiple rows using aggregate functions.

11. Aggregates and Joins: Analyzing the interaction of aggregate
functions with different types of joins in SQL queries.

12. Performance Considerations: Understanding the impact of using
aggregate functions on query performance and potential
optimizations.

13. Aggregates in Window Functions: Exploring how aggregate
functions are used in combination with window functions for
advanced data analysis.

GROKKING THE SQL INTERVIEW

— 134 —

14. Using GROUPING SETS: Understanding the GROUPING SETS
clause for specifying multiple grouping sets within a single query.

15. Aggregates in Real-World Scenarios: Discovering how aggregate
functions are applied in real-world scenarios like sales analysis,
financial reporting, and business intelligence.

16. Custom Aggregate Functions: Learning how to create custom user-
defined aggregate functions in certain database systems.

17. Aggregates in NoSQL Databases: Exploring the usage of aggregate-
like operations in NoSQL databases, where traditional aggregate
functions may not be available.

18. Aggregates and Data Visualization: Understanding how aggregate
functions are utilized in data visualization tools and dashboards.

19. Handling Large Datasets: Analyzing strategies to handle large
datasets efficiently when using aggregate functions.

20. Aggregates and Data Analysis Tools: Familiarizing yourself with
the integration of aggregate functions with data analysis tools like
Excel and Python libraries.

Aggregate functions are fundamental tools for data summarization and
analysis in databases. By mastering the concepts and practices of aggregate
functions, you can gain valuable insights from data and make informed
decisions in various domains.

In the following chapters, we will delve into each of these topics, providing
you with in-depth knowledge and practical insights into aggregate functions
and their significance in modern database management and data analysis.
Let's embark on this journey into the realm of aggregate functions and
uncover their true potential in data-driven decision making!

AGGREGATE FUNCTIONS

— 135 —

Below are 20+ common questions on aggregate functions, along with their
answers:

Question 1
What are aggregate functions in SQL, and what is their purpose?

Aggregate functions are SQL functions used to perform calculations on sets
of data and return a single value as a result. Their purpose is to summarize,
group, or analyze data in queries.

Question 2
List some common aggregate functions in SQL.

Common aggregate functions include SUM, COUNT, AVG, MIN, MAX,
and others.

Question 3
How do you use the COUNT function to count the number of rows in
a table?

To count the number of rows in a table, you can use the COUNT function
with the SELECT statement and specify the column or use COUNT(*) to
count all rows.

Question 4
What is the difference between the COUNT function with DISTINCT
and without DISTINCT?

COUNT function with DISTINCT counts only the distinct (unique) values,
while without DISTINCT, it counts all occurrences, including duplicates.

GROKKING THE SQL INTERVIEW

— 136 —

Question 5
How can you use the SUM function to calculate the total value of a
specific column?

To calculate the total value of a specific column, use the SUM function with
the SELECT statement and specify the column.

Question 6
How do you calculate the average (mean) of a column using the AVG
function?

To calculate the average of a column, use the AVG function with the
SELECT statement and specify the column.

Question 7
Explain the usage of the GROUP BY clause with aggregate functions.

The GROUP BY clause is used to group rows based on specified columns.
When used with aggregate functions, it calculates aggregates for each group.

Question 8
How does the HAVING clause differ from the WHERE clause when
using aggregate functions?

The WHERE clause filters individual rows before grouping, while the
HAVING clause filters the result of the GROUP BY operation.

Question 9
What is the purpose of the ROLLUP operator in aggregate functions?

The ROLLUP operator is used to generate multiple levels of subtotal and
grand total summaries in a single query.

AGGREGATE FUNCTIONS

— 137 —

Question 10
Can you use multiple aggregate functions in a single SQL query?

Yes, you can use multiple aggregate functions in a single query to generate
comprehensive data summaries.

Question 11
How do you handle NULL values when using aggregate functions?

Aggregate functions generally ignore NULL values. You can use the
COALESCE or NULLIF functions to manage NULLs before using aggregate
functions.

Question 12
What is string aggregation, and how can you achieve it in SQL?

String aggregation involves concatenating strings from multiple rows into a
single string. In SQL, you can use functions like GROUP_CONCAT
(MySQL), STRING_AGG (PostgreSQL), or LISTAGG (Oracle) for this
purpose.

Question 13
How do aggregate functions interact with different types of joins?

Aggregate functions can be used in combination with various types of joins
(INNER JOIN, LEFT JOIN, etc.) to analyze and summarize related data.

Question 14
Can you use aggregate functions with window functions?

Yes, aggregate functions can be used in combination with window functions
for advanced data analysis and ranking.

GROKKING THE SQL INTERVIEW

— 138 —

Question 15
How do you optimize the performance of queries using aggregate
functions on large datasets?

To optimize performance, you can use appropriate indexes, minimize data
retrieval, and ensure the use of efficient query plans.

Question 16
What is the purpose of the GROUPING SETS clause in aggregate
functions?

The GROUPING SETS clause allows you to specify multiple grouping sets
within a single query, enabling you to generate different levels of aggregates.

Question 17
How do you apply aggregate functions in real-world scenarios like
sales analysis or financial reporting?

In sales analysis, aggregate functions can be used to calculate total revenue,
average sales, and other metrics. In financial reporting, they can summarize
financial data like expenses, revenue, and profits.

Question 18
How are aggregate functions used in data visualization and reporting
tools?

Aggregate functions play a crucial role in data visualization tools, where they
summarize data for charts, graphs, and dashboards.

Question 19
Can you create custom aggregate functions in SQL?

Some database systems allow you to create custom user-defined aggregate
functions, extending the functionality beyond built-in aggregates.

AGGREGATE FUNCTIONS

— 139 —

Question 20
Explain how you use aggregate functions with NoSQL databases.

NoSQL databases may not support traditional aggregate functions, but they
provide similar capabilities through specialized aggregation mechanisms or
MapReduce paradigms.

What is the difference between count(field) and count(*) in SQL?

The only difference between count(field) and count(*) is that the former
doesn't count null values while the latter does. For example, if you have an
emp_name column on your table and it contains 10 valid values and 3 null
values, then count(emp_name) will return 10 while count(*) will return 13
rows.

These questions cover various aspects of aggregate functions in SQL and
their usage in data summarization and analysis. Preparing for these
questions will help you demonstrate your proficiency in handling data using
aggregate functions in database management and data analysis scenarios.

— 140 —

CHAPTER 8

Stored Procedure

tored procedures are a vital component of database management
systems, providing a means to encapsulate and execute a set of SQL

statements as a single unit. By creating reusable stored procedures, database
administrators and developers can enhance data security, simplify complex
operations, improve code maintainability, and optimize database
performance. Stored procedures serve as essential building blocks for
various database-driven applications and play a crucial role in enhancing
productivity and data integrity.

In this chapter, we will explore the realm of stored procedures and delve
into the key topics that form the foundation of efficient database
management. Whether you are a database professional or a developer,
understanding stored procedures is essential for effective data manipulation
and application development.

Important Topics to Prepare on Stored Procedures:

1. Introduction to Stored Procedures: Understanding the concept of
stored procedures, their purpose, and the advantages they bring to
database management.

S

STORED PROCEDURE

— 141 —

2. Creating Stored Procedures: Exploring the syntax and process of
creating stored procedures in SQL or other supported database
languages.

3. Input and Output Parameters: Learning how to pass input
parameters to stored procedures for dynamic data processing and
how to return output parameters or result sets.

4. Stored Procedure Execution: Understanding how to execute stored
procedures using various methods, including SQL queries and
application code.

5. Procedure Variables and Local Declarations: Grasping the usage of
variables and local declarations within stored procedures for
temporary data storage and manipulation.

6. Conditional Processing: Learning how to implement conditional
logic (IF-ELSE) and iterative loops (WHILE, FOR) within stored
procedures.

7. Error Handling: Understanding the importance of error handling in
stored procedures and how to use TRY...CATCH blocks or
EXCEPTION handling to manage errors gracefully.

8. Dynamic SQL: Exploring the use of dynamic SQL within stored
procedures to generate and execute SQL statements at runtime.

9. Common Built-In Functions: Familiarizing yourself with common
built-in functions used within stored procedures, such as string
manipulation, date and time functions, and mathematical
operations.

10. Security and Permissions: Understanding how to grant appropriate
permissions for executing, altering, or dropping stored procedures.

GROKKING THE SQL INTERVIEW

— 142 —

11. Stored Procedure Performance: Analyzing best practices for
optimizing stored procedure performance, including query
optimization, parameterization, and proper indexing.

12. Procedural vs. Declarative: Differentiating between procedural
programming (used in stored procedures) and declarative SQL
statements.

13. Dependencies and Recompilation: Exploring how changes to
underlying tables and objects impact stored procedures and how
they are recompiled when necessary.

14. Nested and Recursive Stored Procedures: Understanding the
concept of nesting stored procedures and handling recursion for
advanced data processing.

15. Stored Procedures in Transactions: Learning how to manage stored
procedures within transactions for data integrity and consistency.

16. Debugging Stored Procedures: Exploring techniques and tools for
debugging stored procedures during development and troubleshooting.

17. Stored Procedures vs. Functions: Comparing stored procedures
with user-defined functions and understanding their respective use
cases.

18. Stored Procedures in Application Development: Discovering how
stored procedures are integrated into application development
frameworks and enhancing database interactions.

19. Dynamic Result Sets: Understanding how to work with stored
procedures that return dynamic result sets or multiple result sets.

20. Stored Procedures Best Practices: Learning best practices for
designing, naming, and organizing stored procedures to ensure
maintainability and code reusability.

STORED PROCEDURE

— 143 —

Stored procedures are a cornerstone of efficient and secure database
management. By mastering the concepts and practices of stored procedures,
you can streamline database operations, enhance application development,
and create robust and scalable database-driven applications.

In the following chapters, we will delve into each of these topics, providing
you with in-depth knowledge and practical insights into stored procedures
and their significance in modern database management and application
development. Let's embark on this journey into the realm of stored
procedures and uncover their true potential in the world of databases!

Below are some important questions on stored procedures along with their
answers for interviews:

Question 1
What is a stored procedure?

A stored procedure is a pre-compiled and reusable database object that
contains a group of SQL statements. It is stored in the database and can be
executed by calling its name.

Question 2
What are the advantages of using stored procedures?

Some advantages of using stored procedures include:

• Improved performance due to pre-compilation.

• Enhanced security by controlling data access through procedures.

• Simplified complex operations by encapsulating logic.

• Reduced network traffic by sending only the procedure call rather
than multiple SQL statements.

GROKKING THE SQL INTERVIEW

— 144 —

Question 3
How do you create a stored procedure in SQL?

To create a stored procedure in SQL, you use the CREATE PROCEDURE
statement, followed by the procedure name, input parameters (if any), and
the SQL statements that define the procedure.

Question 4
How do you call a stored procedure from SQL or an application?

You can call a stored procedure using the EXECUTE or EXEC statement in
SQL, or by invoking it from application code using the appropriate database
library or framework.

Question 5
What are input and output parameters in stored procedures?

Input parameters allow you to pass values to the stored procedure when it
is called. Output parameters allow the procedure to return values back to
the caller.

Question 6
How do you handle errors in a stored procedure?

Errors in stored procedures can be handled using TRY...CATCH blocks (in
SQL Server) or EXCEPTION blocks (in PostgreSQL and other databases) to
catch and handle exceptions gracefully.

Question 7
Can a stored procedure call another stored procedure?

Yes, stored procedures can call other stored procedures, either within the
same database or in different databases.

STORED PROCEDURE

— 145 —

Question 8
What are the different types of parameters that a stored procedure can
have?

A stored procedure can have input parameters, output parameters, and
parameters that serve both as input and output (INOUT).

Question 9
How do you pass multiple values to a stored procedure as a single
parameter?

To pass multiple values as a single parameter, you can use techniques like
passing comma-separated values, XML, or JSON data.

Question 10
What is dynamic SQL, and when is it useful in stored procedures?

Dynamic SQL involves generating and executing SQL statements at runtime
within a stored procedure. It is useful when the structure of the query needs
to change dynamically based on user inputs or conditions.

Question 11
How can you improve the performance of a stored procedure?

Performance of a stored procedure can be improved by optimizing the
underlying SQL queries, using appropriate indexes, and parameterizing
queries to avoid SQL injection.

Question 12
How do you grant permissions to execute a stored procedure?

You can grant execution permissions to a stored procedure using the
GRANT EXECUTE statement to specific users or roles.

GROKKING THE SQL INTERVIEW

— 146 —

Question 13
Can a stored procedure return multiple result sets?

Yes, a stored procedure can return multiple result sets, and they can be
accessed one by one from the application code.

Question 14
What is the difference between a stored procedure and a user-defined
function?

Stored procedures are primarily used for data manipulation and complex
logic, while user-defined functions are used to return scalar values or table-
valued results.

Question 15
How do you debug a stored procedure?

You can use debugging tools provided by the database management system
or print debugging information to identify issues in the stored procedure
code.

Question 16
What are nested stored procedures?

Nested stored procedures are procedures that call other stored procedures
within their logic.

Question 17
How do you view the source code of a stored procedure?

The source code of a stored procedure can usually be viewed using system
catalogs or metadata views specific to the database system.

STORED PROCEDURE

— 147 —

Question 18
Can you use transactions within a stored procedure?

Yes, stored procedures can include transactions to ensure data integrity and
consistency during complex operations.

Question 19
How do you drop a stored procedure?

You can drop a stored procedure using the DROP PROCEDURE
statement.

Question 20
What are the best practices for writing efficient and maintainable
stored procedures?

Some best practices include using meaningful and consistent naming
conventions, modularizing procedures, handling errors, and commenting
the code for clarity.

These questions cover various aspects of stored procedures and their usage
in database management and application development. Preparing for these
questions will help you demonstrate your understanding of stored
procedures and their practical implementation in different scenarios.

— 148 —

CHAPTER 9

Triggers and Views

ne of the important features of Spring Boot is the auto-configuration,
which makes it possible

Database triggers and views are powerful features in database management
systems that enhance data manipulation, simplify complex queries, and
enable automation of actions based on specified events. Triggers are special
stored procedures that automatically execute when specific events occur,
such as insertions, updates, or deletions on a table. On the other hand, views
are virtual tables created from the result of a SELECT query, allowing users
to interact with the data without directly modifying the underlying tables.

In this chapter, we will explore the world of database triggers and views,
uncovering their significance in data management and query optimization.
Whether you are a database administrator, a data analyst, or a developer,
understanding triggers and views is essential for streamlining database
operations and enhancing data accessibility.

Important Topics to Prepare on Database Triggers and Views:

1. Introduction to Triggers: Understanding the concept of triggers,
their purpose, and the different types of triggers available in database
systems.

O

TRIGGERS AND VIEWS

— 149 —

2. Trigger Events: Learning about various trigger events, such as INSERT,
UPDATE, DELETE, and how triggers respond to these events.

3. Creating Triggers: Exploring the syntax and process of creating
triggers in SQL.

4. Trigger Execution Time: Understanding the timing of trigger
execution, such as BEFORE or AFTER the triggering event.

5. Use Cases of Triggers: Discovering real-world scenarios where
triggers are useful, such as enforcing data integrity, maintaining
audit trails, and implementing complex business logic.

6. Managing Triggers: Learning how to enable, disable, modify, or
drop triggers as part of database maintenance.

7. Benefits and Drawbacks of Triggers: Analyzing the advantages and
potential pitfalls of using triggers in database design.

8. Introduction to Views: Understanding the concept of views and
their role in data abstraction.

9. Creating Views: Exploring the process of creating and managing
views in SQL.

10. Updating Through Views: Learning how to perform data
modifications through views and understanding the restrictions
associated with updateable views.

11. Materialized Views: Differentiating between regular views and
materialized views, which store the query results physically for faster
data retrieval.

12. Nested Views: Understanding the concept of nested views, where a
view is based on another view.

13. Use Cases of Views: Discovering real-world applications of views,
such as data simplification, access control, and query optimization.

GROKKING THE SQL INTERVIEW

— 150 —

14. Indexed Views: Analyzing the benefits of indexed views, which
improve query performance by precomputing and storing
aggregated data.

15. Security Considerations: Exploring security considerations when
using views, including permissions and data exposure.

16. Combining Views and Joins: Learning how to use views in
combination with joins to simplify complex queries.

17. View Maintenance: Understanding how views impact data
maintenance and updates to the underlying tables.

18. Updatable Views and INSTEAD OF Triggers: Exploring the
concept of updatable views and how to use INSTEAD OF triggers to
handle updates on non-updatable views.

19. Recursion in Views: Understanding the use of recursive views to
work with hierarchical data structures.

20. Views vs. Materialized Views: Comparing regular views and
materialized views in terms of performance and data consistency.

Database triggers and views are valuable tools that facilitate data
management, simplify query execution, and automate tasks within a
database system. By mastering the concepts and practices of triggers and
views, you can optimize database performance, enhance data accessibility,
and ensure data integrity in various database applications.

In the following sections, we will delve into each of these topics, providing
you with comprehensive knowledge and practical insights into database
triggers and views. Let's embark on this journey into the realm of
triggers and views and understand their significance in modern database
management!

TRIGGERS AND VIEWS

— 151 —

Below are 20+ common questions on database triggers and views, along
with their answers:

Question 1
What is a database trigger, and what events can trigger its execution?

A database trigger is a special type of stored procedure that automatically
executes in response to specific events, such as INSERT, UPDATE, or
DELETE operations on a table.

Question 2
How do you create a trigger in SQL?

To create a trigger in SQL, you use the CREATE TRIGGER statement,
specifying the trigger name, the trigger timing (BEFORE or AFTER), the
triggering event (INSERT, UPDATE, or DELETE), and the action to be
performed in response to the event.

Question 3
What is the difference between a BEFORE trigger and an AFTER trigger?

A BEFORE trigger executes before the triggering event, allowing you to
modify data before it is actually inserted, updated, or deleted. An AFTER
trigger executes after the triggering event, acting on the data after the change
has taken place.

