

Learn SQL (using MySQL) in One Day and Learn It
Well

SQL for Beginners with Hands-on Project
The only book you need to start coding in SQL

immediately

By Jamie Chan

http://www.learncodingfast.com/sql

Copyright © 2018

All rights reserved. No part of this publication may be reproduced,
distributed, or transmitted in any form or by any means, including
photocopying, recording, or other electronic or mechanical methods, without
the prior written permission of the publisher, except in the case of brief
quotations embodied in critical reviews and certain other noncommercial uses
permitted by copyright law.

Preface

This book is written to help you learn SQL programming FAST and learn it
WELL. We'll be using MySQL in the book, which is a free database
management system that is widely used.

If you are an absolute beginner to SQL, you'll find that this book explains
complex concepts in an easy to understand and concise manner. If you are an
experienced coder, you'll appreciate that this book covers a wide range of
topics.

Topics covered include basic concepts like table creation and data
manipulation, to more advanced concepts like triggers, cursors, stored
routines and more. These topics are carefully selected to give you a broad
exposure to SQL, while not overwhelming you with information overload.

In addition, as Richard Branson puts it: "The best way of learning about
anything is by doing". Throughout the book, we'll be building a database
together. This hands-on approach to learning will help you gain a deeper
understanding of the language. At the end of the course, you'll also be guided
through a new project that gives you a chance to put what you've learned to
use.

You can download the source code for the examples and project at
http://www.learncodingfast.com/sql

Any errata can be found at
http://www.learncodingfast.com/errata

Contact Information

I would love to hear from you.
For feedback or queries, you can contact me at

jamie@learncodingfast.com.

More Books by Jamie

Python: Learn Python in One Day and Learn It Well (1st

Edition)

Python: Learn Python in One Day and Learn It Well (2nd

Edition)

C#: Learn C# in One Day and Learn It Well

Java: Learn Java in One Day and Learn It Well

CSS: Learn CSS in One Day and Learn It Well

Contents
Chapter 1: Introduction

What is SQL?
Getting Ready to Code
Installing MySQL applications
Launching MySQL Workbench
Writing our first MySQL code
Comments

Chapter 2: Defining the Database
How to Use this Book
Creating the Database
Using the Database
Deleting the Database

Chapter 3: Defining Tables
Creating Tables
Specifying Columns
Specifying Table Constraints
Altering Tables
Table Names
Columns and Table Constraints
Deleting Tables

Chapter 4: Inserting, Updating and Deleting Data
Inserting Data
Updating Data
Deleting Data
Constraints

Chapter 5: Selecting Data Part 1
Basic Select Syntax
Selecting Everything
Filtering Columns
Using Aliases
Filtering Rows
LIMIT
DISTINCT
WHERE clause
Subqueries
Sorting Rows

Chapter 6: Selecting Data Part 2
What is a Function?
MySQL Functions
Aggregate Functions
GROUP BY

HAVING

Chapter 7: Selecting Data Part 3
Joins
Unions

Chapter 8: Views
What is a view?
Creating a View
Altering a View
Deleting a View

Chapter 9: Triggers
What is a Trigger?
Creating a Trigger
Deleting a Trigger

Chapter 10: Variables and Stored Routines
Variables
Stored Routines
Stored Procedures
Stored Functions
Deleting Stored Routines

Chapter 11: Control Flow Tools

IF statement
CASE statement
WHILE statement
REPEAT statement
LOOP statement

Chapter 12: Cursors
What is a Cursor?
Example

Chapter 13: Project
About the Project
Creating the Database
Using the Database
Adding Tables
Inserting Data
View
Stored Procedures
Trigger
Stored Function
Testing the Database

Appendix A: Tables for companyHR
Appendix B: Tables for sportsDB

Appendix C: Suggested Solution for Project

Chapter 1: Introduction
Welcome to SQL and thank you so much for picking up my book. I sincerely
hope that this book can help you master SQL fast and introduce you to the
exciting world of databases.

This book adopts a hands-on approach to learning. As we progress from one
chapter to another, we’ll be doing various exercises. You are strongly
encouraged to follow along these exercises.

At the end of the book, we’ll also be working on a new project together. This
project involves building a SQL database for a sports complex. We’ll learn to
build the database, insert data, perform queries, write routines, views,
cursors, and more.

Excited and ready to start embarking on our SQL learning journey? Let’s do
it!

What is SQL?

Simply stated, SQL stands for Structured Query Language and is a language
used to manage data stored in a relational database.

This brings us to the next question - What is a database?

A database is a collection of data organized in some format so that the data
can be easily accessed, managed and updated. The predominant type of
database is a relational database. Relational databases organize data in the
form of tables. In addition, they contain queries, views and other elements to
help us interact with the data.

In order to manage our database, we need to use a software application
known as a database management system (DBMS).

Clear?

So far, we have the following terminologies:

1) SQL is a language
2) A database is a structured collection of data
3) A DBMS is a software that we use to manage our databases

With regards to DBMS, there are a large number of them available. Some are
free to download and use while others are not. The most commonly used
DBMS include MySQL, Oracle, Microsoft SQL Server and IBM DB2.

Each of these DBMS have their own versions of SQL. While this may sound
intimidating, rest assured that all DBMS support the major SQL commands
(such as SELECT, UPDATE, DELETE, INSERT) in a similar manner. Hence, if you
know one version of SQL, it is very easy to pick up other versions.

In this book, we'll be using MySQL. This is one of the most popular DBMS
available. Best of all, it’s free! From this point forward, whenever I mention
SQL, I’m referring to the MySQL version.

Getting Ready to Code

In order to start using MySQL, we need to first download and install two
applications: MySQL Server and My SQL Workbench.

Installing MySQL applications

Windows

For Windows users, go to
https://dev.mysql.com/downloads/windows/installer/.

Scroll down and click on the first “Download” button to download the
application. You’ll be directed to another page. Scroll to the bottom of the
page and click on “No thanks, just start my download.”

Once you have downloaded the program, double-click on the file and follow
the instructions to install the software.

When prompted to choose a setup type, select “Custom” and click “Next”.

You’ll be asked to select the products and features to install.

Under “Available Products”, fully expand “MySQL Servers” by clicking on
the + signs. Once fully expanded, click on the last item and click on the green
arrow to move this item to the “Products/Features To Be Installed” section.

Next, expand “Applications” and fully expand “MySQL Workbench”. Click
on the last item and click on the green arrow to move this item to the
“Products/Features To Be Installed” section.

Once you are done, click on “Next” and follow the instructions to continue
with the installation. Stick to the default options selected at each stage.

When prompted to enter a password, enter your desired password and jot
down the password. You’ll need this password later.

Click on “Next” to continue and complete the installation.

Mac OS

For Mac users, to install MySQL Server, go to
https://dev.mysql.com/downloads/mysql/.

Scroll down and click on the first “Download” button to download the
application.

Once you do that, you’ll be directed to another page. Scroll to the bottom of
the page and click on “No thanks, just start my download.”

Once you have downloaded the program, double-click on the file to unzip it.
Next, double-click on the unzipped file and follow the instructions to install
the software. At the configuration stage, choose “Use Strong Password
Encryption” and click “Next”. Enter your desired password and jot down the
password. You’ll need this password later. Ensure that the "Start MySQL
Server once the installation is complete" option is selected and click on
"Finish" to complete the installation.

Once you are done installing MySQL Server, you need to install another

software known as MySQL Workbench. This software provides us with a
graphical user interface to make it easier for us to interact with MySQL. To
download MySQL Workbench, go to
https://dev.mysql.com/downloads/workbench/.

Click on the first “Download” button to download the application. Once
again, you’ll be directed to another page. Scroll to the bottom of the page and
click on “No thanks, just start my download.” to download the program.
Double-click on the downloaded file and follow the instructions to install it
after downloading.

Launching MySQL Workbench

Once you have installed the necessary applications, we are ready to do some
coding.

First, launch MySQL Workbench.

You’ll get the screen below:

Click on the grey rectangle under "MySQL Connections" (named "Local
instance 3306" in the image above). You’ll be prompted for a password.
Enter the password that you keyed in previously when you installed MySQL
Server and select “Save password in vault” (or “Save password in keychain”
for Mac users). Next, press OK to proceed. If all goes well, you should be
directed to the screen below:

The main area is a text editor where we’ll be entering our SQL commands.
The window below is the output window (refer to screenshot above).

Got that?

Great!

Writing our first MySQL code

Now, we are ready to get our feet wet and write some SQL code.

Type the following lines into the text editor (for the first line, be sure to add a
space after the two hyphens):

-- Using SELECT to display messages

SELECT 'Hello World';

SELECT 'MySQL is fun!';

You should notice that the first line is in gray while the word SELECT is in
blue and 'Hello World' and 'MySQL is fun!' are in green.

This is the software’s way of making our code easier to read. Different words
serve different purposes in our program, hence they are displayed using
different colors. We’ll go into more details in later chapters.

There are two ways to run the SQL commands that we wrote.

The first is to select all the code that we want to run and click on the
“Execute Selected” button (the button with a lightning bolt). This button
should normally be located to the right of the “Save” button (refer to the
previous screenshot).

This will execute all the code that is selected. You’ll see a new panel called
“Result Grid”, with two tabs as shown below:

These two tabs give the results of the last two lines of code that we wrote (i.e.
the two lines that start with the word SELECT).

The first line of code that we wrote does not give any result as it is a
comment. We’ll talk about comments in the next section.

Besides running all the code at one go, you can also choose to execute them
one by one. To do that, simply position your cursor on the line that you want
to execute and click on the “Execute Statement” button to run that statement.
The “Execute Statement” button shows a lightning bolt and a cursor and is
located to the right of the “Execute Selected” button.

For instance, if you place your cursor as shown in the image below

and click on the “Execute Statement” button, you’ll get a single tab in the
“Result Grid” that displays the message Hello World.

Comments

Now that we know how to execute SQL statements, we are ready to start
learning some SQL commands. However, before we do that, there’s more
one concept that I’ll like to cover - comments.

As mentioned previously, the first line in the code that we wrote (-- Using
SELECT to display messages) is a comment.

Comments are written to make our code more readable for other
programmers. They are meant for humans only and are ignored by the
DBMS.

To add comments to our program, we type two hyphens, followed by a space,
as demonstrated in the example above.

Alternatively, we can also use the # symbol as shown below:

This is another way to add comment

Last, but not least, if we want to type multiple lines comments, we can use
the /*...*/ symbols:

/* This is a comment

This is also a comment

This is the third comment */

Chapter 2: Defining the Database
Now that we have a basic understand of MySQL, let’s start learning some
SQL commands.