Question 4
In what scenarios are triggers commonly used?

Triggers are commonly used to enforce data integrity constraints, maintain
audit trails, implement complex business logic, and propagate changes to
related tables.

GROKKING THE SQL INTERVIEW

— 152 —

Question 5
How can you enable or disable a trigger?

You can use the ALTER TRIGGER statement with the ENABLE or
DISABLE option to enable or disable a trigger.

Question 6
What are some potential drawbacks of using triggers?

Triggers can introduce hidden logic that may be harder to track and debug.
Overuse of triggers can lead to performance issues and make the codebase
harder to maintain.

Question 7
How do you create a view in SQL?

To create a view in SQL, you use the CREATE VIEW statement, providing
a name for the view and the SELECT query that defines the view's data.

Question 8
Can you update data through a view? If yes, what are the restrictions?

Yes, you can update data through a view under certain conditions. The view
must be updatable, meaning it must meet specific criteria, such as having a
single table in the FROM clause, not containing aggregate functions, and
not having certain constructs like GROUP BY or HAVING.

Question 9
What is the difference between a regular view and a materialized view?

A regular view is a virtual table that displays the results of a SELECT query.
A materialized view, on the other hand, physically stores the results of a
query, providing faster data retrieval at the cost of potentially stale data.

TRIGGERS AND VIEWS

— 153 —

Question 10
How can you update a materialized view?

Materialized views are updated automatically based on their refresh settings
(e.g., on demand, at specified intervals, or when underlying data changes).

Question 11
What is a nested view, and how does it differ from a regular view?

A nested view is a view that is based on another view. It creates a layered
abstraction over the data, allowing for more complex queries.

Question 12
In what situations would you use an indexed view?

Indexed views are beneficial when you have complex queries that involve
aggregations or joins on large datasets, as they can significantly improve
query performance.

Question 13
How do views contribute to data security and access control?

Views allow you to grant users access to specific columns or rows, hiding
sensitive data and enforcing security at the database level.

Question 14
Can you combine views with joins in a query?

Yes, you can use views in combination with joins to simplify complex
queries and avoid redundancy in the code.

GROKKING THE SQL INTERVIEW

— 154 —

Question 15
How does recursion work in views, and what is its use case?

Recursive views enable hierarchical querying, where a view refers to itself to
traverse hierarchical data structures, such as organizational charts or bill of
materials.

Question 16
What is the impact of updating the underlying tables on views?

Updating the underlying tables may change the data presented by views.
However, if the views are read-only or restrict certain modifications,
changes to the underlying tables will not be allowed.

Question 17
How can you handle updates on non-updatable views?

You can use INSTEAD OF triggers to handle updates on non-updatable
views, specifying the logic to perform the update on the underlying tables.

Question 18
How do views contribute to data abstraction and query simplification?

Views provide a level of data abstraction by allowing users to interact with
the data using a simplified virtual table, without exposing the complexity of
underlying tables.

Question 19
Can you provide an example of a situation where a trigger would be
useful?

One example is maintaining an audit trail. A trigger could automatically
insert a record into an audit table whenever a specific table is updated.

TRIGGERS AND VIEWS

— 155 —

Question 20
How would you create an indexed view to improve query performance?

To create an indexed view, you would define the view and then use the
CREATE INDEX statement to create an index on the view's columns,
optimizing query execution.

These questions cover a wide range of topics related to database triggers and
views. Preparing for these questions will help you gain a comprehensive
understanding of triggers and views and their practical application in
database design and query optimization.

— 156 —

CHAPTER 10

Normalization

atabase normalization is a fundamental concept in database design that
aims to organize data efficiently and eliminate redundancy. It helps

maintain data integrity by reducing data anomalies and ensuring that data
is stored in a structured, logical manner. By following the principles of
normalization, you can design databases that are easy to maintain, update,
and expand while avoiding data inconsistencies.

In this chapter, we will explore the world of database normalization and
delve into the essential topics that form the foundation of data integrity.
Whether you are a database administrator, a data analyst, or a database
developer, understanding normalization principles is crucial for creating
robust and reliable databases.

Important Topics to Prepare on Database Normalization:

1. Introduction to Normalization: Understanding the concept of
database normalization, its purpose, and the advantages it brings to
database design.

2. First Normal Form (1NF): Grasping the principles of 1NF, which
involves eliminating duplicate columns and ensuring atomicity of
data.

D

NORMALIZATION

— 157 —

3. Second Normal Form (2NF): Learning how to achieve 2NF by
removing partial dependencies and creating separate tables for
related data.

4. Third Normal Form (3NF): Understanding the process of reaching
3NF by eliminating transitive dependencies, ensuring data is only
stored in one place.

5. Boyce-Codd Normal Form (BCNF): Exploring BCNF, a higher
level of normalization that addresses anomalies related to functional
dependencies.

6. Fourth Normal Form (4NF): Discovering 4NF, which deals with
multi-valued dependencies and ensures that each field depends only
on the entire primary key.

7. Fifth Normal Form (5NF): Understanding 5NF, also known as
Project-Join Normal Form (PJ/NF), which addresses join
dependencies between candidate keys.

8. Denormalization: Learning about denormalization, when it is
appropriate to use, and its impact on performance and data
integrity.

9. Anomalies in Data: Identifying various data anomalies like
insertion, update, and deletion anomalies, and how normalization
helps mitigate them.

10. Composite Keys and Surrogate Keys: Understanding the use of
composite keys and surrogate keys as primary keys in
normalization.

11. Functional Dependencies: Grasping the concept of functional
dependencies, which forms the basis for normalization rules.

GROKKING THE SQL INTERVIEW

— 158 —

12. Normalization vs. Performance: Analyzing the trade-off between
normalization and query performance, and how to strike a balance
in database design.

13. Normalization in Real-World Scenarios: Exploring real-world
examples where normalization is applied to ensure data integrity,
such as e-commerce websites, inventory management systems, and
customer relationship management (CRM) databases.

14. Normalization Guidelines: Learning practical guidelines and best
practices for applying normalization principles effectively in
database design.

15. Normalization and Data Modeling: Understanding the
relationship between normalization and data modeling, and how
normalization enhances data modeling outcomes.

16. Normalization and Indexing: Analyzing the impact of
normalization on indexing strategies and database query
performance.

17. Normalization and Data Redundancy: Understanding how
normalization eliminates data redundancy, leading to optimized
storage and maintenance.

18. Database Normalization Tools: Familiarizing yourself with tools
and utilities that aid in assessing and validating the normalization
process.

Database normalization is a crucial aspect of designing efficient and robust
databases. By mastering the principles and topics mentioned above, you can
create databases that are resilient, scalable, and maintainable. Normalization
ensures that data remains consistent and accurate throughout its lifecycle,
making it an indispensable skill for any database professional.

NORMALIZATION

— 159 —

In the subsequent sections, we will delve into each of these topics, providing
you with in-depth knowledge and practical insights into database
normalization and data integrity. Let's embark on this journey into the
realm of database normalization and its significance in building reliable and
efficient databases!

Below are 20+ questions on database normalization and data integrity,
along with their answers:

Question 1
What is database normalization, and why is it essential in database
design?

Database normalization is the process of organizing data in a database to
reduce redundancy and data anomalies. It ensures data integrity, minimizes
data duplication, and makes the database more efficient and maintainable.

Question 2
Explain the First Normal Form (1NF) and its requirements.

1NF requires that each table cell contains a single value (atomicity) and that
there are no repeating groups or duplicate rows in the table.

Question 3
How does the Second Normal Form (2NF) differ from 1NF, and what
problem does it address?

2NF addresses the issue of partial dependencies by requiring that non-key
attributes be fully dependent on the entire primary key.

GROKKING THE SQL INTERVIEW

— 160 —

Question 4
What is the Third Normal Form (3NF), and what types of dependencies
does it eliminate?

3NF eliminates transitive dependencies, ensuring that non-key attributes
are dependent only on the primary key and not on other non-key attributes.

Question 5
When should you consider moving to Boyce-Codd Normal Form
(BCNF) instead of 3NF?

BCNF should be considered when a table has overlapping candidate keys
and is in 3NF but still contains anomalies due to functional dependencies.

Question 6
What is Fourth Normal Form (4NF), and what problem does it address?

4NF addresses multi-valued dependencies and ensures that each non-key
attribute is dependent only on the entire primary key, not on subsets of the
primary key.

Question 7
How does Fifth Normal Form (5NF) handle join dependencies?

5NF addresses join dependencies, ensuring that there are no redundant
combinations of attributes in separate tables.

Question 8
What is denormalization, and in what situations is it appropriate to
use?

Denormalization involves deliberately introducing redundancy into a
database to improve query performance. It is suitable for read-heavy
applications or situations where query optimization is crucial.

NORMALIZATION

— 161 —

Question 9
How does normalization help in avoiding insertion, update, and
deletion anomalies?

Normalization reduces or eliminates data anomalies by ensuring that data
is stored logically and without redundancy, preventing data inconsistencies
during insert, update, and delete operations.

Question 10
What is the purpose of functional dependencies in normalization?

Functional dependencies define the relationships between attributes in a
table and form the basis for normalization rules.

Question 11
Can you have multiple candidate keys in a table, and how do they
relate to normalization?

Yes, a table can have multiple candidate keys. They are used to determine if
the table is in the desired normal form and are essential for normalization.

Question 12
How does normalization impact database query performance?

Normalization can improve data integrity but may lead to more complex
joins and potentially slower query performance. Denormalization is
sometimes used to enhance query performance.

Question 13
What are the potential drawbacks of denormalization?

Denormalization can lead to data redundancy, making updates and
maintenance more challenging. It can also increase the risk of data
inconsistencies if not managed properly.

GROKKING THE SQL INTERVIEW

— 162 —

Question 14
In what real-world scenarios is normalization crucial for data
integrity?

Normalization is crucial in scenarios such as e-commerce websites (managing
product catalogs), inventory management systems, and customer relationship
management (CRM) databases (tracking customer interactions).

Question 15
How can you decide on the level of normalization required for a
specific database design?

The level of normalization required depends on the specific requirements of
the application. Striking a balance between normalization and
denormalization is crucial to meet performance and data integrity needs.

Question 16
Can you provide an example of a table that violates the First Normal
Form (1NF)?

A table with repeating groups or multiple values in a single cell violates 1NF.

For example:

Student (student_id, name, subject1, subject2, subject3)

Question 17
How would you convert the above table into 1NF?

To convert the table into 1NF, we would split the subjects into separate
rows, each with its own student_id and name:

Student (student_id, name) Subject (student_id, subject)

NORMALIZATION

— 163 —

Question 18
Explain the process of achieving Second Normal Form (2NF) in a
table.

To achieve 2NF, you need to identify and remove partial dependencies by
breaking down the table into separate tables for each subset of dependent
attributes.

Question 19
What is a composite key, and when is it used in normalization?

A composite key is a primary key that consists of more than one attribute.
It is used when no single attribute can uniquely identify a row, but a
combination of attributes can.

Question 20
How can normalization and denormalization be balanced in a
database design?

Balancing normalization and denormalization involves understanding the
specific requirements of the application and deciding which tables need to
be normalized for data integrity and which can be denormalized for
performance optimization.

These questions cover various aspects of database normalization and data
integrity. By preparing for these questions, you can gain a comprehensive
understanding of normalization principles and their practical application in
database design.

— 164 —

Chapter 11

Transaction

n the realm of database management systems, transactions play a crucial role
in ensuring data integrity, consistency, and reliability. A transaction is a

logical unit of work that comprises one or more database operations, executed
as a single, indivisible unit. By providing a "all-or-nothing" approach,
transactions either fully commit changes to the database or entirely roll back
all changes in case of failure or error.

In this chapter, we will delve into the intricacies of database transactions and
explore how they maintain data integrity while supporting concurrent access
to the database. Understanding transaction concepts and management is vital
for database administrators, developers, and anyone dealing with critical data
operations.

Important Topics to Prepare on Database Transactions:

1. Transaction Basics: Understanding the fundamental concepts of
transactions, their properties (ACID), and their significance in the
database world.

2. ACID Properties: Grasping the four essential properties of
transactions: Atomicity, Consistency, Isolation, and Durability.

I

TRANSACTION

— 165 —

3. Transaction States: Learning about the various states that a
transaction can undergo during its lifecycle: Active, Partially
Committed, Committed, Failed, and Aborted.

4. Transaction Management: Exploring how databases manage
transactions, log changes, and ensure data integrity.

5. BEGIN, COMMIT, and ROLLBACK: Understanding the SQL
commands used to initiate, commit, and roll back transactions.

6. Implicit vs. Explicit Transactions: Differentiating between implicit
transactions (auto-commit) and explicit transactions (manually
initiated and controlled).

7. Nested Transactions: Understanding the concept of nested
transactions and their behavior within a transactional environment.

8. Savepoints: Exploring the use of savepoints within transactions to
provide finer control over rollback operations.

9. Isolation Levels: Understanding the different isolation levels (Read
Uncommitted, Read Committed, Repeatable Read, Serializable) and
their impact on data consistency and concurrency.

10. Dirty Read, Non-Repeatable Read, and Phantom Read:
Understanding various phenomena that can occur due to
concurrent transactions at different isolation levels.

11. Deadlocks: Recognizing deadlocks, their causes, and strategies to
avoid and resolve them.

12. Transaction Locking: Exploring the concept of locking to manage
concurrent access to resources and maintain data consistency.

13. Transaction Logging: Understanding transaction log files and their
role in database recovery and rollback operations.

GROKKING THE SQL INTERVIEW

— 166 —

14. Error Handling in Transactions: Learning how to handle errors
within transactions to ensure proper rollback and recovery.

15. Two-Phase Commit (2PC): Understanding the 2PC protocol for
coordinating distributed transactions.

16. Transaction Management in Stored Procedures: Exploring how
transactions are handled within stored procedures and functions.

17. Concurrency Control: Understanding the techniques used to
manage concurrent access to data, including optimistic and
pessimistic concurrency control.

18. Data Integrity and Constraints: Recognizing how transactions
help enforce data integrity through constraints and validation.

19. Transaction Best Practices: Learning best practices for designing
and managing transactions effectively in different scenarios.

20. Real-World Use Cases: Exploring real-world examples where
transactions are crucial for data consistency and reliability, such as
online banking, e-commerce, and inventory management.

Database transactions are the cornerstone of data integrity and consistency
in modern database systems. By mastering the concepts and practices of
transactions, you can ensure the reliability and accuracy of your database
operations, making you a proficient and confident database professional.

In the following chapters, we will explore each of these topics in detail,
providing you with a comprehensive understanding of database transactions
and their vital role in the database management process. Let's delve into the
world of database transactions and transaction management!

Below are some common SQL transaction-related questions that are often
asked in interviews:

TRANSACTION

— 167 —

Question 1
What is a transaction in the context of a database?

A transaction in a database is a logical unit of work that consists of one or
more database operations. It is executed as a single, indivisible unit,
ensuring data integrity and consistency.

Question 2
Explain the ACID properties of transactions.

ACID stands for Atomicity, Consistency, Isolation, and Durability:

• Atomicity ensures that a transaction is treated as a single unit of
work, either fully committed or fully rolled back in case of failure.

• Consistency ensures that the database remains in a valid state before
and after the transaction.

• Isolation ensures that each transaction is executed independently of
other transactions, preventing interference and preserving data
integrity.

• Durability ensures that the changes made by a committed
transaction are permanent and survive system failures.

Question 3
What are the different states that a transaction can go through during
its lifecycle?

A transaction can go through the following states: Active, Partially
Committed, Committed, Failed, and Aborted.

GROKKING THE SQL INTERVIEW

— 168 —

Question 4
How do you begin a transaction in SQL, and how do you end it?

In SQL, you can begin a transaction using the BEGIN TRANSACTION or
START TRANSACTION statement. To end a transaction, you can use the
COMMIT statement to save the changes or the ROLLBACK statement to
discard the changes.

Question 5
What is the difference between an implicit transaction and an explicit
transaction?

An implicit transaction (auto-commit) is automatically started and
committed for each individual SQL statement, while an explicit transaction
(manually controlled) requires the use of BEGIN TRANSACTION,
COMMIT, and ROLLBACK statements.

Question 6
Explain the concept of savepoints in transactions.

Savepoints allow you to create named markers within a transaction,
enabling you to roll back to a specific point within the transaction if needed.

Question 7
What is a deadlock in transactions, and how can it be resolved?

A deadlock occurs when two or more transactions are blocked, each waiting
for a resource held by the other. Deadlocks can be resolved by setting
transaction priorities, using timeouts, or by automatically rolling back one
of the conflicting transactions.

TRANSACTION

— 169 —

Question 8
What are the different isolation levels in transactions, and how do
they affect data consistency and concurrency?

The isolation levels are Read Uncommitted, Read Committed, Repeatable
Read, and Serializable. Each level provides different levels of data consistency
and concurrency control, with higher levels offering stronger isolation but
potentially impacting performance.

Question 9
How can you handle errors within transactions to ensure proper
rollback and recovery?

Error handling within transactions involves using TRY...CATCH blocks (in
SQL Server) or EXCEPTION blocks (in PostgreSQL) to catch and handle
errors gracefully. If an error occurs, the transaction can be rolled back to
avoid leaving the database in an inconsistent state.

Question 10
What is the purpose of a transaction log in a database, and how does
it aid in recovery?

The transaction log records all changes made to the database during a
transaction. It helps in database recovery by allowing the system to roll back
uncommitted changes or roll forward committed changes in case of a
system failure or crash.

Question 11
How can you implement a two-phase commit (2PC) protocol for
coordinating distributed transactions?

The two-phase commit protocol involves a coordinator and multiple
participants (distributed systems). In the first phase, the coordinator asks all

GROKKING THE SQL INTERVIEW

— 170 —

participants if they can commit the transaction. In the second phase, the
coordinator instructs all participants to either commit or abort the
transaction based on the responses received.

Question 12
What are the best practices for designing and managing transactions
effectively?

Some best practices include keeping transactions short and focused, using
appropriate isolation levels, avoiding long-running transactions, and
ensuring proper error handling and rollback procedures.

These questions cover a wide range of topics related to SQL transactions and
transaction management. Preparing for these questions will help you gain a
thorough understanding of how transactions work, their importance in
maintaining data integrity, and how to handle various transaction-related
scenarios.

— 171 —

CHAPTER 12

Window Function
and CTE

n the world of database querying and analysis, SQL Window Functions
and Common Table Expressions (CTEs) are powerful tools that provide

advanced analytical capabilities and aid in writing complex yet efficient
queries.

Window Functions enable you to perform calculations across rows within a
defined window or partition of the result set, allowing for insightful data
insights and comparisons. On the other hand, CTEs provide a way to create
temporary result sets for more readable and modular queries, making SQL
code easier to maintain.

In this chapter, we will explore SQL Window Functions and CTEs,
unraveling their potential and usefulness in solving a variety of data
manipulation tasks.

Whether you are an aspiring data analyst or an experienced database
professional, understanding these concepts will elevate your SQL skills to
new heights, empowering you to tackle challenging analytical queries and
optimize your data querying experience.

I

GROKKING THE SQL INTERVIEW

— 172 —

Important Topics to Prepare on Window Functions and CTEs:

1. Window Functions Overview: Understanding the concept of
Window Functions, their syntax, and how they differ from regular
aggregate functions.

2. PARTITION BY Clause: Learning how to use the PARTITION BY
clause to divide the result set into partitions or groups for Window
Functions calculations.

3. ORDER BY Clause: Exploring the ORDER BY clause within
Window Functions to specify the sorting order for the window
frame.

4. ROWS/RANGE Clause: Differentiating between the ROWS and
RANGE clauses in Window Functions and their impact on the
window frame definition.

5. Common Window Functions: Familiarizing yourself with common
Window Functions like ROW_NUMBER, RANK, DENSE_RANK,
LEAD, LAG, SUM, AVG, MAX, MIN, and others.

6. Aggregation with Window Functions: Understanding how to
combine Window Functions with aggregate functions to perform
advanced analytical calculations.

7. Window Frames: Learning about various window frame options, such
as ROWS BETWEEN, RANGE BETWEEN, and UNBOUNDED
PRECEDING/UNBOUNDED FOLLOWING, to customize the
window scope.

8. CTE Overview: Grasping the concept of Common Table
Expressions (CTEs), their syntax, and how they simplify complex
queries.

WINDOW FUNCTION AND CTE

— 173 —

9. Recursive CTEs: Exploring the concept of Recursive CTEs, which
allow you to perform recursive queries and solve hierarchical
problems.

10. Multiple CTEs: Understanding how to use multiple CTEs in a
single query to break down complex logic into manageable
components.

11. Nested CTEs: Learning how to nest CTEs inside each other to build
modular and reusable query components.

12. CTEs vs. Subqueries: Comparing CTEs with subqueries and
understanding when to use each approach.

13. Performance Considerations: Analyzing the performance
implications of using Window Functions and CTEs in SQL queries
and identifying potential optimizations.

14. Real-World Use Cases: Exploring real-world scenarios where
Window Functions and CTEs shine, such as ranking results,
handling time series data, and solving recursive problems.

15. Combining Window Functions and CTEs: Discovering the
synergy between Window Functions and CTEs in complex
analytical queries.

SQL Window Functions and CTEs are indispensable tools for data analysts,
database administrators, and anyone involved in querying and analysing
data. With these advanced SQL features in your toolkit, you can elevate your
data analysis capabilities, gain deeper insights from your data, and craft
sophisticated queries with ease.

Let's embark on this journey into the world of SQL Window Functions and
CTEs, unlocking the full potential of your SQL querying skills!

GROKKING THE SQL INTERVIEW

— 174 —

Below are 20+ SQL questions covering the topics of Window Functions and
Common Table Expressions (CTEs), along with their answers:

Question 1
What are Window Functions in SQL, and how are they different from
regular aggregate functions?

Window Functions perform calculations across rows within a defined
window or partition of the result set, without collapsing the result into a
single row. Unlike regular aggregate functions, Window Functions preserve
individual rows and return results alongside the original data.

Question 2
Explain the PARTITION BY clause in Window Functions with an
example.

The PARTITION BY clause divides the result set into partitions or groups,
and the Window Function operates on each partition independently.

For example:

In this query, we use the RANK() function with the OVER clause to assign
a rank to each employee within their respective department based on their
salary in descending order. The PARTITION BY department clause
divides the result set into partitions based on the department column, and

WINDOW FUNCTION AND CTE

— 175 —

then the ORDER BY salary DESC specifies the order in which salaries are
ranked within each department. The result will display the employee_id,
department, salary, and salary_rank for each employee.

Question 3
How do you calculate the cumulative salary for each department using
Window Functions?

You can use the SUM() function with the PARTITION BY clause to
calculate the cumulative salary within each department. For example:

In this query, the SUM() function is used with the OVER clause to calculate
the cumulative salary for each employee within their respective department.
The PARTITION BY department clause divides the result set into
partitions based on the department column, and the ORDER BY
employee_id specifies the order in which the cumulative sum is calculated.
The result will display the employee_id, department, salary, and
cumulative_salary for each employee, showing the running total of salaries
within each department.

Question 4
What is the purpose of the ORDER BY clause in Window Functions?

The ORDER BY clause within Window Functions defines the sorting order
of rows in the window frame. It is crucial to ensure consistent and
meaningful results for Window Functions.

GROKKING THE SQL INTERVIEW

— 176 —

Question 5
How can you find the percentage of total sales for each product using
Window Functions?

You can use the SUM() function with the OVER() clause to calculate the
total sales and then divide individual sales by the total to get the percentage.

For example:

In this query, the SUM() function with the OVER clause is used to calculate
the total sum of sales across the entire sales_table. Then, the
percentage_of_total_sales is calculated for each product by dividing its
individual sales by the total sum of sales and multiplying by 100. The result
will display the product_id, sales, and percentage_of_total_sales for each
product, showing its contribution as a percentage of the total sales.

Question 6
What is the difference between ROWS BETWEEN and RANGE
BETWEEN clauses in Window Functions?

The ROWS BETWEEN clause defines the frame based on the number of
rows, whereas the RANGE BETWEEN clauses defines the frame based on
the actual values within the window.

WINDOW FUNCTION AND CTE

— 177 —

Question 7
How do you find the lead and lag values for a column using Window
Functions?

You can use the LEAD() and LAG() functions to access the subsequent and
previous values, respectively, for a given column.

For example:

In this query, the LEAD() and LAG() functions with the OVER clause are
used to retrieve the next and previous salary values for each employee,
respectively. The ORDER BY salary clause specifies the order in which the
values are retrieved. The result will display the employee_id, name, salary,
next_salary, and previous_salary for each employee, showing the adjacent
salaries in ascending order.

Question 8
Explain the concept of Recursive CTEs in SQL.

Recursive CTEs allow you to perform recursive queries, where a query refers
to its own result set in a subsequent iteration. It is commonly used for
hierarchical data, such as organizational structures or nested categories.

GROKKING THE SQL INTERVIEW

— 178 —

Question 9
How do you use a Recursive CTE to traverse a hierarchical table?

You need to define two parts in the CTE: the anchor member that selects
the starting point of recursion, and the recursive member that joins the
result of the previous iteration.

For example:

The query uses a CTE named cte_hierarchy to perform a recursive traversal
of the employee hierarchy stored in the employees table. The anchor member
selects the top-level employees (those with manager_id set to NULL), and the
recursive member joins the CTE with the employees table to retrieve the
subordinates of each employee, incrementing the level in the process.

The final result is a hierarchical representation of the employees and their
relationships in the table. The output will include columns for employee_id,
name, manager_id, and the level in the hierarchy for each employee.

WINDOW FUNCTION AND CTE

— 179 —

For example, the output might look like this:

Question 10
How can you use a CTE to simplify a complex query?

CTEs can modularize complex queries by breaking them down into more
manageable components. They make the code more readable, maintainable,
and reusable.

Question 11
When would you use a CTE instead of a subquery?

CTEs are preferable over subqueries when you need to use the same
subquery multiple times within a larger query, as CTEs eliminate the need
to repeat the subquery.

Question 12
How can you use multiple CTEs in a single query?

You can define multiple CTEs separated by commas before the main query.
Each CTE should have a unique name. For example:

WITH cte1 AS (...), cte2 AS (...) SELECT ... FROM ...

GROKKING THE SQL INTERVIEW

— 180 —

Question 13
Can you use a CTE inside another CTE?

Yes, you can nest CTEs inside each other to build more modular and
reusable query components.

Question 14
How do you perform aggregation on CTEs?

You can perform aggregation on the result of a CTE just like any other table.

For example:

The query uses a Common Table Expression (CTE) named cte_sales to
calculate the total sales for each product from the sales_table. The CTE
computes the sum of sales for each product by grouping the data based on
the product_id.

The final result will display the product_id and the corresponding
total_sales for each product, providing a summary of the sales data by
product.

WINDOW FUNCTION AND CTE

— 181 —

Question 15
How do you calculate the running total for a column using Window
Functions and CTEs?

You can use the SUM() function with the OVER() clause inside a CTE to
calculate the running total. For example:

The query uses a Common Table Expression (CTE) named cte_running_total
to calculate the running total of order_amount for each order from the orders
table. The SUM function with the OVER clause and ORDER BY is used to
calculate the cumulative sum of order_amount up to the current row, based
on the order_date order.

The final result will display columns for order_id, order_date,
order_amount, and the running_total, which represents the cumulative
sum of order_amount up to each order's order_date. This provides an
overview of the running total of sales over time.

Question 16
How can you use a Window Function with a PARTITION BY clause
to find the highest salary in each department?

You can use the PARTITION BY clause along with the MAX() function to
find the highest salary within each department.

GROKKING THE SQL INTERVIEW

— 182 —

For example:

In this query, we use the MAX() function with the OVER clause to calculate
the highest salary within each department using the PARTITION BY
clause. The OVER (PARTITION BY department) part divides the result
set into partitions based on the department column, and then the
MAX(salary) function is applied within each partition to get the highest
salary for that specific department. The result will show each employee's
employee_id, department, salary, and the highest salary within their
respective department as highest_salary.

Question 17
How do you calculate the percentage change in sales compared to the
previous month using Window Functions?

You can use the LAG() function to access the previous month's sales and
then calculate the percentage change.

For example:

WINDOW FUNCTION AND CTE

— 183 —

In this query, we use the LAG() function with the OVER clause to calculate
the percentage change in sales from one month to the next. The LAG(sales)
OVER (ORDER BY month) part fetches the sales value of the previous row
based on the month order, and then the percentage change is calculated as
(sales - previous_sales) / previous_sales * 100.

The result will show each month, the corresponding sales, and the
percentage_change, which represents the percentage change in sales
compared to the previous month.

Question 18
How can you use the RANK() function to find the top N employees
with the highest salary?

You can use the RANK() function along with a Common Table Expression
(CTE) to find the top N employees with the highest salary. Here's how you
can do it:

Replace N with the desired number to retrieve the top N employees.

GROKKING THE SQL INTERVIEW

— 184 —

In this query:

1. The RankedEmployees CTE assigns a rank to each employee based
on their salary in descending order using the RANK() function with
the OVER clause.

2. The outer SELECT statement retrieves the employee_id, name, and
salary columns from the RankedEmployees CTE for employees
whose salary_rank is less than or equal to N. This will give you the
top N employees with the highest salary.

The result will display the details of the top N employees with the highest
salary, based on the specified value of N.

Question 19
Explain the concept of a "rolling sum" using Window Functions.

A "rolling sum" calculates the sum of a column for a specific range of rows,
usually with an ORDER BY clause to define the order of rows. It is useful
for time series analysis or calculating moving averages.

Question 20
How do you use the ROWS BETWEEN clause to calculate a "rolling
sum"?

You can use the ROWS BETWEEN clause with ORDER BY to define the
range of rows for the "rolling sum." For example, to calculate a sum of the
last three rows:

WINDOW FUNCTION AND CTE

— 185 —

In this query, the SUM() function with the OVER clause is used to calculate
the rolling sum of sales over a window of three rows: the current row and
the two preceding rows, ordered by the date column. The result will display
the date, sales, and rolling_sum for each row in the sales_data table,
showing the cumulative sum of sales over the specified window.

Question 21
What are the performance considerations when using Window
Functions and CTEs in SQL?

Using Window Functions and CTEs can impact query performance,
especially when dealing with large datasets. It's essential to consider
appropriate indexing and analyze query execution plans to optimize
performance.

Question 22
How can you use Window Functions and CTEs together in a single
query to perform advanced analytical calculations?

You can use CTEs to prepare the data and then apply Window Functions
on the CTE result set to perform complex calculations. For example:

GROKKING THE SQL INTERVIEW

— 186 —

In this query, a Common Table Expression (CTE) named cte_sales is used
to calculate the total sales for each product from the sales_table.

The SUM() function with the OVER clause is used to calculate the total sum
of sales across the entire cte_sales result set.

Then, the percentage_of_total_sales is calculated for each product by
dividing its individual total_sales by the total sum of sales and multiplying
by 100. The result will display the product_id, total_sales, and
percentage_of_total_sales for each product, showing its contribution as a
percentage of the total sales.

Question 23
How do you use Window Functions to find the top N products with
the highest sales, considering ties?

You can use the DENSE_RANK() function to handle ties and rank the
products accordingly. For example:

WINDOW FUNCTION AND CTE

— 187 —

In this query:

1. The inner subquery calculates the sales_rank for each product
based on their sales in descending order using the DENSE_RANK()
function with the OVER clause. The result of this subquery is aliased
as ranked_sales.

2. The outer SELECT statement retrieves the product_id and sales
columns from the ranked_sales subquery for products whose
sales_rank is less than or equal to N. This will give you the top N
products with the highest sales.

Replace N with the desired number of top products you want to retrieve.

Question 24
How can you calculate the average salary for each department while
excluding the highest and lowest salaries using Window Functions?

You can use the RANK() function with PARTITION BY to rank salaries
within each department and then filter out the highest and lowest ranks in
a subquery. For example:

GROKKING THE SQL INTERVIEW

— 188 —

In this query:

1. The inner subquery calculates the salary_rank for each employee
within their respective department based on their salary using the
RANK() function with the OVER clause. The result of this subquery
is aliased as ranked_employees.

2. The outer SELECT statement retrieves the department and the
average salary (average_salary) for departments where the
salary_rank is greater than 1 and less than the total number of distinct
salary values in the employees table. This filters out the employees with
the highest and lowest salaries within each department.

The result will display the department and the average salary for
departments where employees' salaries are not the highest or the lowest
within their respective departments.

Question 25
How do you find the top N products with the highest sales for each
month using Window Functions?

You can use the PARTITION BY clause with the RANK() function to rank
products within each month and then filter the results using a subquery.

For example:

WINDOW FUNCTION AND CTE

— 189 —

In this query:

1. The inner subquery calculates the sales_rank for each product
within each month based on their sales in descending order using
the RANK() function with the OVER clause. The result of this
subquery is aliased as ranked_sales.

2. The outer SELECT statement retrieves the month, product_id, and
sales columns from the ranked_sales subquery for products whose
sales_rank is less than or equal to N. This will give you the top N
products with the highest sales for each month.

Replace N with the desired number of top products you want to retrieve for
each month.

Question 26
What are the potential use cases for Recursive CTEs, and how do they
work?

Recursive CTEs are useful for working with hierarchical data, such as
organizational charts, bill of materials, or nested categories. They consist of
two parts: the anchor member and the recursive member, and they
repeatedly execute the recursive member until it returns no rows.

GROKKING THE SQL INTERVIEW

— 190 —

Question 27
How can you use a Recursive CTE to traverse a hierarchical table with
unlimited nesting levels?

You can use the UNION ALL operator in the recursive member to
repeatedly join the CTE with itself.

For example:

In this query:

1. The WITH RECURSIVE clause starts a common table expression
(CTE) named cte_hierarchy that will hold the hierarchical data.

2. The first part is the "Anchor member" of the recursive query, which
selects the root categories where parent_category_id is NULL and
assigns them a level of 1.

3. The UNION ALL combines the anchor member with the "Recursive
member," which selects child categories and joins them with the

WINDOW FUNCTION AND CTE

— 191 —

previous level's results to build the hierarchy. The level is
incremented by 1.

4. The SELECT * FROM cte_hierarchy retrieves all columns from the
cte_hierarchy CTE, displaying the hierarchical data.

This query uses a recursive CTE to traverse a category hierarchy, starting
from root categories and progressing to their child categories. The result will
show the entire hierarchy with columns category_id, category_name,
parent_category_id, and level indicating the hierarchy level.

Question 28
How can you use the SUM() function with PARTITION BY and
ORDER BY to calculate the moving average of sales for each product?

You can use the SUM() function with PARTITION BY to calculate the sum
of sales within each product and then use the ORDER BY clause to specify
the order of sales.

For example:

GROKKING THE SQL INTERVIEW

— 192 —

In this query:

1. The SELECT statement retrieves columns from the sales_table:
product_id, sale_date, sales, and a calculated column named
moving_average.

2. The AVG(sales) OVER (...) calculates the moving average of sales
for each product_id partition. The PARTITION BY product_id
clause divides the result set into partitions based on the distinct
values of product_id.

3. The ORDER BY sale_date specifies that the moving average is
ordered by the sale_date.

4. The ROWS BETWEEN 2 PRECEDING AND CURRENT ROW
clause defines the window frame for the moving average calculation.
It includes the current row and the two preceding rows within each
partition.

5. The result will display the product_id, sale_date, sales, and
moving_average columns for each row in the sales_table, showing
the average of sales for the current row and its two preceding rows
within each product partition.

Question 29
How do you use a CTE to simplify a query that involves multiple
subqueries?