How to Use this Book

Throughout this book, we’ll be building a database called companyHR that
has two tables - employees and mentorships.

The database will be used to demonstrate most of the concepts covered.
Hence, you are strongly encouraged to follow along and try out the various
examples.

To do that, first create a folder on your desktop and name it
MySQLExamples.

Next, launch MySQL Workbench and create a new file by clicking on File >
New Query Tab and save this file as practice.sql (File > Save Script As...) in
the MySQLExamples folder.

*** Examples that you should try will be presented in bold. Whenever you
see code presented in bold, you should type them into practice.sql and
execute them yourself to try them out (even when not prompted to do so).

The source file for all code presented in bold can be downloaded from
http://www.learncodingfast.com/sql.

Code that is not in bold is purely for demonstration purposes. You should not
try them as they may alter the structure or content of our database.

Clear? Let’s do it!

Creating the Database

The first thing that we need to learn is to create a database.

A database is a collection of related tables, queries and views etc.

You can think of it as being similar to an Excel workbook. An Excel
workbook contains related worksheets and charts while a database contains
related tables, queries and other objects (such as views and stored routines).

To create a database in MySQL, we use the CREATE DATABASE keywords. A
keyword is a word that has a predefined meaning in SQL. In other words, if
you want to create a database, you have to type CREATE DATABASE, you
cannot be creative and type other words like MAKE DATABASE or CREATE
COLLECTION etc.

Keywords are generally not case sensitive in SQL. Hence, you can also write
create database or CREATE database. However, the common practice is to
use uppercase for keywords. That’s the convention that we’ll be following in
this book. For all the syntaxes presented in this book, any word that is in
uppercase is a keyword.

The syntax to create a database is shown below:

CREATE DATABASE name_of_database;

For instance, to create a database called companyHR, we write:

CREATE DATABASE companyHR;

This is known as a SQL statement. SQL statements always end with a semi-
colon (;) unless otherwise stated.

Type this statement into practice.sql and execute it. You should get

CREATE DATABASE companyHR 1 row(s) affected

in the output window with a green tick on the left. The green tick indicates
that the statement is executed correctly.

Using the Database

After we create a database, we have to let the DBMS know that we want to
use this database. This is because the DBMS may be managing more than
one databases concurrently. We have to let it know that all subsequent code
that we write applies to the stated database.

To do that, we use the following syntax:

USE name_of_database;

For instance, to use the companyHR database, we write

USE companyHR;

Deleting the Database

Now, suppose after you create your database, you realise that you have typed
the name wrongly. There is no easy way to rename a database in MySQL.
What you can do is create a new database and delete the old database. To
delete a database, we use the syntax

DROP DATABASE [IF EXISTS] name_of_database;

You can see that we used square brackets [] in the DROP DATABASE syntax
above. These brackets will be used throughout the book to indicate optional
content.

In other words, when deleting a database, the IF EXISTS keywords are
optional. We use them to prevent an error from occurring when we
accidentally try to delete a database that does not exist.

For instance, to delete a database called wrongDB, we write

DROP DATABASE IF EXISTS wrongDB;

However, if we are certain that wrongDB exists, we can simply write

DROP DATABASE wrongDB;

Chapter 3: Defining Tables
In the previous chapter, we learned to create and use a database. In this
chapter, we’ll learn to add tables to our database. We’ll also learn to alter and
delete the tables if necessary. This is a relatively long chapter, so take your
time to slowly go through it.

Creating Tables

First, let’s look at how we can create tables to add to our database. To create
a table, we use the following syntax:

CREATE TABLE table_name (

 column_name1 datatype [column constraints],

 column_name2 datatype [column constraints],

 …

 [table constraints],

 [table constraints]

);

Let’s discuss the syntax in detail.

Tables in SQL databases are organized in rows and columns. Suppose we
want to create a table to store information about the employees of a company.
We can design the table as shown below:

Each column in the table stores a specific piece of information about the
employee (such as the id, name and gender of the employee).

Each row, on the other hand, stores information about one employee. A row
is sometimes also referred to as a record.

Specifying Columns

When we create the table, we need to specify the columns. For each column,
we need to state the data type and any constraints that the column must
satisfy.

Data Types

Let’s first look at data types.

Data type refers to the type of data that the column stores. For instance, the
first column in the previous table (id) stores numerical information. The
second column (em_name) stores textual information.

In MySQL, there are a number of commonly used data types:

Textual data types

Textual information, also known as strings, are commonly stored using the
CHAR or VARCHAR data type in MySQL. They can contain letters, numbers or
special characters.

CHAR(size)

CHAR stands for “character” and is used to store a fixed length string of up to
255 characters. The desired length is specified in parentheses after the CHAR
keyword.

If you try to store a string that is longer than the specified length, you’ll get
an error.

If you store a string that is shorter than the specified length, the string will be
right-padded with spaces.

For instance, if you specify a column as CHAR(5) but use it to store a string
like 'NY', it will be stored as 'NY '. However, when the string is
subsequently retrieved, these spaces will not be displayed.

VARCHAR(size)

VARCHAR is another data type for storing strings. It holds a variable length
string and can store up to 255 characters. You have to specify the maximum
length in parentheses.

In contrast to CHAR(5), if you specify a column as VARCHAR(5) and use it to
store the string 'NY', it will be stored as 'NY' with no spaces added.

As you can see, VARCHAR is more flexible and uses less storage than CHAR in
most cases. However, it can be slower than CHAR.

In most cases, if you are storing strings that are of fixed lengths (e.g. gender

represented as 'M' or 'F' or state abbreviations such as 'NY', 'AL', 'AK' etc),
you should use CHAR. Otherwise, you should use VARCHAR.

Numerical data types

Next, let’s look at numbers. Numbers in MySQL are commonly stored using
INT, FLOAT, DOUBLE or DECIMAL.

INT

INT stands for integers (i.e. numbers with no fractional parts) and can hold
numbers from -2147483648 to 2147483647.

If we specify a column as INT UNSIGNED, it can hold values from 0 to
4294967295.

FLOAT(m, d)

FLOAT is used to store non integers (i.e. numbers with fractional parts). It uses
4 bytes of storage.

In MySQL, you can specify two parameters - m and d - when defining FLOAT.

m refers to the total number of digits the FLOAT stores while d refers to the
number of digits after the decimal point.

For instance, if you store a number ‒ say 12.34567 ‒ as FLOAT(5, 3), it will
be rounded off to 12.346 (i.e. 5 digits in total, three of which are after the
decimal point).

FLOAT stores numbers as approximate values. It is accurate up to about 7
decimal places.

Hence, if you use FLOAT(10, 9) to store 1.23456789999, it may be stored as
1.234567881.

This discrepancy is not due to rounding (as 1.23456789999 when rounded off
to 9 decimal places should be 1.234567900). Instead, this discrepancy is due

to the fact that floats are stored as approximate values.

DOUBLE(m, d)

DOUBLE is also used to store non integers as approximate values. It uses 8
bytes of storage and can be used to store numbers with higher precision. It is
accurate up to about 14 decimal places. Similar to FLOAT, you can specify the
total number of digits (m) and the number of digits after the decimal point (d).

DECIMAL(m, d)

DECIMAL is used to store non-integers as exact values. Similar to FLOAT and
DOUBLE, you can specify the total number of digits (m) and the number of
digits after the decimal point (d) when using DECIMAL.

DECIMAL is commonly used to store monetary data where precision is
important.

Date and Time data types

Next, let’s look at date and time data types.

YEAR

The YEAR data type is used to store a year in either a two-digit or a four-digit
format. Values allowed in four-digit format are from 1901 to 2155. Values
allowed in two-digit format are from 1 to 69 (representing years from 2001 to
2069) and 70 to 99 (representing years from 1970 to 1999).

DATE

The DATE datatype is used to store a date in the YYYY-MM-DD format, with a
supported range of '1000-01-01' to '9999-12-31'.

TIME

The TIME data type is used to store time in the HH:MI:SS format, with a
supported range of '-838:59:59' to '838:59:59'.

DATETIME

The DATETIME data type is used to store a date and time combination in the
YYYY-MM-DD HH:MI:SS format. The supported range is from '1000-01-01
00:00:00' to '9999-12-31 23:59:59'.

TIMESTAMP

The TIMESTAMP data type is also used to store a date and time combination in
the YYYY-MM-DD HH:MI:SS format. The supported range is from '1970-01-01
00:00:01' UTC to '2038-01-09 03:14:07' UTC.

One of the main differences between DATETIME and TIMESTAMP is that
MySQL converts TIMESTAMP values from the current time zone to UTC for
storage, and back from UTC to the current time zone for retrieval. It does not
do so for DATETIME values.

Hence, for instance, if a user is in the UTC+4 time zone and stores a
TIMESTAMP as '2018-04-11 09:00:00', someone in the UTC time zone will
see this data as '2018-04-11 05:00:00'.

In contrast, if the data is stored using the DATETIME data type, all users will
see the data as '2018-04-11 09:00:00' regardless of which time zone they
are in.

This unique conversion feature of the TIMESTAMP data type makes it very
useful for databases that are used by users across different time zones. It is
also commonly used to record information about when a piece of data was
inserted into the database.

Column Constraints

Now that we understand data types, let’s move on to column constraints.

Besides specifying the data type of each column, we can also add constraints
for those columns. These constraints are requirements that the columns must
satisfy. Each constraint must be specified using predefined keywords in

MySQL.

Some of the constraints include:

NOT NULL

Specifies that a column cannot be empty. In other words, it must have a value
for all rows.

UNIQUE

Specifies that all values in the column must be unique.

DEFAULT

Sets a default value for a column when no value is specified.

PRIMARY KEY

Specifies that the column is a primary key. A primary key uniquely identifies
each row in a table.

For instance, if we are designing a database for a company and we have a
table that stores information about each employee, we can use employee ID
as a primary key, assuming that each employee has a different ID.

However, we cannot use employee name as the primary key as it is possible
for two employees to have the same name.

A primary key is by default NOT NULL and UNIQUE; there is no need to
explicitly state these two constraints if the column is a primary key. In
addition, each table can only have one primary key.

AUTO_INCREMENT

Specifies that the values for this column should be automatically increased by
1 for each new record. This feature is often used to generate a primary key for
the table. By default, the starting value for an auto increment column is 1.

We’ll learn how to change this starting value in the next chapter.

Each table can only have one auto increment column and that column must
be defined as a key (such as a primary key or a unique key).

Now that we know how to specify the columns of a table, let us create our
first table - co_employees.