You can create CTEs for each subquery and then reference them in the main
query, making the code more concise and easier to understand.

WINDOW FUNCTION AND CTE

— 193 —

Question 30
How can you use the ROWS UNBOUNDED PRECEDING and ROWS
UNBOUNDED FOLLOWING clauses in Window Functions?

The ROWS UNBOUNDED PRECEDING and ROWS UNBOUNDED
FOLLOWING clauses in Window Functions allow you to specify an
unbounded window frame that includes all rows from the beginning
(preceding) or end (following) of the partition, respectively.

For example, let's say you want to calculate the running total of sales for each
product, considering all previous sales.

You can use the SUM() function with the ORDER BY clause and the
unbounded window frame to achieve this:

In this query, the ROWS BETWEEN UNBOUNDED PRECEDING AND
CURRENT ROW clause indicates that the window frame should include all
rows from the beginning of the partition up to the current row, allowing the
SUM() function to calculate the running total for each product.

GROKKING THE SQL INTERVIEW

— 194 —

Question 31
How do you use a CTE to simplify a complex hierarchical query for an
organizational chart?

You can create a Recursive CTE to traverse the organizational chart and
generate a result set that shows the hierarchical relationships in a more
readable and structured format.

Question 32
What is the difference between the DENSE_RANK() and RANK()
functions in Window Functions?

The DENSE_RANK() function assigns a unique rank to each distinct row,
leaving no gaps in the ranking sequence. On the other hand, the RANK()
function may leave gaps in the ranking sequence when there are ties.

Question 33
How can you use a Window Function to find the percentage of sales
contributed by each product compared to the total sales?

You can use the SUM() function with the OVER() clause to calculate the
total sales and then divide the individual sales by the total to get the
percentage.

For example:

WINDOW FUNCTION AND CTE

— 195 —

In this query:

1. The SELECT statement retrieves columns from the sales_table:
product_id, sales, and a calculated column named percentage_of_
total_sales.

2. The SUM(sales) OVER () calculates the total sum of all sales values
in the entire result set. The empty parentheses () indicate that there
is no specific partitioning for the calculation.

3. The sales / SUM(sales) OVER () * 100 expression calculates the
percentage of each sales value compared to the total sum of all sales,
and then multiplies by 100 to convert it to a percentage.

4. The result will display the product_id, sales, and percentage_of_
total_sales columns for each row in the sales_table, showing how
each sale contributes to the total sales percentage.

Question 34
Can you use Window Functions without the PARTITION BY clause?
If yes, what will be the result?

Yes, you can use Window Functions without the PARTITION BY clause.
In this case, the function will treat the entire result set as a single partition,
and the calculation will be performed on the entire set of rows.

Question 35
How can you use the RANK() function with the PARTITION BY
clause to find the top N employees with the highest salary within each
department?

You can use the RANK() function with the PARTITION BY clause to rank
employees based on salary within each department and then filter the results
using a subquery.

GROKKING THE SQL INTERVIEW

— 196 —

For example:

In this query:

1. The inner subquery calculates the salary_rank for each employee
within their respective department based on their salary in
descending order using the RANK() function with the OVER clause.
The result of this subquery is aliased as ranked_employees.

2. The outer SELECT statement retrieves the employee_id, name,
department, and salary columns from the ranked_employees
subquery for employees whose salary_rank is less than or equal to
N. This will give you the top N employees with the highest salary
within each department.

Replace N with the desired number to retrieve the top N employees within
each department based on their salary ranks.

WINDOW FUNCTION AND CTE

— 197 —

Question 36
How do you use a Recursive CTE to calculate the total cost of a bill of
materials for a product and all its components?

You can create a Recursive CTE that repeatedly joins the product table with
the component table until there are no more components, and then
calculate the total cost using the SUM() function.

Question 37
What are some common performance optimization techniques for
queries involving Window Functions and CTEs?

Some common performance optimization techniques include proper
indexing, limiting the result set using WHERE clauses before applying
Window Functions, and avoiding unnecessary ordering when not required.

Question 38
How can you use the FIRST_VALUE() and LAST_VALUE() functions
in Window Functions to retrieve the first and last values in a
partition?

The FIRST_VALUE() function returns the first value in the window frame,
while the LAST_VALUE() function returns the last value in the window
frame.

For example:

GROKKING THE SQL INTERVIEW

— 198 —

The query fetches sales data from the sales_table. It calculates two things
for each row:

1. first_sale: The first sale value for each product, ordered by sale date.

2. last_sale: The latest sale value for each product, ordered by sale date.

The result shows product_id, sale_date, sales, first_sale, and last_sale
columns. This gives insight into the first and last sales values for each
product over time.

Question 39
How do you use Window Functions to calculate the difference
between the sales of each product and the average sales of all products?

You can use the AVG() function with the OVER() clause to calculate the
average sales of all products and then subtract the individual sales to find
the difference.

For example:

WINDOW FUNCTION AND CTE

— 199 —

In this query:

1. The SELECT statement retrieves columns from the sales_table:
product_id, sales, and a calculated column named sales_difference.

2. The AVG(sales) OVER () calculates the average of all sales values
in the entire result set, using the OVER () clause. This means it
considers the entire result set as a single partition for the calculation.

3. The sales - AVG(sales) OVER () expression subtracts the overall
average sales from each individual sales value, resulting in the
sales_difference.

4. The result will display the product_id, sales, and sales_difference
columns for each row in the sales_table, showing how much each
sale differs from the overall average sales.

Question 40
How can you use Window Functions to calculate the difference in
sales between the current and previous months for each product?

You can use the LAG() function to access the previous month's sales and
then calculate the difference.

For example:

GROKKING THE SQL INTERVIEW

— 200 —

In this query:

1. The LAG() function with the OVER clause is used to calculate the
difference between the sales of the current row and the previous row
within each partition of product_id, ordered by sale_date.

2. The result will display the product_id, sale_date, sales, and
sales_difference columns for each row in the sales_table, showing
the difference in sales between the current row and the previous row
for each product.

These 40+ SQL questions covering Window Functions and Common Table
Expressions (CTEs) will help you build a strong understanding of these
advanced SQL concepts. Practicing these questions will equip you to tackle
interview challenges, analyze data with precision, and optimize your data
manipulation skills. Remember to combine theoretical knowledge with
hands-on practice to become proficient in using these powerful SQL
features effectively.

— 201 —

CHAPTER 13

Deep Dive

n this section will do a deep dive on popular SQL and Database related
interview questions to understand the underlying concept in detail? This

list include all kind of SQL questions like SQL query, questions based upon
JOIN, Date and Time, and other important SQL Concepts as well questions
form MySQL, Oracle, SQL Server, and PostgreSQL

Difference between ROW_NUMBER(),
RANK(), and DENSE_RANK()
Though all three are ranking functions in SQL, also known as a window
function in Microsoft SQL Server, the difference between rank(),
dense_rank(), and row_number() comes when you have ties on
ranking i.e. duplicate records.

For example, if you are ranking employees by their salaries then what would
be the rank of two employees of the same salaries? It depends on which
ranking function you are using like row_number, rank, or dense_rank.

The row_number() function always generates a unique ranking even
with duplicate records i.e. if the ORDER BY clause cannot distinguish
between two rows, it will still give them different rankings, though which
record will come earlier or later is decided randomly like in our example two

I

GROKKING THE SQL INTERVIEW

— 202 —

employees Shane and Rick have the same salary and has row number 4 and
5, this is random, if you run again, Shane might come 5th.

The rank() and dense_rank() will give the same ranking to rows
that cannot be distinguished by the order by clause, but dense_rank will
always generate a contiguous sequence of ranks like (1,2,3,...), whereas
rank() will leave gaps after two or more rows with the same rank (think
"Olympic Games": if two athletes win the gold medal, there is no second
place, only third).

Surprisingly all these functions behave similarly in Microsoft SQL Server
and Oracle, at least at the high level, so if you have used them in MSSQL,
you can also use it on Oracle 11g or other versions.

SQL to build schema

Here is the SQL to create a table and insert some data into it for
demonstration purpose:

IF OBJECT_ID('tempdb..#Employee') IS NOT NULL
DROP TABLE #Employee;

CREATE TABLE #Employee (name varchar(10), salary
int);

INSERT INTO #Employee VALUES ('Rick', 3000);
INSERT INTO #Employee VALUES ('John', 4000);
INSERT INTO #Employee VALUES ('Shane', 3000);
INSERT INTO #Employee VALUES ('Peter', 5000);
INSERT INTO #Employee VALUES ('Jackob', 7000);
INSERT INTO #Employee VALUES ('Sid', 1000);

You can see that we have included two employees with the same salaries i.e.
Shane and Rick, just to demonstrate the difference between row_number,
rank, and dense_rank window function in the SQL server, which is
obvious when there are ties in the ranking.

DEEP DIVE

— 203 —

ROW_NUMBER() Example

It always generates a unique value for each row, even if they are the same
and the ORDER BY clause cannot distinguish between them. That's why it
is used to solve problems like the second-highest salary or nth highest salary,
we have seen earlier.

In the following example, we have two employees with the same salary and
even though we have generated row numbers over the salary column it
produces different row numbers for those two employees with the same salary.

select e.*, row_number() over (order by salary desc)
row_number from #Employee e
result:
name salary row_number
Jackob 7000 1
Peter 5000 2
John 4000 3
Shane 3000 4
Rick 3000 5
Sid 1000 6

You can see in this example that we have ranked employees based upon their
salaries and each of them has a unique rank even if their salaries are the same
e.g. Shane and Rick have the same salary of 3000 but they got the unique
rank 4th and 5th. It's worth knowing that in the case of a tie, ranks are
assigned on a random basis.

RANK() Example

The rank() function will assign the same rank to the same values i.e. which
are not distinguishable by ORDER BY. Also, the next different rank will not
start from immediately next number but there will be a gap i.e. if 4th and 5th
employees have the same salary then they will have the same rank 4, and 6th
employee which has a different salary will have a new rank 6.

GROKKING THE SQL INTERVIEW

— 204 —

Here is the example to clarify the point:

select e.*, rank() over (order by salary desc) rank
from #Employee e
result:
name salary rank
Jackob 7000 1
Peter 5000 2
John 4000 3
Shane 3000 4
Rick 3000 4
Sid 1000 6

You can see that both Shane and Rick have got the same rank 4th, but the
Sid got the rank 6th, instead of 5 because it keeps the original ordering.

DENSE_RANK() Example

The dense_rank function is similar to the rank() window function i.e.
same values will be assigned the same rank, but the next different value will
have a rank which is just one more than the previous rank, i.e. if 4th and 5th
employee has the same salary then they will have the same rank but 6th
employee, which has different salary will have rank 5, unlike rank 6 as is the
case with rank() function. There will be no gap in ranking in the case of
dense_rank() as shown in the following example:

select e.*, dense_rank() over (order by salary desc)
dense_rank from #Employee e
name salary dense_rank
Jackob 7000 1
Peter 5000 2
John 4000 3
Shane 3000 4
Rick 3000 4
Sid 1000 5

DEEP DIVE

— 205 —

You can see that both Shane and Rick have the same ranking 4th, but Sid
now has 5th rank which is different than 6th in the earlier example when we
used the rank() function.

Difference between row_number vs rank
vs dense_rank
As I told, the difference between rank, row_number, and dense_rank is
visible when there are duplicate records. Since in all our example we are
ranking records on salary, if two records will have the same salary then you
will notice the difference between these three ranking functions.

The row_number gives continuous numbers, while rank and dense_rank
give the same rank for duplicates, but the next number in rank is as per
continuous order so you will see a jump but in dense_rank doesn't have any
gap in rankings.

-- difference between row_number(), rank(), and
dense_rank()
-- will only visible when there were duplicates.
-- row_number gives consecutive ranking even with
duplicate
-- rank and dense_rank give the same ranking but
rank has a jump
-- while dense_rank doesn't have jump

select e.*,
row_number() over (order by salary desc) row_number,
rank() over (order by salary desc) rank,
dense_rank() over (order by salary desc) as
dense_rank
from #Employee e

And here is the output which clearly shows the difference in the ranking
generated by rank() and dense_rank() function. This will clear your
doubt about rank, desnse_rank, and row_nubmer function.

GROKKING THE SQL INTERVIEW

— 206 —

You can see the employees Shane and Rick have the same salary 3000 hence
their ranking is the same when you use the rank() and dense_rank()
but the next ranking is 6 which is as per continuous ranking using rank()
and 5 when you use dense_rank(). The row_number() doesn't break
ties and always gives a unique number to each record.

Btw, I ran all three SQL queries on Oracle 11g R2 and, Oracle 12c and it gave
me the same result. So, it seems both Oracle and SQL Server support these
functions and they behave identically.

That's all about the difference between ROW_NUMBER(), RANK(), and
DENSE_RANK() function in SQL SERVER. As I told, the difference boils
down to the fact when ties happen. In the case of the tie, ROW_NUMBER()
will give unique row numbers, the rank will give the same rank, but the next
different rank will not be in sequence, there will be a gap.

In the case of dense_rank, both rows in the tie will have the same rank and
there will be no gap. The next different rank will be in sequence.

Difference between VARCHAR and
NVARCHAR in SQL Server?
There is a subtle difference between these two character data types in SQL
Server, while both supports variable length, the VARCHAR data type is used
to store non-Unicode characters while NVARCHAR is used to store
Unicode characters. It also takes more space than VARCHAR.

For example, in the case of VARCHAR, each character takes 1 byte but in
the case of NVARCHAR, each character takes 2 bytes of storage, which
means NVARACHAR is twice as expensive as VARCHAR type.

While we will look into the difference between these two, it's also worth
noting the similarities between them. For example, both VARCHAR and

DEEP DIVE

— 207 —

NVARCHAR are character data types and used to store text or String values.
Both are also variable-length data types, so storage size depending upon
actual data stored.

Here are a few important differences between VARCHAR and
NVARCHAR data types in SQL Server. You can keep these differences in
mind while choosing the right data type for your columns in a table or
database.

1. VARCHAR is a non-Unicode character data type with a maximum
length of 8,000 characters, while NVARCHAR is a Unicode
character data type with a maximum length of 4,000 characters.

2. VARCHAR literals are enclosed in single quotes, like 'John,' but
NVARCHAR literals are prefixed with N also, for example, N'John.'

3. In the case of VARCHAR data type, each character occupies 1 byte,
while in the case of NVARCHAR, each character needs 2 bytes of
storage, which means NVARCHAR is twice as expensive as
VARCHAR.

4. Use of index can fail if you provide wrong data type, like in SQL
Server, when you have an index over a VARCHAR column and
present it a Unicode String, MSSQL Server will not use the index.

GROKKING THE SQL INTERVIEW

— 208 —

That's all about the difference between VARCHAR and NVARCHAR data
types in SQL. You should always use the data type that will take less space.
In SQL Server NVARCHAR takes more space than VARCHAR data type,
almost 2x as much space as VARCHAR.

You should use VARCHAR if you know that all your data would be in ASCII
encoding, but if you are going to store Unicode string, like storing data from
different languages. You need to use NVARCHAR to support Unicode data.
NVARCHAR is a must if you intend to support internationalization (i18n)

What is difference between SQL, T-SQL
and PL/SQL?
Today, we are going to see another common and interesting SQL interview
question, what is the difference between SQL, T-SQL, and PL/SQL? It is
also one of the most common doubts among SQL beginners. It's common
for programmers to think that why there are many types of SQL languages,
why not just single SQL across DB? etc.

Well, let's first understand the difference between SQL, T-SQL, and PL/SQL,
and then we will understand the need for these dialects. SQL is standard for
querying, inserting, and modifying data in a relational database. It is
categorized into DDL and DML and is powerful enough to create database
objects e.g. table, view, stored procedure, and can perform CRUD operation
(SELECT, INSERT, UPDATE, and DELETE) query.

On the other hand, T-SQL (Transact-SQL) is a dialect used by Microsoft
SQL Server and Sybase. It is an extension of SQL and provides more
functionality than SQL but at the same time confirming ANSI SQL
standard as well. For example, you can use conditionals and loops in T-SQL
to create a more sophisticated stored procedure that is not available in
standard SQL.

DEEP DIVE

— 209 —

Similarly, PL/SQL (Procedural language SEQUEL) is a dialect for Oracle
database, which provides T-SQL like functionality e.g. conditionals, loops,
and other elements for procedural programming. Both T-SQL and PL/SQL
are the supersets of SQL because they not just confirm ANSI SQL standard
but also provide additional functionality that is not available in the ANSI
standard but helps a lot in database programming.

In this article, we will see a couple of more differences between SQL, T-SQL,
and PL/SQL to understand them better.

Why do you need T-SQL or PL/SQL?

Though standard SQL is enough for inserting, retrieving, and modifying
data from the database, they only provide set-based operations, which
means there are a lot of tasks that you cannot do using plain SQL.

In order to make SQL more powerful and to expand its usage from simple
querying to create complex stored procedures for report generation, XSLT
transformation, and many other functionalities, various database vendors
started adding proprietary features on SQL supported by their platform. These
efforts created different SQL dialects e.g. T-SQL, which is a SQL dialect for
Microsoft SQL Server, and Sybase, PL/SQL which is a SQL dialect for Oracle.

In fact, every database has its own SQL dialect, which comprises features
and keywords only supported in their database e.g. MySQL has the LIMIT
keyword which can be used for pagination or solving problems like second
highest salary, but it will not work on Oracle or Microsoft SQL Server
database. Similarly, PostgreSQL has some features which are not available
to other databases.

It's always recommended to use standard ANSI SQL if it serves your purpose
because query written in ANSI SQL is portable across different database
vendors but if you use a proprietary keyword e.g. TOP in Microsoft SQL

GROKKING THE SQL INTERVIEW

— 210 —

Server, LIMIT in MySQL then you need to change your query when your
application migrate from one database to another.

Differences between SQL, T-SQL and PL/
SQL
Here are a couple of more differences between SQL, PL/SQL, and T-SQL for
interviews:

1. Full form

SQL stands for Structured Query language, T-SQL stands for Transact-SQL
and PL/SQL stands for Procedural Language/SQL.