Note that we’ll temporarily name this table co_employees instead of
employees as mentioned in Chapter 2. This is because we’ll learn to change
the table name later.

For now, the co_employees table has the following columns:

id: INT

em_name: VARCHAR(255)

gender: CHAR(1)

contact_number: VARCHAR(255)

age: INT

date_created: TIMESTAMP

All columns of the table cannot be null except for the contact_number
column.

In addition, the id column is a primary key and is auto incremented.

Finally, the date_created column has a default value provided by the NOW()
function.

A function is a block of code that performs a certain task. The NOW() function
is a built-in function that comes with MySQL (i.e. it is already pre-coded for
us). It gives us the current date and time whenever it is being used (i.e.
whenever a new record is inserted into the table). We’ll talk more about built-
in functions in Chapter 6. For now, let’s just use the function in our table
creation code.

To create the table, we use the code below:

CREATE TABLE co_employees (

id INT PRIMARY KEY AUTO_INCREMENT,

em_name VARCHAR(255) NOT NULL,

gender CHAR(1) NOT NULL,

contact_number VARCHAR(255),

age INT NOT NULL,

date_created TIMESTAMP NOT NULL DEFAULT NOW()

);

Copy the code into practice.sql and execute it to create the co_employees
table yourself.

To execute this statement, simply place your cursor anywhere within the
statement and click on the ‘Execute Statement’ button (refer to Chapter 1 if
you have forgotten where the ‘Execute Statement’ button is).

Specifying Table Constraints

Next, let’s move on to learn more complex concepts in table creation.

In the previous section, we learned that when we create a table, we need to
specify the data types of the columns. In addition, we can also add column
constraints like NOT NULL and PRIMARY KEY to our columns.

Beside column constraints, we can also specify table constraints when
creating a table. Table constraints are similar to column constraints except
that they can affect more than one column.

Let’s look at some of the common table constraints in MySQL.

Primary Key Constraint

The first table constraint is the primary key constraint.

Previously when discussing column constraints, we learned that if a particular
column is a primary key, we add the words PRIMARY KEY when we create the
column. However, there is another way to do it. This second method is useful
if the primary key is made up of two or more columns.

Suppose we have a table that stores information about the mentor-mentee
relationships of employees in a company. We may have a table as shown
below:

Let’s call this table mentorships.

If you study the mentorships table, you will notice that no column is suitable
to be used as a primary key. This is because a primary key has to uniquely
identify each row; no row satisfies this requirement.

For instance, we cannot use mentor_id as the primary key as two different
rows (rows 1 and 2) have the same mentor_id. The same applies to the
mentee_id, status and project columns.

What can we do in this case?

What we can do is use the combination of 2 or more columns as the primary
key, as long as we can be certain that no two rows will have the same values
for this combination of columns.

For instance, we can use the combination of the mentor_id, mentee_id and

project as the primary key.

When we do that, we will not be allowed to input two rows with the same
mentor_id, mentee_id, project combination. For instance, if we add
another row with the values

mentor_id = 1

mentee_id = 2

project = 'SQF Limited'

we’ll get an error as the first row in the table already has this combination.

In order to state that the three columns (mentor_id, mentee_id, project)
together form the primary key, we can add the following table constraint
when creating the table:

PRIMARY KEY(mentor_id, mentee_id, project)

This is another way of specifying the primary key of a table and is most
useful when the primary key is made up of multiple columns.

Foreign Key Constraint

Next, let’s look at how we can add foreign key constraints to our
mentorships table.

First, what is a foreign key?

In the mentorships table, we can see that mentor_id 1 is a mentor to two
mentees (mentee_id 2 and 3). However, this information is not very useful
as we have no idea who 1, 2 and 3 are.

Now, suppose we know that the mentorships table is related to the
co_employees table and that mentor_id and mentee_id are both taken from
the id column of the co_employees table.

We can then refer to the co_employees table and see that employees 1, 2 and
3 are James Lee, Peter Pasternak and Clara Couto respectively. From the

mentorships table, we know that James Lee is a mentor to Peter Pasternak
and Clara Couto.

How can we describe this relationship between the two tables in MySQL?

We use foreign keys.

A foreign key is a column (or a collection of columns) in one table that links
to the primary key in another table.

In our example, mentor_id and mentee_id in the mentorships table are
foreign keys as their values are actually taken from the primary key (id) in
the co_employees table.

To specify that mentor_id and mentee_id are foreign keys, we add the code
below when creating the mentorships table:

FOREIGN KEY(mentor_id) REFERENCES co_employees(id) ON DELETE

CASCADE ON UPDATE RESTRICT,

FOREIGN KEY(mentee_id) REFERENCES co_employees(id) ON DELETE

CASCADE ON UPDATE RESTRICT

These two lines specify that mentor_id and mentee_id are foreign keys and
that they reference the id column in the co_employees table.

When done this way, the co_employees table is known as the parent table
and the mentorships table is known as the child table.

Stating that mentor_id and mentee_id are foreign keys add a restriction to
them. We will not be allowed to add a record to the mentorships table if the
mentor_id or mentee_id does not exist in the co_employees table.

For instance, if the co_employees table does not have a row with id = 16,
we can’t add the following record

mentor_id = 1

mentee_id = 16

status = 'Ongoing'

project = 'SQF Limited'

to our mentorships table as this mentee has a mentee_id of 16.

Next, note that we also added the ON DELETE CASCADE and ON UPDATE
RESTRICT clauses to our foreign keys.

The ON DELETE CASCADE clause means that if a certain employee is deleted
from the co_employees table (the parent table), any record of that employee
in the mentorships table will also be deleted. Hence, if we delete employee 3
in the co_employees table, the second, third and fourth rows in the
mentorships table will also be deleted.

Besides the ON DELETE CASCADE clause, there are other ON DELETE clauses
that we can add to a foreign key. These clauses include:

ON DELETE RESTRICT - The row in the parent table cannot be deleted if a row
in the child table references that parent row.

ON DELETE SET NULL - The child row foreign key value will be set to NULL if
the parent row is deleted. For this to work, the relevant column in the child
row must allow for NULL values.

ON DELETE SET DEFAULT - The child row foreign key value will be set to the
default value if the parent row is deleted.

These ON DELETE clauses can also be applied when updating the parent table.
To do that, we use the ON UPDATE clause.

For instance, in our example, we added the ON UPDATE RESTRICT clause to
our foreign keys. This means that we will not be allowed to update the
primary key in the parent table if there is at least one row in the child table
that references it.

We’ll try some of these examples when we insert, update and delete data
from our co_employees and mentorships tables in the next chapter.

Unique Constraint

Next, let’s talk about the unique constraint.

Suppose for the mentorships table, we do not want the same mentor to
mentor a mentee more than once. For instance, we do not want the following
case:

mentor_id = 1

mentee_id = 2

project = 'SQF Limited'

mentor_id = 1

mentee_id = 2

project = 'Flynn Tech'

We can use a UNIQUE constraint and require that the combination of
mentor_id and mentee_id be unique.

To do that, we need to add the following constraint to our CREATE TABLE
statement when creating the mentorships table:

UNIQUE (mentor_id, mentee_id)

This will ensure that we cannot have more than one row with the same
mentor_id, mentee_id combination.

Some readers may notice that a UNIQUE constraint is very similar to a PRIMARY
KEY constraint. Indeed, a primary key is unique by definition.

However, one of the main differences between a primary key and a unique
key is that a table can only have one primary key but can have multiple
unique keys.

Named Constraints

Finally, let’s look at named constraints.

In the previous examples, we added table constraints without naming them. If
we want, we can name our constraints. To do that, we add the following

syntax before stating the constraint:

CONSTRAINT name_of_constraint

For the UNIQUE constraint in the previous example, we could have named it
mm_constraint as shown below:

CONSTRAINT mm_constraint UNIQUE (mentor_id, mentee_id)

For the FOREIGN KEY constraint, we could have named it fk1:

CONSTRAINT fk1 FOREIGN KEY(mentor_id) REFERENCES co_employees(id)

ON DELETE CASCADE ON UPDATE RESTRICT

This will make it easier to refer to the constraint in future (such as when we
want to update or delete the constraint).

We’ll now create the mentorships table.

This table has the following columns:

mentor_id: INT

mentee_id: INT

status: VARCHAR(255)

project: VARCHAR(255)

All columns cannot be null.

The primary key of the table is made up of three columns: mentor_id,
mentee_id and project.

mentor_id and mentee_id are both foreign keys that reference the id column
in the co_employees table.

In addition, we do not allow a parent row to be updated if there’s a child row
that references it. We also want the child row to be deleted if the parent row
is deleted.

Next, we do not want the same mentor to mentor a mentee more than once.

Last but not least, we want the foreign keys and unique constraint to be
named.

The code to create the table is:

CREATE TABLE mentorships (

mentor_id INT NOT NULL,

mentee_id INT NOT NULL,

status VARCHAR(255) NOT NULL,

project VARCHAR(255) NOT NULL,

PRIMARY KEY (mentor_id, mentee_id, project),

CONSTRAINT fk1 FOREIGN KEY(mentor_id) REFERENCES

co_employees(id) ON DELETE CASCADE ON UPDATE RESTRICT,

CONSTRAINT fk2 FOREIGN KEY(mentee_id) REFERENCES

co_employees(id) ON DELETE CASCADE ON UPDATE RESTRICT,

CONSTRAINT mm_constraint UNIQUE(mentor_id, mentee_id)

);

Altering Tables

We’ve covered quite a bit in this chapter so far. To recap, we learned that to
create a table, we need to do two things:

1) Specify the columns by stating their names, data types and constraints (if
any)
2) Specify any table constraints that the table must fulfil

Now that we have created the two tables that we need, let’s move on to learn
how we can modify tables. This is useful if we need to make any changes to
our tables after creating them.

Table Names

The first thing we can modify is the table name. To do that, we use the syntax

RENAME TABLE old_name TO new_name;

Let’s change the name of our co_employees table to employees now. To do
that, execute the following statement:

RENAME TABLE co_employees TO employees;

Columns and Table Constraints

Next, let’s learn to alter some of the columns and table constraints of our
tables. For each of the alterations below, we need to first write

ALTER TABLE table_name

followed by

AUTO_INCREMENT = starting_value to change the starting value of the auto
increment column,

ADD CONSTRAINT [name of constraint] details_of_constraint to add a
table constraint (including foreign key constraints),

DROP INDEX name_of_constraint to drop a table constraint (excluding
foreign key constraints),

DROP FOREIGN KEY name_of_foreign_key to drop a foreign key constraint,

MODIFY COLUMN column_name data_type [constraints] to modify a
column,

DROP COLUMN column_name to drop a column, and

ADD COLUMN column_name data_type [constraints] to add a column.

When adding a column, we can specify the position of the new column by
adding the keyword FIRST after the column constraints to indicate that the
new column should be the first column.

Alternatively, we can also add the AFTER column_name keywords to insert the

new column after another column.

Let’s look at some examples now. We’ll modify the employees table first.
Suppose we want to do the following:

1) Drop the age column
2) Add another column called salary which is of FLOAT type and cannot be
null. This column should come after the contact_number column
3) Add a new column called years_in_company which is of INT type and
cannot be null. This column should come after the salary column

Here’s how we do it:

ALTER TABLE employees

DROP COLUMN age,

ADD COLUMN salary FLOAT NOT NULL AFTER contact_number,

ADD COLUMN years_in_company INT NOT NULL AFTER salary;

After modifying our table, we can check if our modifications are correct by
asking MySQL to describe our table.

The syntax is simply

DESCRIBE table_name;

To describe the employees table, we write

DESCRIBE employees;

We should get the following:

Next, let’s alter the mentorships table. For this table, we want to

1) Modify fk2 by changing ON UPDATE RESTRICT to ON UPDATE CASCADE
2) Drop the mm_constraint constraint

In order to modify the foreign key constraint, we have to first drop the
original foreign key using the statement below:

ALTER TABLE mentorships

DROP FOREIGN KEY fk2;

Next, using a new ALTER statement (we are not allowed to drop and add a
foreign key with the same name using a single ALTER statement), we add the
foreign key back with the modified conditions. In addition, we also drop the
mm_constraint constraint:

ALTER TABLE mentorships

ADD CONSTRAINT fk2 FOREIGN KEY(mentee_id) REFERENCES

employees(id) ON DELETE CASCADE ON UPDATE CASCADE,

DROP INDEX mm_constraint;

Add the two ALTER statements above to practice.sql and execute them one by
one to alter the mentorships table as required.

Deleting Tables

Last but not least, before we end this chapter, let’s learn to delete a table. To
do that, we use the syntax below:

DROP TABLE [IF EXISTS] table_name;

For instance, if we want to delete a table called demo, we write

DROP TABLE IF EXISTS demo;

With this, we’ve come to the end of Chapter 3.

Chapter 4: Inserting, Updating and
Deleting Data
In the previous two chapters, we learned to create, alter and drop our
databases and tables. In this chapter, we’ll learn to insert data into our tables.
We’ll also learn to update and delete data.

Inserting Data

To insert data into MySQL, we use the following syntax:

INSERT INTO table_name (column1, column2, column3, …)

VALUES (value1, value2, value3, …);

Suppose we want to insert the information above into the employees table,
we write

INSERT INTO employees (em_name, gender, contact_number, salary,

years_in_company) VALUES

('James Lee', 'M', '516-514-6568', 3500, 11),

('Peter Pasternak', 'M', '845-644-7919', 6010, 10),

('Clara Couto', 'F', '845-641-5236', 3900, 8),

('Walker Welch', 'M', NULL, 2500, 4),

('Li Xiao Ting', 'F', '646-218-7733', 5600, 4),

('Joyce Jones', 'F', '523-172-2191', 8000, 3),

('Jason Cerrone', 'M', '725-441-7172', 7980, 2),

('Prudence Phelps', 'F', '546-312-5112', 11000, 2),

('Larry Zucker', 'M', '817-267-9799', 3500, 1),

('Serena Parker', 'F', '621-211-7342', 12000, 1);

Type the statement above into practice.sql and execute it to insert these
information into your employees table.

In the code above,

table_name is replaced by employees
column1, column2, column3, … is replaced by em_name, gender,
contact_number, salary, years_in_company

value1, value2, value3, … is replaced by 'James Lee', 'M', '516-514-
6568', 3500, 11 etc

Study the code carefully.

Notice that we did not input values for id and date_created. This is because
id is automatically generated by the system (AUTO_INCREMENT) while
date_created has a DEFAULT value provided by the NOW() function.

In addition, note that we need to use quotation marks for textual information
(e.g. 'James Lee', 'M', '516-514-6568' etc) but not for numerical
information (e.g. 11).

Finally, we inserted a record with a missing contact number ('Walker
Welch', 'M', NULL, 2500, 4) using the NULL keyword. This is allowed
because the contact_number column does not have the NOT NULL constraint.

Next, let’s try inserting data into the mentorships table. Suppose we want to
insert the following data into the mentorships table, how can we do it?

Based on what we’ve learned so far, we can do it as follows:

INSERT INTO mentorships (mentor_id, mentee_id, status, project)

VALUES

(1, 2, 'Ongoing', 'SQF Limited'),

(1, 3, 'Past', 'Wayne Fibre'),

(2, 3, 'Ongoing', 'SQF Limited'),

(3, 4, 'Ongoing', 'SQF Limited'),

(6, 5, 'Past', 'Flynn Tech');

However, there is a shorter way to do it. We can omit the column names as
shown below:

INSERT INTO mentorships VALUES

(1, 2, 'Ongoing', 'SQF Limited'),

(1, 3, 'Past', 'Wayne Fibre'),

(2, 3, 'Ongoing', 'SQF Limited'),

(3, 4, 'Ongoing', 'SQF Limited'),

(6, 5, 'Past', 'Flynn Tech');

This second method works only if we are inserting data for all columns. In
addition, the values must be in the correct order. Else, the data will be
assigned to the wrong column.

For instance, if we insert the first row as

(1, 2, 'SQF Limited', 'Ongoing')

MySQL is going to assign 'SQF Limited' to the status column and
'Ongoing' to the project column, which is not what we want.

Type either (but not both) of the INSERT statement above into practice.sql and
execute it. That’ll insert the necessary data into the mentorships table.

Updating Data

Next, let’s look at how we can update our data. To do that, we use the syntax
below:

UPDATE table_name

SET column1 = value1, column2 = value2, …

WHERE condition;

For instance, suppose we want to update the contact number of 'James Lee'
from '516-514-6568' to '516-514-1729', we use the code

UPDATE employees

SET contact_number = '516-514-1729'

WHERE id = 1;

Here, we use the id column to identify 'James Lee'. We can also use other
columns. For instance, we can write

WHERE years_in_company = 11

since there is only one employee with that number of years in the company.

However, if there is more than one employee with the same number of years,
we’ll end up updating the contact numbers of all such employees, which is
not what we want.

In addition, if we omit the WHERE clause, we’ll end up updating the contact
numbers of ALL employees, which is also not what we want.

Deleting Data

Finally, let’s look at how we can delete data from a table. To do that, we use
the syntax below:

DELETE FROM table_name

WHERE condition;

For instance, to delete 'Li Xiao Ting' (id = 5) from the employees table,
we use the following code:

DELETE FROM employees

WHERE id = 5;

Try it yourself. You should get a green tick with the message

1 row(s) affected

in your output window.

Constraints

Now that we know how to insert, update and delete data from our tables, let’s
revisit some of the constraints that we placed on our tables when we created
them.

Remember that we have two foreign key constraints for the mentorships
table? Let’s see how they work.

Try inserting the following data into mentorships:

INSERT INTO mentorships VALUES

(4, 21, 'Ongoing', 'Flynn Tech');

What happens? You get an error message that says

Error Code: 1452. Cannot add or update a child row: a foreign key

constraint fails

right? This is due to the fact that we do not have an employee with id = 21
in the employees table. Hence, we cannot insert a row with mentee_id = 21
into the mentorships table as the mentee_id column is supposed to reference
the id column in the employees table.

Next, let’s try to update some data in the employees table. For instance, try
adding the code below to practice.sql and execute it.

UPDATE employees

SET id = 12

WHERE id = 1;

It fails too right?

This is due to the ON UPDATE RESTRICT clause that we added to the first
foreign key (fk1) in the mentorships table. This foreign key links the
mentor_id column in the mentorships table with the id column in the
employees table.

We are not allowed to update the id column in the employees table for id =
1 as we have two rows in the mentorships table that reference it (the first and
second rows, with mentor_id = 1).

Clear? Good!

Let’s move on to the ON UPDATE CASCADE clause that we added to the second
foreign key (fk2).

Try executing the statement below:

UPDATE employees

SET id = 11

WHERE id = 4;

Here, we try to update the id column in the employees table for id = 4.

This update works because employee 4 is not a mentor in the mentorships
table. Hence, it is not affected by the first foreign key.

However, as employee 4 is a mentee in the mentorships table, it is affected
by the second foreign key that links mentee_id in the mentorships table with
id in the employees table.

Recall that the second foreign key has a ON UPDATE CASCADE clause? This
means that any update in the parent table (employees) will lead to a
corresponding update in the child table (mentorships).

We can verify that using the two statements below:

SELECT * FROM employees;

SELECT * FROM mentorships;

The SELECT keyword is used to retrieve information from tables. We’ll learn
more about that in the next three chapters. For now, try executing the
statements above. You should get the following outputs.

Note that as the date_created column in the employees table is provided by
the NOW() function, the values that you get for that column will be different
from those values shown above. The values that you get will be based on the
time you created the record.

As you can see, the id for Walker Welch in the employees table is updated
from 4 to 11. This update is cascaded to the mentorships table. The
mentee_id for the last row in the mentorships table is changed from 4 to 11
too.

Clear about how the ON UPDATE CASCADE clause works?

Good!

Last but not least, let’s look at the ON DELETE CASCADE clause. We added this
clause to both our foreign keys.

Recall that previously, we deleted 'Li Xiao Ting' from the employees
table?

If you study the employees table above, you’ll notice that the row with id =
5 is missing.

In addition, if you compare the mentorships table above with the data that
we inserted into this table, you’ll see that the last row is deleted too.

This is due to the ON DELETE CASCADE clause that we added to our foreign
keys. The last row has mentee_id = 5. Hence, it is deleted from the
mentorships table (the child table) when the referenced row is deleted from
the parent table (the employees table).

Chapter 5: Selecting Data Part 1
In this chapter, we’ll learn to select data from our database. This is a
relatively large topic, so we’ll be splitting it into three chapters.

The data used for selection are from the two tables (employees and
mentorships) that we created in the previous chapters. These tables can be
found in Appendix A for easy reference.

In the first chapter, we’ll learn to select data from a single table.

Basic Select Syntax

To select data from a single table, we use the syntax

SELECT column_names_or_other_information

[AS alias]

[ORDER BY column(s)] [DESC]

FROM table_name

[WHERE condition];

Let’s look at some examples.