2. Supported Database

SQL is supported across all database vendors like Oracle, SQL Server,
MySQL, PostgreSQL, IBM DB2, and even lightweight databases like
SQLLite, but T-SQL is only supported in Microsoft SQL Server and Sybase,
and PL/SQL is supported only in Oracle.

3. Performance

Another key difference between SQL and PL/SQL, T-SQL is the
performance improvement by saving database roundtrip. Both PL/SQL and
T-SQL allow grouping of SQL statements which means if your code has 4
SELECT SQL queries then instead of making four round trips to the
database, they can be sent as one single unit to the database and their result
will also come back as one unit.

DEEP DIVE

— 211 —

4. SQL Query Requirement

There is an interesting difference between SQL and T-SQL in terms of
minimum SELECT query requirements. According to standard SQL, a
SELECT query must have at minimum FROM and SELECT clauses, but you
can create a SELECT query in T-SQL with just a SELECT clause, without
FROM clause. For example, the following SQL query is invalid according to
SQL standard but it works fine in T-SQL supported databases like Sybase
and MSSQL:

SELECT 'Java' AS Language, 1 AS RANK;

The output of the query is a single row with attributes resulting from the
expression with names assigned using the aliases e.g.

Language Rank

Java 1

5. Data Types and Keyword

There are some data types which are supported only by PL/SQL and T-SQL
e.g. TINYINT data type is only available in T-SQL and VARCHAR2 and
NUMBER is only available in PL/SQL or Oracle database. Similarly, there are
keywords which are only available in a particular SQL dialect like the LIMIT
keyword which is only available in MySQL.

That's all on the difference between SQL, T-SQL, and PL/SQL. Just
remember that both T-SQL and PL/SQL are dialects of SQL, which is the
standard specified by ANSI for managing data in relational databases. T-
SQL is only supported in Sybase and SQL SERVER, while PL/SQL is only
supported in the Oracle database. Though both T-SQL and PL/SQL are
more powerful than SQL and provide several languages construct to do
more with database e.g. conditionals, loops, branching, etc.

GROKKING THE SQL INTERVIEW

— 212 —

How to check for Null in SQL Query?
One of the most common SQL Interview questions on Programming
interviews is to select some rows from a table that also contains null values.
Since many SQL developers are used to using = and != operator on
WHERE clause, they often tend to forget the fact that column allows NULL
or not.

Using = or != is perfectly fine if your column has NOT NULL constraint and
you know for sure that there are no NULL values in that column, but it does
contain NULLs then your SQL query will return the incorrect result at times.

This is one of the most common mistakes but at the same time hard to find
SQL bugs if it managed to get into the real environment. In this article, you
will learn the right way to check NULL values in SQL queries using IS NULL
and IS NOT NULL predicates.

The right way to compare values in a column that allows NULL

In most of the SQL interviews, you will be given a table that contains both
NULL and non-null values and you need to write some SQL queries to
retrieve data from those tables. For example, consider the following table
which just contains one column, Id, and the following values.

CREATE TABLE #test (id int)
INSERT #test VALUES(1)
INSERT #test VALUES(2)
INSERT #test VALUES(null)

Now, the question is, how many records the following query will return?

SELECT * FROM #test WHERE id != 1

DEEP DIVE

— 213 —

Many SQL programmers will answer that it will return 2 records, which is
wrong. This query will only return one record, the row with Id=2 as shown
below:

SELECT * FROM #test WHERE id != 1
id
2

Why? Why the row with NULL Id was was not returned? Because when you
compare something with NULL the result is Unknown, not true or false.
SQL uses three value logic, true, false, and unknown.

In order to check for NULL values, you must use IS NULL or IS NOT NULL
clause. For example, to include the row with Id as NULL, you can modify
your SQL query like

SELECT * FROM #temp WHERE id != 1 OR id IS NULL

Output
id
2
NULL

You can see that it returned both rows. Remember even comparing NULL
to NULL doesn't work, it also returns unknown e.g. if you try to write the
above query using = operator it will not work as shown below:

SELECT * FROM #temp WHERE id != 1 OR id = NULL
id
2

You can see it just return 1 row, the row with Id=NULL was not included
again. Always remember null != null in SQL whether it's Oracle, MySQL,
PostgreSQL, or Microsoft SQL Server.

GROKKING THE SQL INTERVIEW

— 214 —

How to test for not null values in SQL? IS NOT NULL Example

Similarly to test for values that are not null, instead of using the!= operator
use IS NOT NULL operator. For example, the following query which we
have written to return all the rows where Id is NOT NULL will not work
because we are using != operator

SELECT * FROM #temp WHERE id != NULL
(0 row(s) affected)

Instead, you should use IS NOT NULL as shown below:

SELECT * FROM #temp WHERE id IS NOT NULL
id
1
2

That's all about the right way to check for NULL values in the WHERE clause
in the SQL query. Don't use = or != operator to compare values if your column
allows NULLs, it may not return what you expect because comparing NULL
with anything else returns Unknown. Instead, you should always use IS NULL
and IS NOT NULL to check for null values in SQL queries.

DEEP DIVE

— 215 —

Difference between CAST, CONVERT, and
PARSE function in Microsoft SQL Server?
Though all three, CAST, CONVERT, and PARSE are used to convert one data
type into another in SQL Server, there are some subtle differences between
them. The CAST method accepts just two parameters, expression, and target
type, but CONVERT() also takes a third parameter representing the format
of conversion, which is supported for some conversions, like between
character strings and date-time values. For example, CONVERT(DATE,
'2/7/2015', 101) converts the character string '2/7/2015' to
DATE using DATE format 101, representing United States standard.

By using the PARSE function, you can also indicate the culture by using any
culture supported by Microsoft's dot NET framework. For example,
PARSE('7/8/2015' AS DATE USING 'en-US') parses the input
literal as a DATE by using the United States English Culture, similar to 101
formatting style.

CAST vs CONVERT vs PARSE Exam in SQL Server

Here are some other differences between CAST, CONVERT, and PARSE
methods for data type conversion in SQL Server:

1. ANSI SQL Standard

CAST is supported by ANSI SQL Standard, so it's a best practice to prefer
CAST over CONVERT and PARSE if it's enough to do the job.

2. .NET and CLR Dependency

PARSE function relies on the presence of the .NET Framework common
language runtime (CLR), which may be an extra dependency and may not
be present in every Windows server where you have installed Microsoft SQL
Server.

GROKKING THE SQL INTERVIEW

— 216 —

3. Optional USING Clause

The PARSE function supports an optional USING clause indicating the
culture, which is any valid culture supported by the .NET framework.

If culture is not specified then it will use the current session's effective
language.

4. Syntax

Using CAST:

CAST (expression AS data_type)

Using CONVERT:

CONVERT (data_type [(length)] , expression [,
style])

Using PARSE

PARSE (string_value AS data_type [USING culture]
)

Both CAST and CONVERT are used to explicitly converts an expression of
different data types in SQL

5. Examples

Let's see some examples to convert DATE to VARCHAR in Microsoft SQL
Server using the cast(), convert(), and parse function.

DEEP DIVE

— 217 —

CAST Function Example

Let's some examples of CAST function to convert the DATETIME data type
to VARCHAR and VARCHAR data type to SMALLINT data type in SQL
Server:

-- casting DATE to VARCHAR in SQL Server
SELECT CAST(GETDATE() AS VARCHAR(30)) AS Today

Today
Apr 25 2017 6:32AM

-- CASTING VARCHAR to INT in Microsoft SQL Server

SELECT CAST('1234' AS SMALLINT) AS Number
Number
1234

You can see that the casting has been successful.

CONVERT Function Example

Now, let's try to convert the same values using the Convert function in SQL
Server:

-- converting DATE to VARCHAR in SQL Server
SELECT CONVERT(VARCHAR(20), GETDATE(), 101) AS Today
Today
07/23/2015

-- converting VARCHAR to INT in Microsoft SQL Server
SELECT Convert(bigint, '222222') AS MagicNumber
MagicNumber
222222

Convert function is mainly used to convert Date to VARCHAR value into
different date formats as shown here.

GROKKING THE SQL INTERVIEW

— 218 —

Here is the screenshot of executing SQL queries with CAST and Convert in
SQL Server Management Studio:

PARSE Function Example

Let's see some examples of PARSE function to convert VARCHAR data type
to DATETIME2 and MONEY data type using different locale or cultures:

-- Parsing VARCHAR to DATETIME2 data type
SELECT PARSE('Monday, 25 December 2017' AS datetime2
 USING 'en-US') AS CurrentDate;

CurrentDate
2017-12-25 00:00:00.0000000

-- Parsing VARCHAR with currency symbol to MONEY
data type
SELECT PARSE('€345,98' AS money USING 'de-DE') AS
Price;

Price
345.98

DEEP DIVE

— 219 —

You can see that the amount of currency value Euro is parsed correctly
because of German culture, but if you try to change the currency symbol to
$ it will not parse and give you an error as shown below:

-- Parsing VARCHAR with dollar currency symbol to
MONEY data type
--- using german culture
SELECT PARSE('$345,98' AS money USING 'de-DE') AS
Price;

Msg 9819, Level 16, State 1, Line 2
Error converting string value '$345,98' into data
type money
using culture 'de-DE'.

But as soon as you change the culture to en-US it will be able to parse the
currency value correctly, but do note down the actual value which is very
different from the german one, that's where culture can make a big difference.

-- Parsing VARCHAR with dollar currency symbol to
MONEY data type
--- using US culture
SELECT PARSE('$345,98' AS money USING 'en-US') AS Price;

Price
34598.00

Here is one more example of using the PARSE function in SQL Server to
parse String using implicit language setting

-- PARSE with implicit setting of language
-- The English language is mapped to en-US specific
culture
SET LANGUAGE 'English';
SELECT PARSE('04/16/2017' AS datetime2) AS Output;

Output
2017-04-16 00:00:00.0000000

GROKKING THE SQL INTERVIEW

— 220 —

Here is the screenshot of executing PARSE related SQL queries on the SSMS
tool:

That's all about the difference between CAST, CONVERT, and PARSE in
SQL SERVER. Prefer CAST over CONVERT and PARSE because it's ANSI
standard and your query will be more portable across different database
vendors. I generally prefer CAST for casting between VARCHAR and
NUMERIC type, but I prefer to use CONVERT for converting String literals
into DATE, TIME, and DATETIME types. I don't use PARSE, but it is
something good to know about it.

Difference between UNION vs UNION
ALL in SQL
Hello guys, what is the difference between UNION vs UNION ALL is one
of the most popular SQL interview questions and often asked programmers
during a telephonic round of interviews. Though both UNION and UNION
ALL is used to combine results of two SELECT queries, the main difference
between them is that UNION doesn't include duplicate record but
UNION ALL does.

DEEP DIVE

— 221 —

Another difference between them is that UNION ALL is faster than UNION
but may look slow because it returns more data which takes more time to
travel via the network. The difference between UNION and UNION ALL
can be a tricky SQL question, especially for developers, who have not used
this useful keyword ever.

Since the UNION clause is not as common as a SELECT clause in SQL, it's
usually asked in a telephonic round of programming interviews to check
whether the candidate is comfortable with SQL or not. It's in the same league
of questions like clustered vs non-clustered index or primary vs unique key.
UNION is very different than other SQL commands because it operates on
data rather than columns.

Anyway, the answer to this question is simple, though both UNION and
UNION ALL are used to combine the result of two separate SQL queries on
the same or different table, UNION does not keep a duplicate record (a row
is considered duplicate if the value of all columns is same), while UNION
ALL does.

Since you mostly don't want duplicate rows, UNION is preferred over
UNION ALL in reporting and application development. By the way, you
should keep in mind that UNION ALL performance better than UNION
because it doesn't have to remove duplicates, so no extra work.

This keyword is very well supported by all major databases like Oracle,
Microsoft SQL Server, MySQL, and PostgreSQL. Another thing to keep in
mind is the amount of data returned by UNION ALL; if your database server
is quite far away and you have limited bandwidth, UNION ALL may appear
slower than UNION because of the number of duplicates it returned.

The cost of transferring duplicate rows can exceed the query execution
benefits in many cases. We will see a couple of examples UNION and

GROKKING THE SQL INTERVIEW

— 222 —

UNION ALL in SQL, but before that few things to keep in mind. In order to
combine the results of two queries, they must contain the same number of
columns.

For example, if one query contains 3 columns and the other contains 4
columns then you cannot use UNION or UNION ALL. This is because a row
will only be considered duplicated when all columns will have the same
value, irrespective of the name of the columns themselves.

UNION and UNION ALL Example in Microsoft SQL Server

Let's see one simple example of UNION and UNION ALL, this will not only
show you how they work but also where you can use them. This example is
from my sample database and the following screenshot is from SQL Server
Management Studio.

We have two tables, Employee and Customer. In order to use UNION
and UNION ALL, I have kept the same persons as employee and customer,
so you will see the same id on emp_id and customer_id, and the same
name as well.

If you look at the result of the first two select queries, you will see that the
first query returns two rows and the second query returns three rows, where
two rows have exactly the same data as the first query.

Key things to note is that column names are different in both result sets, first
one has emp_id and emp_name, while second data set has customer_id
and customer_name, but most important both dataset has only two
columns. This is a must in order to combine them using UNION and UNION
ALL keywords.

The third query is an example of how to use the UNION clause in SQL, you
can see that the combined result has just three columns, all are unique.

DEEP DIVE

— 223 —

Duplicate columns from the second result set were not included. This is
more like how you do UNION in Set theory, where the final result contains
data from both sets.

The fourth query is how you should use UNION ALL, it contains five rows,
two from the first query and three from the second query. It has not
removed duplicate rows from the second query, that's why you see Ken and
Bob repeating twice.

This example teaches us the core concept that the UNION doesn't depend
upon the column name but the data. You can combine the result of as many
queries as possible until the number of columns in all of them is the same
and the data is from the same set.

Regarding performance, you need to run UNION and UNION ALL with a
large database, containing millions of rows. There you can monitor how
much time both takes and compare them.

Theoretically, UNION ALL should take less time to execute but more time
to transfer data to the client.

GROKKING THE SQL INTERVIEW

— 224 —

DEEP DIVE

— 225 —

Difference between UNION and UNION
ALL command in SQL
Now we know how union and union all works and has some background by
following the above examples, let's summarise the similarities and difference
between them for quick revision :

1. Combining Results

Both UNION and UNION ALL are used to combine the results of two separate
SQL queries, it could be on the same table or a different table but the data
should be the same.

For example, if product_id is used in two tables like Product and
Order, then two SQL queries which pulls product_id from these two
tables can be combined using UNION or UNION ALL.

2. Duplicates

The key difference between UNION and UNION ALL is that the former will
remove duplicates but later will keep them. In other words, UNION is equal
to running distinct on the output of UNION ALL.

For example, if product_id 10 is returned by both SQL query then it will
only appear once if you use UNION and appear twice if you use UNION
ALL.

3. Execution time

Due to the above difference query execution time of UNION ALL is smaller
than UNION, which means the former runs faster than the latter. So if you
want faster output and don't care about duplicates use UNION ALL.

This is something you can also guess from your existing SQL knowledge and
that's where working on fundamentals pays off.

GROKKING THE SQL INTERVIEW

— 226 —

4. Speed and Bandwith Usage

You should keep in mind that benefits gained by not removing duplicates
can be easily wiped out by transferring more data over a poor bandwidth
network connection.

That's why in practice some time UNION ALL appears slower than UNION
because it returns a lot of data with duplicates which require more time to
travel from database server to client machine. To evaluate the performance
of UNION and UNION ALL case by case.

5. Number of Columsn on ResultSet

Another worth noting thing while using UNION and UNION ALL is that
all queries combined using a UNION, INTERSECT, or EXCEPT operator
must have an equal number of expressions in their target lists.

For example, if the result of query 1 has three columns and the result of
query 2 has two columns then you cannot combine them using the UNION
command.

That's all on the difference between the UNION and UNION ALL
command in SQL. It's one of the useful commands to combine the result of
two SELECT queries when they contain the same data. There are many
practical scenarios where UNION is very useful, for example when you need
to create a list out of different tables containing data from the same set.

The main difference between UNION and UNION ALL is about duplicates,
the former removes it while later keeps it, other differences between them
on performance and networking bandwidth usage can be easily derived by
knowing this difference. Also keep in mind that it is well supported big three
databases like MySQL, Oracle, and SQL Server. Let us know if you have been
asked this question in your SQL interview.

DEEP DIVE

— 227 —

Difference between table scan, index scan,
and index seek in SQL Server Database
Hello guys, a good understanding of how the index works and how to use
them to improve your SQL query performance is very important while
working in a database and SQL and that's why you will find many questions
based upon indexes on Programming Job interviews. One of such frequently
asked SQL questions is the real difference between table scan, index scan, and
index seek? Which one is faster and why?

How the database does chooses which scan or seek to use? And how you can
optimize the performance of your SQL SELECT queries by using this
knowledge. In general, there are only two ways in which your query engine
retrieves the data, using a table scan or by using an index.

Which method is used for your particular query depends upon what indexes
are available in that table, what columns you are requesting in your query,
the kind of joins you are doing, and the size of your tables.

If you have a clear understanding of how the index works and how the SQL
engine retrieves data from the disk then you can quickly identify performance
problems and solve them. That's where most of the SQL developers, especially
the Java application developer who write queries and design databases lack.

Btw, if you are not familiar with what is an index and how to create and drop
an index, then I suggest you first go through these free SQL and Database
courses to learn those basics.

Difference between table scan, index
scan, and index seek in Database
In this article, we'll go through each three i.e. table scan, index scan, and
index seek, and try to understand how databases process a particular query
hence a basic understanding of database, SQL and index is required.

GROKKING THE SQL INTERVIEW

— 228 —

1. What is a Table Scan in a database?

A table scan is a pretty straightforward process. When your query engine
performs a table scan it starts from the physical beginning of the table and
goes through every row in the table. If a row matches the criterion then it
includes that into the result set.