Selecting Everything

If we want to select all the columns and rows from a table, we write

SELECT * FROM table_name;

For instance, as we saw in the previous chapter, to select all data from the
employees table, we write

SELECT * FROM employees;

In the statement above, we did not add a WHERE clause. Without the WHERE
clause, MySQL gives us all the rows in the table.

In addition, we used the * symbol to indicate that we want to select all
columns from the employees table.

Filtering Columns

If we do not want to select all columns, we can list the columns we want.

Suppose we only want to select the em_name and gender columns from the
employees table, we write

SELECT em_name, gender from employees;

The table below shows part of the results from this SELECT statement:

Using Aliases

If you study the table above, you’ll notice that the table uses the column
names (“em_name” and “gender”) as its column headings.

If we want the column heading to display a different name instead, we can
use an alias for the column.

We do that using the AS keyword as shown in the following statement:

SELECT em_name AS `Employee Name`, gender AS Gender FROM

employees;

In the statement above, note that we use the backtick character (normally
found at the top left corner of the keyboard, together with the tilde ~
character) to enclose the first alias “Employee Name”. This is necessary
when the alias consists of more than one word. Alternatively, we can also use
single or double quotes as shown below:

SELECT em_name AS "Employee Name", gender AS Gender FROM

employees;

or

SELECT em_name AS 'Employee Name', gender AS Gender FROM

employees;

If you run any of the statements above, you’ll see the heading change from
“em_name” and “gender” to “Employee Name” and “Gender” respectively.

Filtering Rows

Next, let’s look at how we can filter rows when selecting data.

LIMIT

To do that, we can use the LIMIT keyword. This limits the number of rows
retrieved by the SELECT statement. For instance, if we write

SELECT em_name AS 'Employee Name', gender AS Gender FROM

employees LIMIT 3;

we’ll get

Only the first three rows are displayed.

DISTINCT

Another way to filter rows is to remove duplicates. This can be achieved
using the DISTINCT keyword.

If we write

SELECT gender FROM employees;

we’ll get

M

M

F

F

M

F

M

F

M

as the output.

This means that the first two rows in our table have gender = M while the
third and fourth rows have gender = F etc.

If we want to remove the duplicates, we can write

SELECT DISTINCT(gender) FROM employees;

We’ll get

M

F

as the output.

WHERE clause

Next, let’s look at how we can use the WHERE clause to filter results.

We’ve already seen the WHERE clause in the previous chapter when we used
the statement

UPDATE employees

SET contact_number = '516-514-1729'

WHERE id = 1;

to update the contact number of the employee with an id of 1 (WHERE id =
1).

In that example, we used the equality (=) operator in the WHERE clause.
Besides the equality operator, there are other operators and keywords that we
can use:

Comparison

We can do a comparison between two values using the following operators:

Not Equal (!=), Greater than (>), Greater than or equal to (>=), Smaller than
(<), Smaller than or equal to (<=)

For instance, if we want to select all rows from the employees table whose id
is not equal to 1, we write

SELECT * FROM employees WHERE id != 1;

Between

Besides using mathematical operators, we can also use different keywords in
the WHERE clause.

If we want to select rows with values between two numbers, we can use the
BETWEEN keyword. For instance, to select rows with id between 1 (inclusive)
and 3 (inclusive), we write

SELECT * FROM employees WHERE id BETWEEN 1 AND 3;

Like

If we want to select rows whose column values “look like” a specified
pattern, we use the LIKE keyword.

If we want to select employees whose names end with ‘er’, we can do it as
follows:

SELECT * FROM employees WHERE em_name LIKE '%er';

The % symbol is used to indicate that there can be an unknown number of
characters in front of 'er'.

If you run the statement above, you’ll get the records of Larry Zucker and
Serena Parker. This is because both names end with ‘er’.

If we want to select employees whose names have 'er' anywhere within (not
necessarily at the back), we can use the following statement:

SELECT * FROM employees WHERE em_name LIKE '%er%';

We add the % symbol in front of and behind ‘er’ to indicate that there can be
any number of characters before and after it.

If you run the statement above, you’ll get the records of all 5 employees with
‘er’ in their names (Peter Pasternak, Jason Cerrone, Larry Zucker,
Serena Parker and Walker Welch).

Besides the % symbol, MySQL also provides us with the _ symbol.

In contrast to the % symbol that represents an unknown number of characters,
the _ symbol is used to represent exactly ONE character.

Suppose we want to select the rows of all employees that have ‘e’ as the fifth
letter in their names, we write:

SELECT * FROM employees WHERE em_name LIKE '____e%';

Here, we use FOUR _ symbols to indicate that there are four characters
before ‘e’. This will give us the records of Joyce Jones, Prudence Phelps
and Walker Welch.

In

Next, let’s look at the IN keyword.

This keyword is used to select rows with column values inside a certain list.
Suppose we want to select rows that have id 6, 7, or 9, we can write

SELECT * FROM employees WHERE id IN (6, 7, 9);

Not in

On the other hand, if we want to select rows that do not have id 7 or 8, we
use the NOT IN keywords:

SELECT * FROM employees WHERE id NOT IN (7, 8);

Note that in both examples above, we need to enclose the ids inside a pair of
parentheses.

And, Or

Finally, let’s look at the AND and OR keywords. These keywords are used to
combine conditions in the WHERE clause.

The AND keyword gives us rows that satisfy ALL the conditions listed while
the OR keyword selects rows that satisfy at least one of the conditions.

We can use parentheses to indicate which conditions should be combined
first.

For instance, if we want to select all female employees who have worked
more than 5 years in the company or have salaries above 5000, we can write:

SELECT * FROM employees WHERE (years_in_company > 5 OR salary >

5000) AND gender = 'F';

This gives us the following output:

Clara Couto is selected even though her income is only 3900. This is
because she has worked 8 years in the company. Hence, she satisfies the first
of the two OR conditions inside the parentheses (years_in_company > 5 OR
salary > 5000).

The OR keyword requires employees to satisfy at least one of the conditions.

On the other hand, if you study the employees table, you’ll see that some
employees are not selected even though they also satisfy at least one OR
condition in the parentheses.

For instance, James Lee has worked 11 years in the company but is not

selected.

This is due to the AND keyword that requires James Lee to not only satisfy the

years_in_company > 5 OR salary > 5000

condition (which he does), but to also satisfy the

gender = 'F'

condition (which he doesn’t).

Clear?

Subqueries

Next, let’s look at subqueries.

Subqueries are commonly used to filter the results of one table based on the
results of a query on another table.

For instance, in our example, suppose we want to select the names of all
employees that are mentors of the 'SQF Limited' project.

We can select them using their ids. If we know that employee 1, 2 and 3 are
mentors of this project, we can use the following SELECT statement:

SELECT em_name from employees WHERE id IN (1, 2, 3);

However, what if we do not know their ids?

What we can do is use a subquery in the WHERE clause to get their ids first.
This can be achieved with the statement below:

SELECT em_name from employees WHERE id IN

(SELECT mentor_id FROM mentorships WHERE project = 'SQF

Limited');

Here, we replace

(1, 2, 3)

with

(SELECT mentor_id FROM mentorships WHERE project = 'SQF Limited')

This query is known as a subquery. We use this subquery to get the ids from
the mentorships table first. We then use this result in the WHERE clause of the
main query to get the em_name column values from the employees table.

If you run the main query (in bold) above, you’ll get James Lee, Peter
Pasternak and Clara Couto as the result.

Sorting Rows

Now that we know how to select data from our tables and filter the results,
let’s cover one last concept before we end this chapter. Let’s look at how we
can sort the results returned by the SELECT statement.

To do that, we use the ORDER BY clause. We can choose to sort the results
based on one or more columns.

Suppose we want to sort the rows of the employees table using gender,
followed by the employee’s name (em_name), we write

SELECT * FROM employees ORDER BY gender, em_name;

This results in the records of female employees being displayed first,
followed by male employees (since the letter F comes before M).

Within each gender, the records will be sorted by the employees’ names.

Note that the default sorting order is ascending. If we want to sort by
descending order, we use the DESC keyword as shown below:

SELECT * FROM employees ORDER BY gender DESC, em_name;

This results in the records of male employees being displayed first.

Chapter 6: Selecting Data Part 2
In the previous chapter, we learned quite a few keywords that we can use to
select data from our tables.

In this chapter, we’ll learn to use built-in functions in our SELECT statements.

What is a Function?

First off, what is a function?

A function is a block of code that does a certain job for us. For an analogy,
think of the mathematical functions available in MS Excel. To add numbers,
we can use the sum() function and type sum(A1:A5) instead of typing
A1+A2+A3+A4+A5.

A function in MySQL is similar; it helps us accomplish certain tasks more
easily.

MySQL provides us with a large number of pre-written functions that we can
use in our SQL statements.

The full list of MySQL functions can be found at
https://dev.mysql.com/doc/refman/8.0/en/func-op-summary-ref.html

Let’s look at some of them in this chapter.

MySQL Functions

The first two functions that we’ll look at are for working with strings.

CONCAT()

The first is the CONCAT() function. This function allows us to combine two or

more strings into a single string. This is known as concatenating the strings.

To use the CONCAT() function, we need to provide it with some input.
Specifically, we need to tell the function what strings to concatenate.

For instance, if we want to concatenate 'Hello' and ' World', we write

CONCAT('Hello', ' World');

To display the result of this function, we use the SELECT keyword.

Besides using the SELECT keyword to select information from tables, we can
also use it to display messages.

Try running the statement below:

SELECT CONCAT('Hello', ' World');

You’ll get

Hello World

as the output.

SUBSTRING()

Another commonly used function is the SUBSTRING() function. This function
allows us to extract a substring from a specified string. A substring refers to a
portion of a longer string.

The SUBSTRING() function requires us to pass in a string, the starting position
to extract the substring, and the desired length of the substring (in that order).
If the desired length is not specified, the function extracts from the starting
position to the end of the string.

For instance,

SELECT SUBSTRING('Programming', 2);

gives us

rogramming

as we extract the substring starting from position 2 to the end of the string.

On the other hand,

SELECT SUBSTRING('Programming', 2, 6);

gives us

rogram

which is a substring that starts from position 2, with a length of 6 characters.

Besides functions for manipulating strings, we also have functions for
working with date and time.

NOW()

One such function is the NOW() function that we learned in Chapter 3. This
function gives us the current date and time whenever that function is being
used. It is commonly used to record the date and time that a particular record
is inserted into a table.

CURDATE()

Next, we have the CURDATE() function. This gives us the current date.

For instance,

SELECT CURDATE();

gives me

2018-08-28

at the time of writing.

CURTIME()

Finally, we have the CURTIME() function. This gives us the current time.

Aggregate Functions

Besides the functions mentioned above, MySQL also comes with a large
number of pre-written aggregate functions.

An aggregate function is a function that performs calculation on a set of
values and returns the result of the calculation as a single value.

We can use some of these built-in aggregate functions to perform various
calculations on the data in our tables.

Let’s look at some of these functions and apply them on our employees table.

The calculations below are based on the employees table found in Appendix
A.

The commonly used aggregate functions in MySQL include:

COUNT()

The COUNT() function returns the number of the rows in the table.

If we pass in * to the function, it returns the total number of rows in the table.

If we pass in a column name instead, it returns the number of non NULL values
in that column (NULL values are ignored).

If we want to remove duplicates, we add the DISTINCT keyword before the
column name.

Example 1:
SELECT COUNT(*) FROM employees;

Result:
9

Example 2:
SELECT COUNT(contact_number) FROM employees;

Result:
8

The last row (Walker Welch) is excluded from the count as the value is NULL.

Example 3a:
SELECT COUNT(gender) FROM employees;

Result:
9

Example 3b:
SELECT COUNT(DISTINCT gender) FROM employees;

Result:
2

AVG()

The AVG() function returns the average of a set of values.

Example:
SELECT AVG(salary) FROM employees;

Result:
6487.777777777777

If you want to format the output, you can use the ROUND() function. We need
to pass in two pieces of information to the ROUND() function - the number to

round off and the number of decimal places we want it rounded off to.

For instance,

SELECT ROUND(1.23456, 3);

gives us 1.235.

In our case, if we want to round off the result of the AVG() function to 2
decimal places, we write

SELECT ROUND(AVG(salary), 2) FROM employees;

We’ll get 6487.78.

MAX()

The MAX() function returns the maximum of a set of values.

Example:
SELECT MAX(salary) FROM employees;

Result:
12000

MIN()

The MIN() function returns the minimum of a set of values.

Example:
SELECT MIN(salary) FROM employees;

Result:
2500

SUM()

The SUM() function returns the sum of a set of values.

Example:
SELECT SUM(salary) FROM employees;

Result:
58390

GROUP BY

In the previous section, we learned to use aggregate functions to perform
calculations on our data. However, those calculations were performed on all
the values in the column. What if we are interested in the maximum salary of
males vs females?

MySQL allows us to group data when performing calculations. For instance,
we can ask MySQL to group the data based on gender and perform the
calculation on the two groups separately. To do that, we use the GROUP BY
clause:

SELECT gender, MAX(salary) FROM employees GROUP BY gender;

That’ll give us the following output:

HAVING

In addition to performing calculations on grouped data, we can also filter the
results of the grouped data. We do that using the HAVING clause.

Suppose we want to display rows from the previous table only when the
maximum salary is above 10000, we do that using the statement below:

SELECT gender, MAX(salary) FROM employees GROUP BY gender HAVING

MAX(salary) > 10000;

That’ll remove the first row from the previous table.

Chapter 7: Selecting Data Part 3
We’ve covered quite a few data selection concepts in the last two chapters.
Those two chapters focused mainly on selecting data from a single table.

In this chapter, we’ll learn to select and combine data from one or more
tables.

Joins

Let’s start with joins.

Like the name suggests, a join is used to join data from different tables based
on a related column between the tables.

The syntax for joining two tables is:

SELECT [table_names.]columns_names_or_other_information

FROM

left_table

JOIN / INNER JOIN / LEFT JOIN / RIGHT JOIN

right_table

ON

left_table.column_name = right_table.column_name;

There are three main types of joins in mySQL: inner join, left join and right
join. These are represented by the Venn diagrams below:

To demonstrate the difference between them, let’s consider the following two
tables:

Here, we have two tables called one and two.

You can see that column A in table one shares some common values with
column C in table two. We can join the two tables using these two columns.

If we do an inner join, we write

SELECT A, C, one.B AS 'one B', two.B AS 'two B'

FROM

one

INNER JOIN

two

ON

A = C;

There are a few points to note about this SELECT statement.

Firstly, in the statement above, table one is the left table while table two is

the right table. The left table refers to the first table mentioned after the FROM
keyword.

Secondly, the JOIN condition used is A = C.

Thirdly, for some of the columns (specifically column B), we need to prefix
the column name with a table name (such as one.B, two.B etc). This is done
to avoid ambiguity as there is a column B in both tables one and two. If we do
not include the table name, mySQL will not know which table we want to get
the values from. If we want, we can also prefix the other columns with their
table names, such as one.A and two.C. However, that is optional as columns
A and C are not ambiguous.

Lastly, an inner join is the default join. In the statement above, we could have
omitted the INNER keyword.

If you create the two tables yourself and run the SELECT statement above,
you’ll get the following output:

If you study the output carefully, you’ll notice that an inner join selects rows
where a common value exists for both tables. Hence, only A=2 and A=3 are
selected from table one as these two values (2 and 3) exist in column C of
table two as well.

Clear?

Good!

Let’s move on to a left join.

To do a left join, we simply replace INNER JOIN with LEFT JOIN in the
previous SQL statement. That will give us the following output:

A left join selects all rows from the left table as shown in the output above.

As the two tables are joined using the condition A = C and table two (the
right table) does not have a row with C = 1, the values for table two are
displayed as NULL when A=1 (refer to the last row in the results table above).

Finally, let’s do a right join. A right join selects all rows from the right table.

To do a right join, we replace LEFT JOIN with RIGHT JOIN in the SQL
statement. This will give us the following output:

As table one (the left table) does not have a row with A = 4, the values for
table one are displayed as NULL for that row.

Clear?

Great!

Now, let’s look at an example using our employees and mentorships tables.

Type the following code into practice.sql and execute it:

SELECT employees.id, mentorships.mentor_id, employees.em_name AS

'Mentor', mentorships.project AS 'Project Name'

FROM

mentorships

JOIN

employees

ON

employees.id = mentorships.mentor_id;

You’ll get the following output:

Study the output carefully to fully appreciate how a join works.

In the example above, if you do not want the id and mentor_id columns to
show, you can use the code below:

SELECT employees.em_name AS 'Mentor', mentorships.project AS

'Project Name'

FROM

mentorships

JOIN

employees

ON

employees.id = mentorships.mentor_id;

You do not have to select the columns that you use for joining. The statement
above gives us the same rows but without the id and mentor_id columns.

Unions

Now that we understand how joins work, let’s move on to unions. This is a
relatively easy concept.

The UNION keyword is used to combine the results of two or more SELECT
statements. Each SELECT statement must have the same number of columns.
The syntax is:

SELECT_statement_one

UNION

SELECT_statement_two;

The column names from the first SELECT statement will be used as the
column names for the results returned.

Let’s look at an example.

For the employees table, we can do a UNION as follows:

SELECT em_name, salary FROM employees WHERE gender = 'M'

UNION

SELECT em_name, years_in_company FROM employees WHERE gender =

'F';

We’ll get the following output:

The first 5 rows are from the first SELECT statement while the last 4 are from
the second statement.

Note that by default, the UNION keyword removes any duplicates from the
result. If you do not want that to happen, you can use the UNION ALL
keywords.

For instance, if we do a UNION ALL as follows

SELECT mentor_id FROM mentorships

UNION ALL

SELECT id FROM employees WHERE gender = 'F';

we’ll get 1, 1, 2, 3, 3, 6, 8, 10 as the result. The ids 1 and 3 are repeated
because they are returned by both SELECT statements.

In contrast, if we simply do a UNION, we’ll get 1, 2, 3, 6, 8, 10 as the result.
The duplicates are removed.

Chapter 8: Views
In the last three chapters, we learned to write some pretty complex SELECT
statements to get information from our databases.

In this chapter, we’ll learn another concept that is closely related to SELECT
statements - the concept of views.

What is a view?

Simply stated, an SQL view is a virtual table.

In contrast to actual tables, views do not contain data. Instead, they contain
SELECT statements. The data to display is retrieved using those SELECT
statements.

One advantage of using views is that it allows programmers to simplify their
code. They can write relatively complex SELECT statements to join multiple
tables into a single virtual table. Once that is done, they can access that
virtual table like a normal table and perform simple searches on it.

In addition, views also allow us to restrict access to certain data in our tables.
For instance, suppose we have a table with three columns - id, password and
email. If we do not want other programmers to have access to all the data in
the tables (such as the password column), we can create a view with only the
id and email columns and let them have access to the view instead.

Creating a View

The syntax for creating a view is:

CREATE VIEW name_of_view AS

SELECT statement;

Quite straightforward, right?

Let’s look at an example.

In the previous chapter, we wrote a SELECT statement to join the employees
table with the mentorships table.

The code below shows how we can create a view for that SELECT statement:

CREATE VIEW myView AS

SELECT employees.id, mentorships.mentor_id, employees.em_name AS

'Mentor', mentorships.project AS 'Project Name'

FROM

mentorships

JOIN

employees

ON

employees.id = mentorships.mentor_id;

The only additional code is the first line (CREATE VIEW myView AS).

To use this view, we need to first execute the CREATE VIEW statement above
to create the view.

Next, we can select data from it like how we select data from a table.

For instance, we can write

SELECT * FROM myView;

to view all the data.

If we only want the mentor_id and Project Name columns, we can write

SELECT mentor_id, `Project Name` FROM myView;

Note that in the SELECT statement above, we have to enclose Project Name
using the backtick (`) character. If we use single or double quotes as shown
below:

SELECT mentor_id, 'Project Name' FROM myView;

we’ll get the following results, which is obviously not what we want.

Single or double quotes can only be used when naming the alias for the
column. For selecting the column, we have to use backticks.

Altering a View

After creating a view, if we want to make any changes to it, we use the ALTER
VIEW keywords.

The syntax is

ALTER VIEW name_of_view AS

SELECT statement;

For instance, we can use the following statement to alter myView:

ALTER VIEW myView AS

SELECT employees.id, mentorships.mentor_id, employees.em_name AS

'Mentor', mentorships.project AS 'Project'

FROM

mentorships

JOIN

employees

ON

employees.id = mentorships.mentor_id;

This changes the alias for the mentorships.project column from Project
Name to Project (refer to underlined code).

Deleting a View

Last but not least, to delete a view, we use the DROP VIEW keywords. The
syntax is

DROP VIEW [IF EXISTS] name_of_view;

To delete myView, we write

DROP VIEW IF EXISTS myView;

Chapter 9: Triggers
In this chapter, we’ll talk about another interesting feature in MySQL -
triggers.