You might have heard nasty things about table scans but in truth, it's the fastest
way to retrieve data especially if your table is quite small. It starts being bad
when your table starts growing. You can imagine doing a full table scan in a
table with 4 million rows and a full table scan in a table with just 100 rows.

In a small table, a query engine can load all data in just one shot but in a
large table, it's not possible, which means more IO and more time to process
those data.

Normally, a full table scan is used when your query doesn't have a WHERE
clause, I mean, you want more or less every record from a table like the
following query will use a full table scan:

SELECT * from Employee;

Btw, if your query is taking too long in a large table then most likely it using
either table scan or index scan. You can see that by enabling an execution
plan like by doing Ctrl + A in Microsoft SQL Server Management Studio

2. What is the Index Scan in a database?

If your table has a clustered index and you are firing a query that needs all
or most of the rows i.e. query without WHERE or HAVING clause, then it
uses an index scan. It works similar to the table scan, during the query
optimization process, the query optimizer takes a look at the available index
and chooses the best one, based on information provided in your joins and
where clause, along with the statistical information database keeps.

DEEP DIVE

— 229 —

Once the right index is chosen, the SQL Query processor or engine navigates
the tree structure to the point of data that matches your criteria and again
extracts only the records it needs

The main difference between a full table scan and an index scan is that
because data is sorted in the index tree, the query engine knows when it has
reached the end of the current it is looking for. It can then send the query,
or move on to the next range of data as necessary.

For example, the following query, same as above will use Index scan if you
have a clustered index in your table:

SELECT * From Employee;

This is slightly faster than the table scan but considerably slower than an
index seek which we'll see in the next section.

3. What is Index Seek in SQL?

When your search criterion matches an index well enough that the index
can navigate directly to a particular point in your data, that's called an index

GROKKING THE SQL INTERVIEW

— 230 —

seek. It is the fastest way to retrieve data in a database. The index seeks are
also a great sign that your indexes are being properly used.

This happens when you specify a condition in WHERE clause like searching
an employee by id or name if you have a respective index.

For example, the following query will use an index seek, you can also
confirm that by checking the execution plan of this query when you run this
on SQL server:

SELECT * from Employee where EmployeeId=3;

In this case, the Query Optimizer can use an index to directly go to the third
employee and retrieve the data. If you look at the execution plan shown
below, you can see that it uses an index seek using the index created on
EmployeeId.

Difference between table scan, index
scan, and index seek in SQL
Based upon our understanding of indexes, you can now deduce the
following points to summarize the difference between table scan, index
scan, and index seek in a database:

1. A table scan and an index scan are used when you need to retrieve
all data like 90% to 100% while index seek is used when you need to
retrieve data based upon some conditions like 10% of data.

2. If your query doesn't have a WHERE clause and your table doesn't
have a clustered index then a full table scan is used, if it does have a
clustered index then an index scan is used.

3. Index scan is faster than a table scan because they look at sorted data
and query optimizers know when to stop and look for another
range.

DEEP DIVE

— 231 —

4. Index seek is the fastest way to retrieve data and it comes into the
picture when your search criterion is very specific. Normally, when
you have a WHERE clause in your query and you are using a column
that also has an index, then index seek is used to retrieve data as
shown in the following query:

select * from Employee where Id= 3;

You can confirm that by actually looking at the execution plan for your
query.

In MSSQL management studio, you can see the execution plan by clicking
Ctrl + A and then running your query.

That's all about the difference between table scan, index scan and index
seek in a database. As I told you, there are only two ways to retrieve data in
a database either by using a table scan or by using an index. The latter is
faster in the case of large tables. The choice of the index depends upon
multiple things like the WHERE clause and joins in your table, the columns
you are requesting, the size of tables, etc.

If you feel that your query is slow, you must check the execution plan to
confirm whether it's using index seeks or index scan, or table scan. Then you
can optimize your query by introducing the right index or tuning your query.

Difference between ISNULL() and
COALESCE() function in SQL?
Even though both ISNULL() and COALESCE() function provides alternate
values to NULL in T-SQL and Microsoft SQL Server e.g. replacing NULL
values with empty String, there are some key differences between them, which
is often the topic of SQL Server interview. In this article, you will not only learn
the answer to this question but also learn how to use COALESCE and ISNULL

GROKKING THE SQL INTERVIEW

— 232 —

function properly. One of the main differences between them is that
COALESCE() is a standard SQL function but ISNULL() is Microsoft SQL
Server-specific, which means it's not guaranteed to be supported by other
database vendors like Oracle, MySQL, or PostgreSQL.

But, perhaps the most important difference between them is that
COALESCE is more flexible and powerful than ISNULL().

With ISNULL(), you can only provide one alternate value but with
COALESCE you can provide more than one e.g. if col1 IS NULL then take
value from column2, if that is NULL then take the default value.

Btw, that's not the only difference, there are three key differences between
ISNULL() and COALESCE() which we will explore in this article.

Difference between ISNULL() vs
COALESCE() in SQL Server
There are three major differences between these two functions besides being
ANSI standard or not:

1. COALESCE correctly promotes its arguments to the highest data
type in the expression list, but ISNULL doesn't.

2. COALESCE is more flexible and allows you to provide multiple
columns and default values but ISNULL can only work with two
values.

3. In the case of ISNULL, the alternate value takes the length of the first
value but this doesn't happen in the case of COALESCE. This means
the type of COALESCE expression is determined by the returned
element whereas the return type of ISNULL is determined by the
first input.

DEEP DIVE

— 233 —

4. When you use them in a SELECT INTO query then both will
produce a NON-NULL value in the result table if the attribute has
NON NULL constraint but if it doesn't then COALESCE will create
an attribute that allows NULL and ISNULL will create which doesn't
allow NULLs

Now let's understand each point in little more detail.

1. COALESCE promotes its argument to the higher data type.

As I have said before that, COALESCE correctly promotes its arguments to
the highest data type in the expression list, while ISNULL just looks at the
data type of the first argument and makes everything of that type. Let's see
an SQL query to understand this point:

SELECT 19 / ISNULL(CONVERT(INT,NULL), 3.00);
Output
6

SELECT 19 / COALESCE(CONVERT(INT,NULL), 3.00)
Output
6.333333

In the first SQL query, we have used ISNULL and the first data type is INT
but because of its NULL, it also converts 3.00 to INT and performed integer
arithmetic, but COALESCE correctly promotes the 19 to FLOAT and
performed floating-point arithmetic.

2. COALESCE allows multiple values but ISNULL allows only one value

You can provide COALESCE multiple values to use in case the target is
NULL.

GROKKING THE SQL INTERVIEW

— 234 —

For example, in the following query, we have provided four options to
COALESCE

DECLARE @x VARCHAR(10)
DECLARE @y VARCHAR(10)
DECLARE @z VARCHAR(10)
DECLARE @a VARCHAR(10)
SELECT @a = 'SQL'

--This will return SQL
SELECT COALESCE(@x,@y,@z,@a)

Output
SQL

With ISNULL, you can only provide two values e.g.

SELECT ISNULL(@x,@y); --NULL
SELECT ISNULL(@x,@a); --SQL

This flexibility allows you to replace complex case statements with simple
coalesce functions called on SQL Server stored procedures and functions.
See these free SQL and database courses to learn more about it.

3. Length of Result

In the case of COALESCE data type of the result, value determines the type
of COALESCE expression but in the case of ISNULL, it's the type of the first
argument. For example, see the following T-SQL Query:

DECLARE
@a AS VARCHAR(4) = NULL,
@b AS VARCHAR(10) = '1234567890';
SELECT COALESCE(@a, @b) AS [COALESCE], ISNULL(@a,
@b) AS [ISNULL];

Output
COALESCE ISNULL
1234567890 1234

DEEP DIVE

— 235 —

You can see that in the case of COALESCE() the result has type and length
VARCHAR(10) but in the case of ISNULL() is the length of the first value
i.e. length is 4 characters. Another worth noting thing is the use of square
bracket e.g. [ISNULL], we do this when we use any keyword or function as
literal i.e. variable name or column name.

4. The behavior of COALESCE and ISNULL when used in SELECT INTO

One more difference between COALESCE and ISNULL comes when you
are using them in the SELECT INTO clause. If you don't know you can
create a table by copying data and schema from another table by using the
SELECT INTO clause.

If you are using something like:

COALESCE(column1, 0) as new_column

vs

ISNULL(column1, 0) as new_column.

Then, both expressions will produce a NOT NULL attribute in result table
if the source is defined as NOT NULL, but in case source attribute allows
NULLs then COALESCE will create an attribute that allows NULL and
ISNULL will create which doesn't allow NULLs.

That's all about the difference between ISNULL and COALESCE in SQL
Server. Generally, it's recommended to stick to standard features unless
there is some flexibility or major performance you get by using a non-
standard feature.

Since ISNULL is actually more limited than COALESCE, so there is no
reason to use ISNULL over COALESCE, unless you find ISNULL more
readable than COALESCE, like many beginners.

GROKKING THE SQL INTERVIEW

— 236 —

Btw, you must remember these key differences between ISNULL and
COALESCE if you are refactoring code and replacing ISNULL with
COALESCE in your SQL Script.

How to Find Nth Highest Salary in
MySQL and SQL Server? Example
LeetCode Solution

Nth Highest Salary in MySQL and SQL Server - LeetCode Solution

Write a SQL query to get the nth highest salary from the Employee table.

+----+--------+
| Id | Salary |
+----+--------+
1	100
2	200
3	300
+----+--------+

For example, given the above Employee table, the nth highest salary where
n = 2 is 200. If there is no nth highest salary, then the query should return
null.

1. Accepted Solution

This was my accepted solution for this LeetCode problem:

CREATE FUNCTION getNthHighestSalary(N INT) RETURNS
INT
 BEGIN
DECLARE M INT;
SET M = N - 1;

RETURN (

DEEP DIVE

— 237 —

 # WRITE your MySQL query statement below.
 SELECT DISTINCT Salary FROM Employee ORDER BY
Salary DESC LIMIT M, 1
);
END

2. Alternate Solution

This is another solution to find Nth highest salary problem, this was not
accepted by LeetCode compiler but they work fine on Database

CREATE FUNCTION getNthHighestSalary(N INT) RETURNS
INT

BEGIN

 RETURN (

 # WRITE your MySQL query statement below.

 SELECT Salary FROM Employee a
 WHERE N = (SELECT COUNT(Salary)
 FROM Employee b
 WHERE a.Salary <=
b.Salary)

);

END

3. How to create own Employee table for testing?

If you want to test in your local database then you can use the following SQL
query to create an Employee table and populate with some sample data.
After that, you can run the SQL query to find the Nth highest salary for
testing.

GROKKING THE SQL INTERVIEW

— 238 —

CREATE TABLE Employee (
 Id INT NOT NULL,

 Salary INT NULL

);

INSERT INTO Employee VALUES (1, 100);

INSERT INTO Employee VALUES (2, 200);

INSERT INTO Employee VALUES (3, 300);

4. SQL query to find the Nth highest salary

Here is the SQL query you can use to find the Nth highest salary for the
above table, you can run this in your local database and it should return the

SELECT Salary FROM Employee a
WHERE N = (SELECT COUNT(Salary) FROM Employee b
WHERE a.Salary <= b.Salary);

For example, given the above Employee table, the nth highest salary where
n = 2 is 200. If there is no Nth highest salary, then the query should return
null. You can see that we have used the above query to find the highest,
second-highest, and third-highest salaries from the employee table.

Difference between VARCHAR and
CHAR data type in SQL Server?
Hello all, today, I am going to share an interesting SQL Server interview
question, which will not only help you in your interview but also in your
day-to-day work. It explains one of the critical concepts of SQL Server, the

DEEP DIVE

— 239 —

difference between VARCHAR and CHAR data type. I am sure, you all
have used both of them numerous times but because it's so common many
of us ignore the difference between them and when asked to choose between
VARCHAR and CHAR on interviews, they fail to give a convincing reason.
The difference is not just significant from an interview point of view but also
from a robust database design because an incorrect choice of data type not
only limit what kind of data you can put on but also waste precious space
and makes your query slower, particularly when you have to deal with the
massive amount of data.

In order to understand the difference, it's also essential to understand the
similarity between them so, let's start with that. VARCHAR and CHAR both
stores character, text, or String data like name, address, etc. One of the
important detail to know here is that both stores non-Unicode characters,
and there is a separate data type NCHAR and NVARCHAR for storing
Unicode characters.

The key difference between CHAR and VARCHAR is that the former is a
fixed-length data type while later is a variable-length data type. Yes, the VAR
stands for variable length in VARCHAR. To give you an example, CHAR(10)
is a fixed-length non-Unicode string of length 10, while VARCHAR(10) is a
variable-length non-Unicode string with a maximum length of 10.

This means the actual length will depend upon the data. For example, if you
are going to sore a single character string like "Y" then VARCHAR will take
less space than CHAR because it will adjust depending upon the length of
data. Typically, you would use the char if all data values are 10 characters
and varchar if the lengths vary.

It's better to use the data type that will take less space. In SQL Server 2005,
2008, 2012, and 2014, NVARCHAR takes more space than VARCHAR data
type, almost 2x as much space as VARCHAR.

GROKKING THE SQL INTERVIEW

— 240 —

So, use VARCHAR if you know that all your data would be in ASCII
encoding, but if you are going to store Unicode strings like storing data from
different languages, then you need to use NVARCHAR to support Unicode
data.

NVARCHAR is a must if you intend to support internationalization (i18n)

Similarities between CHAR vs. VARCHAR
in SQL
Now, that you understand the fundamental similarity and differences
between char and varchar, let's see some more important points for revision:

1. Both stores non-Unicode characters.

2. Both are character data types.

3. Both take 1 byte to store one character.

4. The maximum length of both CHAR and VARCHAR data types is
8000 characters in SQL Server. Maximum length is defined in
parenthesis, e.g. maximum length of CHAR(6) is 6 characters, and
the maximum length of VARCHAR(6) is also 6 characters.

The size (9000) given to the type 'varchar' exceeds the maximum allowed for
any data type (8000).

DECLARE @abc AS CHAR (8000);

DECLARE @abcd AS VARCHAR (8000);

Don't confuse length and size here, the length here represents how many
characters a CHAR or VARCHAR variable can take, and size represents the
storage bytes they take to store those characters.

DEEP DIVE

— 241 —

CHAR vs. VARCHAR in SQL Server

And, here are some of the key differences between CHAR and VARCHAR
data types in SQL

1. Fixed vs Variable storage

CHAR is a fixed storage data type, but VARCHAR is a variable storage data
type.

What this means is that the storage size of the CHAR column or variable is
always fixed, as specified initially but the storage size of the VARCHAR
column or variable depends upon actually stored data.

For example, if you create a variable of type CHAR(6) then it will always
take 6 bytes, whether or not you store six characters (1 byte per character)
but VARCHAR(6) column can take anything between 2 to 8 bytes. 2 bytes
are additional overhead, and 1 to 6 bytes are actual storage depending upon
how many characters you store.

2.Usage

You should use CHAR when your data is of fixed length, like telephone
numbers, zip code, cc number, ba num, ss numbers, etc.

Another use of CHAR data type is storing boolean columns like 'Y' and 'N'.

You can use the VARCHAR type column to store things that are not of fixed
length like name, comment, etc.

3. Storage

CHAR variables always take the same storage space irrespective of the
number of characters actually stored, while the VARCHAR variable's
storage size depends upon the actual number of characters stored.

GROKKING THE SQL INTERVIEW

— 242 —

4. Space Overhead

 VARCHAR data type has an overhead of 2 bytes as compared to CHAR
variables. This means if your data is always fixed length, then storing them
into VARCHAR will take more space than CHAR.

5. Padding

In the case of CHAR, data are padded to make specific characters long, no
padding is done on VARCHAR columns

6. Null

A CHAR column cannot hold a NULL, so behind the scene, SQL will
actually use a VARCHAR field like CHAR(x) NULL column is actually a
VARCHAR(x) column.

7. Reservation

CHAR reserves storage space, VARCHAR doesn't

8. Index

Use of index can fail if you provide wrong data type like in SQL Server when
you have an index over a VARCHAR column and present it a Unicode
String, MSSQL Server will not use the index.

That's all about the difference between CHAR and VARCHAR data types
in SQL. In short, CHAR is a fixed-size data type, while VARCHAR is a
variable-size data type, where actual storage space depends upon an actual
number of characters stored in the column.

You should always use the right data type to minimize storage requirements.
Using incorrect data types not only results in wasted space but also affects
the performance of the SQL query.

DEEP DIVE

— 243 —

Difference between WHERE and HAVING
clause in SQL? Example
The main difference between the WHERE and HAVING clauses comes
when used together with the GROUP BY clause. In that case, WHERE is
used to filter rows before grouping, and HAVING is used to exclude records
after grouping. This is the most important difference, and if you remember
this, it will help you write better SQL queries. This is also one of the
important SQL concepts to understand, not just from an interview
perspective but also from a day-to-day use perspective. I am sure you have
used the WHERE clause because it's one of the most common clauses in
SQL along with SELECT and used to specify filtering criteria or conditions.

You can even use the WHERE clause without HAVING or GROUP BY, as
you have seen many times. On the other hand, HAVING can only be used if
grouping has been performed using the GROUP BY clause in the SQL query.

Another worth noting thing about the WHERE and HAVING clause is that
the WHERE clause cannot contain aggregate functions like COUNT(),
SUM(), MAX(), MIN(), etc but the HAVING clause may contain aggregate
functions.

Another worth noting the difference between WHERE and HAVING clause
is that WHERE is used to impose filtering criterion on a SELECT, UPDATE,
DELETE statement as well as single row function and used before group by
clause but HAVING is always used after group by clause.

If you are starting with SQL, then these are some of the fundamentals you
need to learn, and a good course can help you a lot. If you need a
recommendation, I suggest you join any of these best SQL and database
courses online. This list contains the best courses from Udmey, Coursera,
Pluralsight, and other websites.

GROKKING THE SQL INTERVIEW

— 244 —

Difference between WHERE vs. HAVING
in SQL

1. WHERE clause is processed right after FROM clause in the logical
order of query processing, which means it is processed before
GROUP BY clause while HAVING clause is executed after groups
are created.

2. If used in GROUP BY, You can refer to any column from a table in
the WHERE clause, but you can only use columns that are not
grouped or aggregated.

3. If you use the HAVING clause without group by, it can also refer to
any column, but the index will not be used as opposed to the
WHERE clause. For example, the following have the same result set,
however "where" will use the id index and having will do a table scan

select * from table where id = 1
select * from the table having id = 1

4. You can use an aggregate function to filter rows with the HAVING
clause. Because the HAVING clause is processed after the rows have
been grouped, you can refer to an aggregate function in the logical
expression. For example, the following query will display only
courses which have more than 10 students :

SELECT Course, COUNT(Course) as NumOfStudent
FROM Training
GROUP BY Course
HAVING COUNT(Course)> 10

5. Another key difference between WHERE and HAVING clause is
that WHERE will use Index and HAVING will not; for example
following two queries will produce an identical result, but WHERE
will use Index and HAVING will do a table scan

DEEP DIVE

— 245 —

SELECT * FROM Course WHERE Id = 101;
SELECT * FROM Course HAVING Id = 102;

6. Since the WHERE clause is evaluated before groups are formed, it
evaluates for per row. On the other hand, the HAVING clause is
evaluated after groups are formed; hence it evaluates per group. You
can further see these free SQL online courses to learn more about it.

When to use WHERE and HAVING clauses?

Though both are used to exclude rows from the result set, you should use
the WHERE clause to filter rows before grouping and use the HAVING
clause to filter rows after grouping. In other words, WHERE can be used to
filter on table columns while HAVING can be used to filter on aggregate
functions like count, sum, avg, min, and max.

GROKKING THE SQL INTERVIEW

— 246 —

If filtering can be done without aggregate function then you must do it on
the WHERE clause because it improves performance because counting and
sorting will be done on a much smaller set. If you filter the same rows after
grouping, you unnecessarily bear the cost of sorting, which is not used.

For example, the following statement is syntactically correct and produce
the same result, but the second one is more efficient than the first one
because it filters rows before grouping :

SELECT Job, City, State, Count(Employee) from ...
HAVING...
SELECT from .. WHERE ..

That's all about the difference between WHERE and HAVING clause in
SQL. These differences are valid for almost all major databases like MySQL,
Oracle, SQL Server, and PostgreSQL. Just remember that WHERE is used
to filter rows before grouping while HAVING is used to filter rows after
grouping. You can also use the AGGREGATE function along with the
HAVING clause for filtering.

Difference between Primary key vs
Candidate Key in SQL Database?
What is the difference between primary key and candidate key is another
popular SQL and database interview question which appears in various
programming interviews now and then? The concept of primary key and
candidate key is not just important from the interview point of view but also
in designing databases and normalization.

By the way, this is my second post about primary keys, In the last one, we
have seen a comparison of primary key vs unique key, which also happens
to be one of the frequently asked database questions.

DEEP DIVE

— 247 —

By definition primary key is a column or collection of columns, which
uniquely defines a row in a table. Candidate keys are keys that can be a
primary key and also able to uniquely identify any row in the table.

In simple terms, you may have a couple of Candidate keys and you have
chosen one of them as a primary key.

This selection part is the most important skill in database design. Since only
the primary key can have a clustered index in a table while unique keys can
have a Nonclustered index, it's important to choose the right column or
collection of columns as a primary key. Often I select a column that is most
frequently used in the Where clause of the SELECT query.

Btw, If you are new to SQL and don't understand fundamentals like primary
key, normalization, and basic SQL queries then you can also join these free
SQL courses to learn those SQL fundamentals. It's one of the best resources
to learn SQL online.

Difference between Correlated and Non-
Correlated Subquery in SQL
The correlated subquery is one of the tricky concepts of SQL. It'2s similar to
recursion in programming which many programmers struggle to understand,
but like recursion, it also offers the unique capability to solve many SQL query-
based problems like the second-highest salary problem where you need to
compare one row of the table to another row. It gives you a different kind of
power. The main difference between a regular, non-correlated, and correlated
subquery in SQL is in their working, a regular subquery just runs once and
returns a value or a set of values that is used by the outer query.

While correlated subquery runs for each row returned by the outer query
because the output of the whole query is based upon comparing the data
returned by one row to all other rows of the table. That's why it is also very slow
and generally avoided until you don't know any other way to solve the problem.

GROKKING THE SQL INTERVIEW

— 248 —

One of the most popular examples of the correlated subquery is about
finding the second highest salary of an employee in a given table. Even
though there are multiple ways to solve this problem like you can use
window functions like row_number or rank but using a regular subquery to
solve this problem is the easiest way.

Btw, even though you can solve this problem by using a regular query it
becomes tricky when the Interviewer extends this problem to find the Nth
highest salary then you just can't go with regular subquery because of
unlimited nesting.

Correlated subquery solves this problem elegantly as shown here. It compares
data returned by an outer query like salary and compares with other salaries to
find out exactly how many salaries are higher than this salary.

Difference between Correlated and
Regular Subquery in SQL
The difference between correlated and regular subquery is also a frequently
asked SQL interview question. Mostly asked on a telephonic interview
where they cannot ask you to solve queries and check the fundamentals and
theoretical concepts.

In this article, I am going to compare correlated subquery with the regular one
of different parameters e.g. their working, speed, performance, and
dependency. I'll also give you a good example of a correlated subquery e.g. the
Nth highest salary problem and explain how exactly it solves the problem.

So, if the interviewer asks you to find the 4th highest salary then there can
only be at most 4 salaries which is equal to or greater than the 4th highest
salary. This is just an example, you can use a correlated subquery to solve
many such problems in the world of data and SQL. In short, here are the
main difference between correlated and non-correlated subqueries in SQL

DEEP DIVE

— 249 —

1. Working

A non-correlated subquery is executed only once and its result can be swapped
back for a query, on the other hand, a correlated subquery is executed
multiple times, precisely once for each row returned by the outer query.

For example, the following query is an example of a non-correlated subquery:

SELECT MAX(Salary) FROM Employee
WHERE Salary NOT IN (SELECT MAX(Salary) FROM Employee)

Here the subquery is SELECT MAX(Salary) from Employee, you
can execute and substitute the result of that query e.g. if subquery return
10000 then the outer query is reduced to

SELECT MAX(Salary) from Employee where Salary NOT IN (10000).

This is not possible with a correlated subquery, which needs to be executed
multiple times as shown below:

SELECT e.Name, e.Salary FROM Employee e
WHERE 2 = (
SELECT COUNT(Salary) FROM Employee p WHERE p.salary
>= e.salary)

In this example, the subquery is SELECT COUNT(Salary) FROM

Employee p WHERE p.salary >= e.salary, you cannot swap its
value for the outer query because it needs to be executed for each employee.

Let's say the first row of employees has a salary of 5000, in this case, e.salary
will be 500 and subquery will be

SELECT COUNT(Salary) FROM Employee p WHERE p.salary >= 5000

and subquery will find how many salaries are higher than 5000 if count
return 2 then it's the second-highest salary. This logic needs to be executed
for each row the outer query will process.

GROKKING THE SQL INTERVIEW

— 250 —

2. Dependency

A correlated subquery depends upon the outer query and cannot execute in
isolation, but a regular or non-correlated subquery doesn't depend on the
outer query and can execute in isolation.

From the above example, you can see that a correlated subquery like
SELECT COUNT(Salary) FROM Employee p WHERE p.salary
>= e.salary depends upon outer query because it needs the value of
e.salary, which comes from the table listed on the outer query.

On the other hand, regular subquery, SELECT MAX(Salary) FROM
Employee doesn't depends upon the outer query and can be executed in
isolation or independently of the outer query. You can further join these free
SQL and database courses to learn more about Correlated and non-
correlated subqueries and how to use them.

3.Speed and Performance

A correlated subquery is much slower than a non-correlated subquery
because in the former, the inner query executes for each row of the outer query.

DEEP DIVE

— 251 —

This means if your table has n rows then whole processing will take the n *
n = n^2 time, as compared to 2n times taken by a non-correlated subquery.

This happens because to execute a non-correlated subquery you need to
examine just n rows of the table and similar to execute the outer query you
need to examine n rows, so in total n + n = 2n rows.

This is the reason you should be very careful using a correlated subquery
with large tables e.g. tables with millions of rows because that can take a long
time and could potentially block other jobs and queries from accessing the
table.

In many cases, you can replace correlated subquery with inner join which
would result in better performance. For example, to find all employees
whose salary is greater than the average salary of the department you can
write the following correlated subquery:

SELECT e.id, e.name
FROM Employee e
WHERE salary > (
SELECT AVG(salary)
FROM Employee p
WHERE p.department = e.department)

Now, you can convert this correlated subquery to a JOIN based query for
better performance as shown below:

SELECT e.id, e.name
FROM Employee INNER JOIN
(SELECT department, AVG(salary) AS
department_average
FROM Employee
GROUP BY department) AS t ON e.department =
t.department
WHERE e.salary > t.department_average;

GROKKING THE SQL INTERVIEW

— 252 —

That's all about the difference between correlated and non-correlated
subquery in SQL. You have learned that correlated subquery is executed for
each row returned by an outer query, which makes it very slow, but at the
same time gives it the power to compare one row of the table to other rows
of the table. That's why sometimes the only solution possible was only by
using a correlated subquery.

On the other hand regular or non-correlated subquery return a result which is
then used by the outer query. It is only executed one time and not for every
row returned by the outer query, hence it is faster than a correlated subquery.

Difference between Self and Equi Join in
SQL
The main difference between Self Join and Equi Join is that In Self Join we
join one table to itself rather than joining two tables. Both Self Join and Equi
Join are types of INNER Join in SQL, but there is a subtle difference between
the two. Any INNER Join with equal as join predicate is known as Equi Join.
SQL Joins are the fundamental concept of SQL similar to correlated and
noncorrelated subqueries or using group by clause and a good
understanding of various types of SQL join is a must for any programmer.

By the way, If you have written INNER join using where clause then using
a comparison operator as = will be known as an equijoin. Equi joins or Self-
join is not a formal JOIN or part of the syntax, instead, they are a just
popular way to refer to certain join examples.

One of the best examples of Self Join, I have seen in an SQL query Interview
questions is "How do you find all Employees who are Managers in Employee
table", which is commonly asked along with another popular question how
to find the second highest salary of employee or questions related to joining
three tables in one SQL query.

DEEP DIVE

— 253 —

In this SQL tutorial, we will learn to self-join by example while solving this
SQL query. Btw, If you are new to SQL and don't understand fundamentals
like JOINs or co-related sub-queries then I highly recommend you go
through a comprehensive SQL course like The Complete SQL Bootcamp
by Jose Portilla on Udemy. It's one of the best and also most affordable
courses to learn SQL online.

How to remove duplicates from a table?
There are a couple of ways to remove duplicate rows from a table in SQL
e.g. you can use temp tables or a window function like row_number() to
generate artificial ranking and remove the duplicates. By using a temp table,
you can first copy all unique records into a temp table and then delete all
data from the original table and then copy unique records again to the
original table. This way, all duplicate rows will be removed, but with large
tables, this solution will require additional space of the same magnitude as
the original table. The second approach doesn't require extra space as it
removes duplicate rows directly from the table. It uses a ranking function
like row_number() to assign a row number to each row.

By using partition by clause you can reset the row numbers on a
particular column. In this approach, all unique rows will have row number
= 1 and duplicate rows will have row_number > 1, which gives you an
easy option to remove those duplicate rows. You can do that by using a
common table expression (see T-SQL Fundamentals) or without it on
Microsoft SQL Server.

No doubt that SQL queries are an integral part of any programming job
interview which requires database and SQL knowledge. The queries are also
very interesting to check the candidate's logical reasoning ability.

Earlier, I have shared a list of frequently asked SQL queries from interviews
and this article is an extension of that. I have shared a lot of good SQL-based

GROKKING THE SQL INTERVIEW

— 254 —

problems on that article and users have also shared some excellent problems
in the comments, which you should look at.

Btw, this is the follow-up question of another popular SQL interview
question, how do you find duplicate records in a table, which we have
discussed earlier.

This is an interesting question because many candidates confuse themselves
easily.

Some candidate says that they will find duplicate by using group by and
printing name which has counted more than 1, but when it comes to
deleting this approach doesn't work, because if you delete using this logic
both duplicate and unique row will get deleted.

This little bit of extra detail like row_number makes this problem
challenging for many programmers who don't use SQL on a daily basis. Now,
let's see our solution to delete duplicate rows from a table in SQL Server.

3 Ways to Remove duplicate values from a table using SQL Query

Before exploring a solution, let's first create the table and populate it with
test data to understand both problems and solutions better. I am using a
temp table to avoid leaving test data into the database once we are done.
Since temp tables are cleaned up once you close the connection to the
database, they are best suited for testing.

In our table, I have just one column for simplicity, if you have multiple
columns then the definition of duplicate depends on whether all columns
should be equal or some key columns e.g. name and city can be the same for
two unique persons. In such cases, you need to extend the solution by using
those columns on key places e.g. on a distinct clause in the first solution and
on the partition by in the second solution.

DEEP DIVE

— 255 —

Anyway, here is our temp table with test data, it is carefully constructed to
have duplicates, you can see that C++ is repeated thrice while Java is
repeated twice in the table.

-- create a temp table for testing
create table #programming (name varchar(10));

-- insert data with duplicate, C++ is repeated 3
times, while Java 2 times
insert into #programming values ('Java');
insert into #programming values ('C++');
insert into #programming values ('JavaScript');
insert into #programming values ('Python');
insert into #programming values ('C++');
insert into #programming values ('Java');
insert into #programming values ('C++');

-- cleanup
drop table #programming

1. How to remove duplicate in SQL using temp table - Example

Yes, this is the most simple but logical way to remove duplicate elements
from a table and it will work across databases like MySQL, Oracle, or SQL
Server. The idea is to copy unique rows into a temp table. You can find
unique rows by using a distinct clause.

Once unique rows are copied, delete everything from the original table and
then copy unique rows again. This way, all the duplicate rows have been
removed as shown below.

-- removing duplicate using copy, delete and copy
select distinct name into #unique from #programming
delete from #programming;
insert into #programming select * from #unique

GROKKING THE SQL INTERVIEW

— 256 —

-- check after
select * from #programming

name
Java
C++
JavaScript
Python

You can see the duplicate occurrences of Java and C++ have been removed
from the #programming temp table.

2. Delete Duplicates using row_number() and derived table - Example

The row_number() is one of several ranking functions provided by SQL
Server, It also exists in the Oracle database. You can use this function to
provide ranking to rows. You can further use partition to tell SQL server
that what would be the window.

This way row number will restart as soon as a different name comes up but
for the same name, all rows will get sequential numbers e.g. 1, 2, 3, etc. Now,
it's easy to spot the duplicates in the derived table as shown in the following
example:

select * from (select *, row_number()
OVER (partition by name order by name) as rn
 from #programming) dups
name rn
C++ 1
C++ 2
C++ 3
Java 1
Java 2
JavaScript 1
Python 1

DEEP DIVE

— 257 —

Now, you can remove all the duplicates which are nothing but rows with rn
> 1, as done by following SQL query:

delete dups
from (select *, row_number()
over (partition by name order by name) as rn
from #programming)
dups
WHERE rn > 1

(3 row(s) affected)

Now, if you check the #programming table again there won't be any
duplicates.

select * from #programming
name
Java
C++
JavaScript
Python

This is by far the simplest solution and also quite easy to understand but it
doesn't come to your mind without practicing. I suggest solving some SQL
puzzles from Joe Celko's classic book, SQL Puzzles, and Answers, Second
Edition to develop your SQL sense. It's a great practice book to learn and
master SQL logic.

3. How to remove duplicates using CTE (Common Table Expression)

Example: The CTE stands for common table expression, which is similar to
a derived table and used to the temporary result set that is defined within
the execution scope of a single SELECT, INSERT, UPDATE, DELETE, or
CREATE VIEW statement. Similar to a derived table, CTE is also not stored
as an object and lasts only for the duration of the query.

GROKKING THE SQL INTERVIEW

— 258 —

You can rewrite the previous solution using CTE as shown below:

;with cte
as (select row_number()
over (partition by name order by(select 0)) rn
from #programming)
delete from cte where rn > 1

The logic is exactly similar to the previous example and I am using select 0
because it's arbitrary which rows to preserve in the event of a tie as both
contents the same data. If you are new to CTE then I suggest reading T-SQL
Fundamentals, one of the best books to learn SQL Server fundamentals.

Here is a nice summary of all three ways to remove duplicates from a table
using SQL:

That's all about how to remove duplicate rows from a table in SQL. As I
said, this is one of the frequently asked SQL queries, so be prepared for that
when you go for your programming job interview.

I have tested the query in SQL Server 2008 and they work fine and you might
need to tweak them a little bit depending upon the database you are going
to use like MySQL, Oracle, or PostgreSQL. Feel free to post, if you face any
issue while removing duplicates in Oracle, MySQL, or any other database.

DEEP DIVE

— 259 —

How to find all the customers who have never ordered anything?

We have four customers with Id ranging from 1 to 4. Our second table,
Orders, contains Id, which is a unique id for order, and CustomerId,
which is the Id of the Customer who makes that order. If any Customer will
place an order, then their Id will exist in the Orders table.

Table: Customers.

+----+-------+
| Id | Name |
+----+-------+
1	Joe
2	Henry
3	Sam
4	Max
+----+-------+

Table: Orders.