What is a Trigger?

A trigger is a series of actions that is activated when a defined event occurs
for a specific table. This event can either be an INSERT, UPDATE or DELETE.
Triggers can be invoked before or after the event.

To understand how triggers work, let’s look at an example.

We’ll use the employees table to demonstrate.

Suppose one of the employees has just resigned from the company and we
want to delete this employee from the employees table. However, before we
do that, we would like to transfer the data into another table called
ex_employees as a form of back up. We can do this using a trigger.

Let’s first create an ex_employees table using the code below:

CREATE TABLE ex_employees (

em_id INT PRIMARY KEY,

em_name VARCHAR(255) NOT NULL,

gender CHAR(1) NOT NULL,

date_left TIMESTAMP DEFAULT NOW()

);

Creating a Trigger

Next, we’ll use the following syntax to create our trigger (line numbers are
added on the left for reference and are not part of the syntax):

1 DELIMITER $$

2

3 CREATE TRIGGER name_of_trigger BEFORE/AFTER

UPDATE/DELETE/INSERT ON name_of_table FOR EACH ROW

4

5 BEGIN

6 -- Actions to take

7 END $$

8

9 DELIMITER ;

This syntax may look overwhelming at first. Do not worry, we’ll go over
each keyword one by one.

On line 1, we have a new keyword - DELIMITER.

A delimiter is a character or sequence of characters that specifies the end of a
SQL statement. Recall that previously, we have always used ; to specify the
end of our SQL statements? We can change that if we want.

The code on line 1 (DELIMITER $$) tells MySQL that we want to use $$ as
the delimiter for our CREATE TRIGGER statement (from lines 3 to 7).

Why do we need to do that?

The reason for this is that a trigger contains SQL statements within itself. We
use the ; character to signify the end of those SQL statements inside the
trigger and use the $$ characters to signify the end of the trigger itself.

We could have used other characters as the delimiter, but it is customary to
use $$.

We change the delimiter back to ; on line 9.

Using $$ as the delimiter is necessary only for statements that contain SQL
statements within itself (such as the CREATE TRIGGER and CREATE PROCEDURE
statements that we'll cover in the next chapter).

Clear?

Good! Let’s move on to the actual trigger.

The actual trigger is created on line 3 using the CREATE TRIGGER keywords.

Each trigger must be associated with a table. We use ON name_of_table to
link the trigger to the table.

Finally, the keywords FOR EACH ROW is standard syntax to inform MySQL
that this trigger is to be activated for each of the rows affected by the UPDATE,
INSERT or DELETE event.

After line 3, we have the BEGIN and END $$ markers on lines 5 and 7. These
two markers mark the beginning and end of the trigger. Between these two
markers, we insert the SQL statements that define the actions to take.

Let’s look at an actual example. As mentioned previously, we want to create
a trigger that inserts the record of an employee into a new table called
ex_employees before we delete the record from the employees table. We do
that using the code below:

DELIMITER $$

CREATE TRIGGER update_ex_employees BEFORE DELETE ON employees FOR

EACH ROW

BEGIN

INSERT INTO ex_employees (em_id, em_name, gender) VALUES

(OLD.id, OLD.em_name, OLD.gender);

END $$

DELIMITER ;

The name of the trigger is update_ex_employees.

We use BEFORE DELETE ON employees to indicate that we want this trigger to
be activated before we delete the record from the employees table. If we want
the trigger to be activated after we delete the record, we’ll write AFTER
DELETE ON employees.

Next, within the BEGIN and END $$ markers, we have an INSERT statement to
insert a new row into the ex_employees table. This INSERT statement should

be quite familiar to you, except for the OLD keyword.

For triggers activated by a DELETE event, we use the OLD keyword to retrieve
the deleted values (or values to be deleted).

For triggers activated by an INSERT event, we use the NEW keyword to retrieve
the inserted data (or data to be inserted).

For triggers activated by an UPDATE event, we use the OLD keyword to retrieve
the original data, and the NEW keyword to retrieve the updated data.

To get a feel of how triggers work, type the trigger above into practice.sql
and execute it. Next, execute the statements below:

DELETE FROM employees WHERE id = 10;

SELECT * FROM employees;

SELECT * FROM ex_employees;

We first delete employee 10 from the employees table. Next, we retrieve data
from both the employees and ex_employees tables.

You’ll see that employee 10 is removed from the employees table and a new
row is added to the ex_employees table automatically. Cool right?

Deleting a Trigger

Finally, let’s look at how we can delete an existing trigger.

To do that, we use the following syntax:

DROP TRIGGER [IF EXISTS] name_of_trigger;

To drop our update_ex_employees trigger, we write

DROP TRIGGER IF EXISTS update_ex_employees;

Chapter 10: Variables and Stored Routines
Congratulations on making it this far! We’ve covered most of the
fundamental concepts in SQL.

In this chapter, we’ll cover something more advanced. Specifically, we’ll talk
about stored routines.

However, before we do that, let’s first discuss variables. We need to
understand variables before we can fully appreciate stored routines.

Variables

So what is a variable?

A variable is a name given to data that we need to store and use in our SQL
statements.

For instance, suppose we want to get all information related to employee 1
from the employees and mentorships tables. We can do that as follows:

SELECT * FROM employees WHERE id = 1;

SELECT * FROM mentorships WHERE mentor_id = 1;

SELECT * FROM mentorships WHERE mentee_id = 1;

However, if we realize that we made a mistake and want the information of
employee 2 instead, we’ll have to change all the three SQL statements above.
This is relatively easy for three statements, but can be a lot of trouble if there
are hundreds of statements. A better way is to use variables.

To do that, we can first declare and initialize a variable using the statement
below:

SET @em_id = 1;

Here, we declare a variable called @em_id. User defined variables in MySQL

have to be prefixed with the @ symbol.

In addition, we assign a value of 1 to the variable using the SET keyword.
This is known as initializing the variable (i.e. giving it an initial value). We
can always change the value of the variable later.

Once the variable is declared and initialized, we can modify our SELECT
statements to make use of this variable:

SELECT * FROM mentorships WHERE mentor_id = @em_id;

SELECT * FROM mentorships WHERE mentee_id = @em_id;

SELECT * FROM employees WHERE id = @em_id;

In the modified statements above, we simply replaced 1 in the original
statements with @em_id.

In order to get the data for employee 1 now, we have to execute the SET
statement and the three SELECT statements.

Subsequently, if we need to get the information for other employees, we can
assign another value to @em_id and run the statements again. For instance, to
get the information for employee 2, we can assign a new value to @em_id
using the statement below:

SET @em_id = 2;

We can then execute this SET statement and re-execute the SELECT statements.
We’ll get the information for employee 2. There is no need to change any of
the SELECT statements.

Clear?

Variables make it very easy for us to reuse our SQL statements and are
extremely useful in stored routines. We’ll cover stored routines in the next
section.

Before that, let’s cover a few more concepts related to variables.

Besides assigning numerical values to variables, we can also assign text to
them. To do that, we need to use quotation marks:

SET @em_name = 'Jamie';

Next, we can assign the result of a mathematical operation to a variable. For
instance, we can do the following:

SET @price = 12;

SET @price = @price + 3;

In the first SET statement, we declare a variable called @price and initialize it
to 12.

In the second SET statement, we update the value of @price by adding 3 to it.

SET statements always work from right to left (i.e. the right side of the
statement is executed first).

In other words, 3 is added to the original value of @price first.

The result is then assigned back to @price.

The value of @price thus becomes 15.

Last but not least, we can assign the result of a function to a variable.

For instance, we can do the following:

SET @result = SQRT(9);

Here, we assign the result of the SQRT() function to @result.

SQRT() is a pre-written function in MySQL that gives us the square root of a
number. In the statement above, SQRT(9) gives 3 as the answer. This value is
then assigned to @result.

To verify that, we can display the value of @result.

In order to display the value of any variable, we use the SELECT keyword.

Try running the statements below:

SET @result = SQRT(9);

SELECT @result;

You’ll get 3 as the result.

Alternatively, we can combine the two statements into a single statement:

SELECT @result := SQRT(9);

That is, we can combine a SET statement with a SELECT statement.

However, if you choose to do that, you have to use the := symbol to do the
assignment in the SELECT statement. The = symbol will not work correctly.

If you run the statement above, you’ll get 3 as the result too.

Stored Routines

Next, let’s move on to stored routines.

A stored routine is a set of SQL statements that are grouped, named and
stored together in the server. Do not worry if this does not make much sense
to you at the moment. We’ll discuss it in greater depth later.

There are two types of stored routines - stored procedures and stored
functions.

Stored Procedures

Let’s first look at stored procedures.

We can create a stored procedure using the syntax below:

DELIMITER $$

CREATE PROCEDURE name_of_procedure([parameters, if any])

BEGIN

-- SQL Statements

END $$

DELIMITER ;

Most of the syntax is pretty similar to the syntax for creating a trigger.

The main difference is, instead of using CREATE TRIGGER, we use CREATE
PROCEDURE to create the stored procedure.

In addition, we have a pair of parentheses after the CREATE PROCEDURE
keywords.

These parentheses allow us to pass values to our stored procedure using a
special type of variable known as parameters. Parameters are optional; we’ll
discuss them in the second example.

For now, let’s first look at a simple example on creating a procedure without
parameters.

Suppose we want to create a stored procedure to select all information from
our two tables (employees and mentorships).

Here’s how we do it:

DELIMITER $$

CREATE PROCEDURE select_info()

BEGIN

SELECT * FROM employees;

SELECT * FROM mentorships;

END $$

DELIMITER ;

We first change the delimiter to $$. Next, we use the CREATE PROCEDURE
keywords to create the stored procedure.

The name of the stored procedure is select_info. We need to add a pair of
parentheses after the name. A pair of empty parentheses indicates that this
stored procedure has no parameters.

After the BEGIN keyword, we add two SELECT statements to the stored
procedure. Next, we end the stored procedure with END $$.

Finally, we change the delimiter back to a semi-colon (;).

Pretty straightforward, right?

Try typing the stored procedure into practice.sql yourself and execute it to
create the procedure. We always need to execute the CREATE PROCEDURE
statement to create our procedures before we can use them.

Next, let’s run this stored procedure. To do that, we use the CALL keyword:

CALL select_info();

If you execute the statement above, you’ll see the employees and
mentorships tables displayed in two separate tabs in the results grid.

Got it?

Great!

Let’s move on to a more advanced example.