+----+------------+
| Id | CustomerId |
+----+------------+
| 1 | 3 |
| 2 | 1 |
+----+------------+

Using the above tables as an example, return the following:

+-----------+
| Customers |
+-----------+
| Henry |
| Max |
+-----------+

GROKKING THE SQL INTERVIEW

— 260 —

How to Find Customers Who Never
Order using EXISTS in SQL
One of the most common solutions to this problem is by using the SQL
JOIN clause. You can use the LEFT OUTER JOIN to solve this problem, as
shown below:

SELECT C.Name FROM Customers C
LEFT JOIN Orders O ON C.Id = O.CustomerId
WHERE O.CustomerId is NULL

When you join two tables in SQL using a LEFT OUTER JOIN, then a big
table will be created with NULL values in the column which don't exist in
another table.

For example, the big table will have four columns C.Id, C.Name, O.Id,
and O.CustomerId, for Customers who have never ordered anything, the
O.CustomerId will be NULL.

Many programmers make the mistake of using != in the JOIN condition
to solve this problem, with the assumption that if = returns matching rows,
then != will return those ids which are not present in another table. So
beware of that..

Anyway, this problem is actually an excellent example of how and when to
use EXISTS clause:

SELECT C.Name FROM Customers C
WHERE NOT EXISTS (SELECT 1 FROM Orders O WHERE C.Id
= O.CustomerId)

This is a correlated subquery, where the inner query will execute for each
row of the outer query, and only those customers will be returned who have
not ordered anything.

DEEP DIVE

— 261 —

Btw, the most simple solution is by using the NOT IN Clause.

SELECT A.Name FROM Customers A
WHERE A.Id NOT IN (SELECT B.CustomerId FROMs Orders B)
And, here is a nice screenshot to remember how and
when to use the EXISTS clause in SQL query:

That's all about how to use the EXISTS clause in SQL to find all customers
who have never ordered. If you like to improve your SQL query skills, then
you can also problems given in Joe Celko's classical book SQL Puzzles and
Answers, the 2nd Edition. One of the best books with lots of challenging
questions to test your SQL skill, and if you need some online courses to learn
SQL in-depth or fill the gaps in your SQL knowledge, the following courses
are a good place to start with.

How to find Duplicate emails in a table?
You need to write a SQL query to find all duplicate emails in a table named
Person. This is a popular SQL Query interview question as well as a Leetcode
problem. You can see that email a@b.com is a duplicate email as it appears
twice in the table.

GROKKING THE SQL INTERVIEW

— 262 —

Given below table, write an SQL query to find all duplicate values (Emails)

+----+---------+
| Id | Email |
+----+---------+
1	a@b.com
2	c@d.com
3	a@b.com
+----+---------+

For example, your query should return the following for the above table:

+---------+
| Email |
+---------+
| a@b.com |
+---------+

Note: All emails are in lowercase.

Here are three ways to solve this problem in SQL query, first by using group
by clause, second by using self-join, and then third by using subquery with
exists clause.

While I agree that this problem can be solved in a different way, but it is also
a perfect example of how you can use the SQL GROUP BY and HAVING
clause.

But, if you are new to the SQL world, it's better to start with a comprehensive
SQL course like The Complete SQL Bootcamp course by Jose Portilla on
Udemy.

That will help you to learn SQL better and quicker, and these kinds of
articles will also make more sense once you have some SQL knowledge
under your belt.

DEEP DIVE

— 263 —

1. Finding Duplicate elements By using GROUP BY

The simplest solution to this problem is by using the GROUP BY and
HAVING Clause. Use GROUP BY to group the result set on email, this will
bring all duplicate emails in one group, now if the count for a particular
email is greater than 1 it means it is a duplicate email. Here is the SQL query
to find duplicate emails:

Write your MySQL query statement below

SELECT Email FROM Person
GROUP BY Email
HAVING COUNT(Email) > 1

This is also my accepted answer on LeetCode. You can see by using the count
function you can count a number of elements in the group and if your group
contains more than 1 row then it's a duplicate value that you want to print.

GROKKING THE SQL INTERVIEW

— 264 —

2. Finding Duplicate values in a column by using Self Join

By the way, there are a couple of more ways to solve this problem, one is by
using Self Join. If you remember, In Self Join we join two instances of the
same table to compare one record to another. Now if an email from one
record in the first instance of the table is equal to the email of another record
in the second table it means the email is duplicate. Here is the SQL query
using Self Join

Write your MySQL query statement below

SELECT DISTINCT a.Email FROM Person a
JOIN Person b ON a.Email = b. Email
WHERE a.Id != b.Id

Remember to use the keyword distinct here because it will print the
duplicate email as many times it appears in the table. This is also an accepted
solution in Leetcode.

3. Finding duplicate emails By using Sub-query with EXISTS:

You can even solve this problem using a correlated subquery. In a correlated
subquery, the inner query is executed for each record in the outer query. So
one email is compared to the rest of the email in the same table using a
correlated subquery and EXISTS clause in SQL as shown below.

Here is the solution query :

SELECT DISTINCT p1.Email
FROM Person p1
WHERE EXISTS(
 SELECT *
 FROM Person p2
 WHERE p2.Email = p1.Email
 AND p2.Id != p1.Id
)

— 265 —

CHAPTER 14

Conclusion

oftware Engineering and Technical Interview is not easy as you can see
there are a lot of topics to master and a lot of concepts to cover. Given

the importance of SQL in Software Development and Data Science, it
becomes extremely important for any developer or Data Scientist to have a
strong knowledge of Database concepts and SQL.

You can use this book in many ways, for example, you can use it to revise
frequently asked SQL questions and concepts before you for any telephonic
or face-to-face Software Engineering and Data Science interview as well as
to get an idea of essential concepts.

The book covers a lot of ground, including the basics of SQL queries and
database design, as well as more advanced topics like indexes, stored
procedures, triggers, and normalization. Additionally, the book provides
numerous real-world SQL interview questions, giving readers ample
opportunities to practice and refine their skills.

Whether you are a beginner or an experienced SQL developer or Data
Scientist, this book has something to offer. The author has taken great care
to explain complex concepts in a simple and easy-to-understand manner,
making it accessible to all levels of learners.

S

GROKKING THE SQL INTERVIEW

— 266 —

Overall, Grokking the SQL Interview is a must-read for anyone looking
to prepare for a SQL interview. The book provides valuable insights into
the most commonly asked SQL interview questions and offers practical
advice on how to approach them.

So, if you are preparing for an SQL interview or looking to brush up on your
SQL skills, this book is definitely worth a read.

Once again, thanks for reading this book and I wish it fulfills your
expectations. Don’t forget to leave ratings and give feedback as they help us
to create more such books and make them even better.

All the best for your Software Engineering and Data Science interview.

	Table of Content
	Overview
	Why Prepare for SQL and Database for Interviews?
	How to prepare SQL for Interviews?
	Which SQL and Database topics to Prepare for Interviews?

	CHAPTER 1:
	SQL and Database Telephonic Interview Questions
	Question 1
	1. UNION:
	2. UNION ALL:
	Example:
	1. employees table:
	2. contractors table:
	1. Using UNION:
	Result:
	2. Using UNION ALL:
	Result:

	Question 2
	1. WHERE Clause:
	2. HAVING Clause:
	Example:

	1. Using WHERE clause:
	Result:

	2. Using HAVING clause:
	Result:

	Question 3
	1. Clustered Index:
	Example:

	2. Non-Clustered Index:
	Example:

	Question 4
	Question 5
	Question 6
	1. Non-Correlated Subquery:
	2. Correlated Subquery:

	Question 7
	Question 8
	1. PRIMARY Key Constraint:
	Example:

	2. UNIQUE Key Constraint:
	Example:

	Question 9
	1. View:
	2. Materialized View:

	Question 10
	1. TRUNCATE:
	2. DELETE:
	3. DROP:

	Question 11
	1. Primary Key - Foreign Key Relationship:
	2. Maintaining Data Integrity:
	3. Enforcing Constraints:
	4. Cascading Actions:

	Question 12
	Normalization Process:
	Step 1: First Normal Form (1NF)
	Step 2: Second Normal Form (2NF)
	Step 3: Third Normal Form (3NF)
	Step 4: Boyce-Codd Normal Form (BCNF)
	Step 5: Fourth Normal Form (4NF)
	Step 6: Fifth Normal Form (5NF)

	Question 13
	1. First Normal Form (1NF):
	2. Second Normal Form (2NF):
	3. Third Normal Form (3NF):

	Question 14
	1. ISNULL() Function:
	2. COALESCE() Function:

	Question 15
	Question 16
	1. CHAR Data Type:
	Example of CHAR:

	2. VARCHAR Data Type:
	Example of VARCHAR:

	Question 17
	Question 18
	Question 19
	Question 20
	Example:
	Example:

	Question 21
	Question 22
	Explanation:

	Question 23
	1. COUNT(*):
	Example:

	2. COUNT(1):
	Example:

	3. COUNT(column_name):
	Example:

	Question 24
	Pro tip

	Question 25
	Question 26
	Question 27
	Question 28
	1. Index Seek:
	2. Index Scan:
	3. Table Scan:

	Question 29
	For example:

	Question 30
	Question 31
	1. Local Temporary Table:
	2. Global Temporary Table:

	Question 32
	Question 33
	Question 34
	Question 35
	1. Using the RETURN Statement:
	2. Using OUTPUT Parameters:

	Question 36
	Question 37
	Question 38
	Question 39
	Question 40
	Question 41
	1. Local Temporary Table:
	2. Global Temporary Table:

	Question 42
	1. Using SELECT INTO Statement:
	2. Using INSERT INTO Statement:

	Question 43
	Question 44
	Question 45
	Question 46
	Question 47
	Question 48
	Question 49
	Question 50
	1. READ UNCOMMITTED:
	2. READ COMMITTED:
	3. REPEATABLE READ:
	4. SERIALIZABLE:
	5. SNAPSHOT:
	6. READ COMMITTED SNAPSHOT:

	Question 51
	Question 52
	Question 53
	Question 54
	Question 55
	Key Differences:

	CHAPTER 2
	SQL JOIN
	Question 1
	Question 2
	For example:

	Question 3
	For example:

	Question 4
	For example:

	Question 5
	Question 6
	For example:

	Question 7
	Question 8
	For example:

	Question 9
	Question 10
	Question 11
	Question 12
	For example:

	Question 13
	Question 14
	For example:

	Question 15
	For example:

	Question 16
	Question 17
	For example:

	Question 18
	Question 19
	For example:

	Question 20
	Question 21
	Question 22
	For example:

	Question 23
	Question 24
	For example:

	Question 25
	For example:

	Question 26
	Question 27
	Question 28
	For example:

	Question 29
	For example:

	Question 30
	For example:

	CHAPTER 3
	SQL QUERIES
	SQL Script to create a table and Populate data
	SQL scripts to create tables
	Question 1
	Question 2
	Question 3
	Question 4
	Question 5
	Question 6
	Question 7
	Question 8
	Question 9
	Question 10
	Question 11
	Question 12

	CHAPTER 4
	Indexes
	Question 1
	Question 2
	Question 3
	Question 4
	Question 5
	Question 6
	Question 7
	Question 8
	Question 9
	Question 10
	Question 11
	Question 12

	CHAPTER 5
	GROUP BY
	1. Group By clause Example 1 - Finding duplicate
	2. Group By clause Example 2 - Calculating Sum
	3. How to calculate average using group by clause
	4. Group By example 4 - Counting records
	5. How to use Group By clause with more than one column
	Important points about Group By clause in SQL

	CHAPTER 6
	SQL Date and Time Interview Questions
	Key Topics and Concepts to Prepare:
	Question 1
	Question 2
	For example:

	Question 3
	For example:

	Question 4
	For example:

	Question 5
	Question 6.
	Question 7
	Question 8
	For example:

	Question 9
	For example:

	Question 10
	For example:

	Question 11
	For example:

	Question 12
	For example:

	Question 13
	Question 14
	Question 15
	For example:

	Question 16
	Question 17
	Question 18
	Question 19
	Question 20

	CHAPTER 7
	Aggregate Functions
	Question 1
	Question 2
	Question 3
	Question 4
	Question 5
	Question 6
	Question 7
	Question 8
	Question 9
	Question 10
	Question 11
	Question 12
	Question 13
	Question 14
	Question 15
	Question 16
	Question 17
	Question 18
	Question 19
	Question 20

	CHAPTER 8
	Stored Procedure
	Question 1
	Question 2
	Question 3
	Question 4
	Question 5
	Question 6
	Question 7
	Question 8
	Question 9
	Question 10
	Question 11
	Question 12
	Question 13
	Question 14
	Question 15
	Question 16
	Question 17
	Question 18
	Question 19
	Question 20

	CHAPTER 9
	Triggers and Views
	Question 1
	Question 2
	Question 3
	Question 4
	Question 5
	Question 6
	Question 7
	Question 8
	Question 9
	Question 10
	Question 11
	Question 12
	Question 13
	Question 14
	Question 15
	Question 16
	Question 17
	Question 18
	Question 19
	Question 20

	CHAPTER 10
	Normalization
	Question 1
	Question 2
	Question 3
	Question 4
	Question 5
	Question 6
	Question 7
	Question 8
	Question 9
	Question 10
	Question 11
	Question 12
	Question 13
	Question 14
	Question 15
	Question 16
	For example:

	Question 17
	Question 18
	Question 19
	Question 20

	Chapter 11
	Transaction
	Question 1
	Question 2
	Question 3
	Question 4
	Question 5
	Question 6
	Question 7
	Question 8
	Question 9
	Question 10
	Question 11
	Question 12

	CHAPTER 12
	Window Function and CTE
	Question 1
	Question 2
	For example:

	Question 3
	Question 4
	Question 5
	For example:

	Question 6
	Question 7
	For example:

	Question 8
	Question 9
	For example:

	Question 10
	Question 11
	Question 12
	Question 13
	Question 14
	For example:

	Question 15
	Question 16
	Question 17
	For example:

	Question 18
	Question 19
	Question 20
	Question 21
	Question 22
	Question 23
	Question 24
	Question 25
	For example:

	Question 26
	Question 27
	For example:

	Question 28
	For example:

	Question 29
	Question 30
	Question 31
	Question 32
	Question 33
	For example:

	Question 34
	Question 35
	For example:

	Question 36
	Question 37
	Question 38
	For example:

	Question 39
	For example:

	Question 40
	For example:

	CHAPTER 13
	Deep Dive
	Difference between ROW_NUMBER(), RANK(), and DENSE_RANK()
	SQL to build schema
	ROW_NUMBER() Example
	RANK() Example
	DENSE_RANK() Example

	Difference between row_number vs rank vs dense_rank
	Difference between VARCHAR and NVARCHAR in SQL Server?
	What is difference between SQL, T-SQL and PL/SQL?
	Why do you need T-SQL or PL/SQL?

	Differences between SQL, T-SQL and PL/ SQL
	1. Full form
	2. Supported Database
	3. Performance
	4. SQL Query Requirement
	5. Data Types and Keyword

	How to check for Null in SQL Query?
	The right way to compare values in a column that allows NULL
	How to test for not null values in SQL? IS NOT NULL Example

	Difference between CAST, CONVERT, and PARSE function in Microsoft SQL Server?
	CAST vs CONVERT vs PARSE Exam in SQL Server
	1. ANSI SQL Standard
	2. .NET and CLR Dependency
	3. Optional USING Clause
	4. Syntax
	5. Examples

	CAST Function Example
	CONVERT Function Example
	PARSE Function Example

	Difference between UNION vs UNION ALL in SQL
	UNION and UNION ALL Example in Microsoft SQL Server

	Difference between UNION and UNION ALL command in SQL
	1. Combining Results
	2. Duplicates
	3. Execution time
	4. Speed and Bandwith Usage
	5. Number of Columsn on ResultSet

	Difference between table scan, index scan, and index seek in SQL Server Database
	Difference between table scan, index scan, and index seek in Database
	1. What is a Table Scan in a database?
	2. What is the Index Scan in a database?
	3. What is Index Seek in SQL?

	Difference between table scan, index scan, and index seek in SQL
	Difference between ISNULL() and COALESCE() function in SQL?
	Difference between ISNULL() vs COALESCE() in SQL Server
	1. COALESCE promotes its argument to the higher data type.
	2. COALESCE allows multiple values but ISNULL allows only one value
	3. Length of Result
	4. The behavior of COALESCE and ISNULL when used in SELECT INTO

	How to Find Nth Highest Salary in MySQL and SQL Server? Example LeetCode Solution
	Nth Highest Salary in MySQL and SQL Server - LeetCode Solution
	1. Accepted Solution
	2. Alternate Solution
	3. How to create own Employee table for testing?
	4. SQL query to find the Nth highest salary

	Difference between VARCHAR and CHAR data type in SQL Server?
	Similarities between CHAR vs. VARCHAR in SQL
	CHAR vs. VARCHAR in SQL Server
	1. Fixed vs Variable storage
	2.Usage
	3. Storage
	4. Space Overhead
	5. Padding
	6. Null
	7. Reservation
	8. Index

	Difference between WHERE and HAVING clause in SQL? Example
	Difference between WHERE vs. HAVING in SQL
	When to use WHERE and HAVING clauses?

	Difference between Primary key vs Candidate Key in SQL Database?
	Difference between Correlated and Non-Correlated Subquery in SQL
	Difference between Correlated and Regular Subquery in SQL
	1. Working
	2. Dependency
	3.Speed and Performance

	Difference between Self and Equi Join in SQL
	How to remove duplicates from a table?
	3 Ways to Remove duplicate values from a table using SQL Query
	1. How to remove duplicate in SQL using temp table - Example
	2. Delete Duplicates using row_number() and derived table - Example
	3. How to remove duplicates using CTE (Common Table Expression)

	How to Find Customers Who Never Order using EXISTS in SQL
	How to find Duplicate emails in a table?
	1. Finding Duplicate elements By using GROUP BY
	2. Finding Duplicate values in a column by using Self Join
	3. Finding duplicate emails By using Sub-query with EXISTS:

	CHAPTER 14
	Conclusion