Suppose instead of selecting everything from the two tables, we only want to
select the records of a particular employee. We can create a stored procedure
as follows:

DELIMITER $$

CREATE PROCEDURE employee_info(IN p_em_id INT)

BEGIN

SELECT * FROM mentorships WHERE mentor_id = p_em_id;

SELECT * FROM mentorships WHERE mentee_id = p_em_id;

SELECT * FROM employees WHERE id = p_em_id;

END $$

DELIMITER ;

Most of the code should be familiar to you. The only exception is the code
inside the parentheses:

IN p_em_id INT

Here, we declare a variable called p_em_id. You may notice that we did not
prefix this variable with @.

This is because the variable here is a special type of variable known as a
parameter. Parameters are variables that we use to pass information to, or get
information from, our stored routines. We do not prefix parameters with @.

There are three types of parameters for stored procedures: IN, OUT and INOUT.

An IN parameter is used to pass information to the stored procedure.

An OUT parameter is used to get information from the stored procedure while
an INOUT parameter serves as both an IN and OUT parameter.

We’ll look at OUT and INOUT parameters in the next few examples.

For now, let’s focus on the IN parameter. To declare an IN parameter, we use
the IN keyword followed by the parameter name (p_em_id) and data type
(INT).

Once we declare this IN parameter, we can use it in our SQL statements
within the stored procedure. In our example, we used it in the WHERE clause of
all the three SELECT statements.

In order to call this stored procedure, we need to pass in a value to the IN

parameter.

Suppose we want to get the information for employee 1, we write:

CALL employee_info(1);

Here, we pass in the value 1 to the stored procedure. This tells MySQL that
the value of p_em_id should be replaced by 1 in all the SQL statements
within the stored procedure.

For instance, the statement

SELECT * FROM employees WHERE id = p_em_id;

becomes

SELECT * FROM employees WHERE id = 1;

The three SELECT statements will then only select information for employee
1.

Clear?

Next, let’s look at an example for OUT parameters. Suppose we want to get the
name and gender of a particular employee. In addition, we want to store these
information into variables so that we can use them in our subsequent SQL
statements. Here’s how we can do it:

DELIMITER $$

CREATE PROCEDURE employee_name_gender(IN p_em_id INT, OUT p_name

VARCHAR(255), OUT p_gender CHAR(1))

BEGIN

SELECT em_name, gender INTO p_name, p_gender FROM employees

WHERE id = p_em_id;

END $$

DELIMITER ;

Here, we declare an IN parameter called p_em_id and two OUT parameters
called p_name and p_gender.

Inside the stored procedure, we use the INTO keyword to store the results
returned by the SQL statement into the OUT parameters.

To call the stored procedure, we write

CALL employee_name_gender(1, @v_name, @v_gender);

Inside the parentheses, we pass the value 1 to the IN parameter and the
variables @v_name and @v_gender to the OUT parameters.

You may notice that we did not declare @v_name and @v_gender before
passing them to our stored procedure. This is allowed in MySQL. When we
pass in variables that have not been declared previously, MySQL will declare
the variables for us. Hence, there is no need for us to declare @v_name and
@v_gender before using them.

After we call the stored procedure, MySQL will store the result of the SELECT
statement (em_name and gender in this example) into the @v_name and
@v_gender variables. We can then use these variables in subsequent SQL
statements. For instance, if we run the previous CALL statement followed by
the SELECT statement below:

SELECT * FROM employees WHERE gender = @v_gender;

we’ll get the information of all male employees (since @v_gender = 'M' for
employee 1).

Last but not least, let’s look at an example of an INOUT parameter. Suppose
we want to get the mentor_id of a record based on its mentee_id and
project values, here's how we can do it:

DELIMITER $$

CREATE PROCEDURE get_mentor(INOUT p_em_id INT, IN p_project

VARCHAR(255))

BEGIN

SELECT mentor_id INTO p_em_id FROM mentorships WHERE

mentee_id = p_em_id AND project = p_project;

END $$

DELIMITER ;

Here, p_em_id serves as both an IN and OUT parameter. Hence, we declare it
as an INOUT parameter.

In order to call get_mentor(), we can first declare a variable called @v_id.
Suppose we set it to 3 using the statement below:

SET @v_id = 3;

We can then pass this variable (@v_id) and the project name (e.g. 'Wayne
Fibre') to the stored procedure as shown below:

CALL get_mentor(@v_id, 'Wayne Fibre');

When we do that, the stored procedure executes the SELECT statement within
and updates the value of @v_id to 1 (which is the mentor_id returned by the
SELECT statement). If we want to view the value of @v_id after the procedure
is called, we use the following SELECT statement:

SELECT @v_id;

We’ll get 1 as the output.

Stored Functions

Clear about stored procedures?

Great! Let’s move on to stored functions. Stored functions are very similar to
stored procedures except for some differences.

One of the key differences is that a stored function must return a value using
the RETURN keyword. We’ll learn how to do that later.

In addition, stored functions and stored procedures are executed differently.
Stored functions are executed using a SELECT statement while stored
procedures are executed using the CALL keyword.

We’ve already encountered some of the pre-written MySQL functions in
Chapter 6.

Besides these pre-written functions provided by MySQL, we can write our
own functions.

The basic syntax for writing a stored function in MySQL is:

DELIMITER $$

CREATE FUNCTION function_name([parameters, if any]) RETURNS

data_type characteristics_of_function

BEGIN

-- Details of function

RETURN result;

END $$

DELIMITER ;

The syntax may look confusing to you. Do not worry, let’s look at an
example to see how it works.

With reference to our employees table, suppose we want to calculate the
amount of bonus to pay our employees. We can write a stored function to
perform the calculation. The code below shows how it can be done:

DELIMITER $$

CREATE FUNCTION calculateBonus(p_salary DOUBLE, p_multiple

DOUBLE) RETURNS DOUBLE DETERMINISTIC

BEGIN

DECLARE bonus DOUBLE(8, 2);

SET bonus = p_salary*p_multiple;

RETURN bonus;

END $$

DELIMITER ;

The name of the function is calculateBonus. It has two parameters -
p_salary and p_multiple - both of DOUBLE type. You may notice that we did
not specify whether these two parameters are IN, OUT or INOUT parameters.
This is because stored functions can only have IN parameters. Hence, there is
no need to use the IN keyword when declaring the parameters of a stored
function.

After declaring the parameters, the two words RETURNS DOUBLE state that this
function returns a result that is of DOUBLE type.

Next, we specify the characteristics of the function. Here, we state that the
function is DETERMINISTIC.

DETERMINISTIC is a keyword that tells MySQL that the function will always
return the same result given the same input parameters.

On the other hand, if we state that the function is NOT DETERMINISTIC, we are
telling MySQL that the function may return a different result given the same
input parameters.

Besides declaring a function as deterministic or otherwise, we can also state
other characteristics of the function if we want.

These include NO SQL (indicates that the function does not contain SQL
statements), READS SQL DATA (indicates that the function will only read data
from the database, but will not modify the data), MODIFIES SQL DATA
(indicates that the function may modify the data in the database) and
CONTAINS SQL (indicates that the function contains SQL instructions, but does
not contain statements that read or write data).

For instance, the following code states that demo_function is deterministic
and contains SQL statements that modify SQL data:

CREATE FUNCTION demo_function(p_demo DOUBLE) RETURNS DOUBLE

DETERMINISTIC MODIFIES SQL DATA

Declaring the characteristics of a function is based on the “honestly” of the
creator. The function will work even if it is declared wrongly. However,
declaring a function wrongly may affect its results or performance.

After declaring the characteristics of our function, we proceed to the function
definition enclosed between the BEGIN and END $$ markers.

The definition starts by declaring what is known as a local variable. A local
variable is a special type of variable that is declared inside a stored routine
and can only be used within the routine. To declare a local variable, we use
the syntax below:

DECLARE name_of_variable data_type [DEFAULT default_value];

In our example, we declared the variable as

DECLARE bonus DOUBLE(8, 2);

Here, the name of the variable is bonus and the data type is DOUBLE(8, 2).

We did not declare a default value for the variable. (Declaring a default value
initializes the variable to that value. We'll see an example of that in Chapter
12.)

Instead, we set its value to p_salary*p_multiple using the SET keyword on
the next line.

Finally, we return the value of bonus using the RETURN keyword:

RETURN bonus;

A function exits with a RETURN statement. Any task after the RETURN
statement is ignored.

As you can see, the code for creating a stored function is very similar to that
for creating a stored procedure, except for minor differences (like having to
return a result). However, the way to call a stored function is very different.

To call this function, we use it within a SELECT statement. For instance, we
can do the following:

SELECT id, em_name, salary, calculateBonus(salary, 1.5) AS bonus

FROM employees;

Here, we pass in the column salary and the value 1.5 to the calculateBonus
function for the first and second parameters respectively. The fact that we did
not prefix salary with @ indicates that salary is a column and not a user
defined variable.

If we run the statement above, we’ll get the following output.

Deleting Stored Routines

Finally, before we end this chapter, let’s talk about deleting stored routines.

While MySQL allows us to alter our stored routines (using the ALTER
keyword), we can only make very limited modifications to it.

Hence, if we need to edit our stored routines, the easier way is actually to
delete and recreate them.

To delete a stored procedure, we write

DROP PROCEDURE [IF EXISTS] name_of_procedure;

To delete a stored function, we write

DROP FUNCTION [IF EXISTS] name_of_function;

For instance, to delete the calculateBonus function, we write

DROP FUNCTION IF EXISTS calculateBonus;

Chapter 11: Control Flow Tools
Now that we know how to write basic stored routines, let us move on to a
slightly more advanced concept.

In the previous chapter, we looked at a simple function for calculating the
bonuses of employees. What if we want to perform more complex
calculations?

For instance, suppose we want to pay 2 months bonus for employees with
salary below 3000, but 1 month bonus for employees with salary above that?

In order to achieve the above, we need to use control flow tools. These
include IF, CASE, and LOOP statements.

In this chapter, we’ll be using a lot of examples to illustrate the concepts
discussed. For each example, I’ll leave a line before and after the control flow
statements so that you can see clearly where they start and end.

Ready?

IF statement

Let’s start with the IF statement. The syntax for the IF statement is as
follows:

IF condition 1 is met THEN do task A;

ELSEIF condition 2 is met THEN do task B;

ELSEIF condition 3 is met THEN do task C;

…

ELSE do task Z;

END IF;

The IF statement first checks if the first condition is met. If it is, it’ll perform
task A. If it is not, it’ll move on to the first ELSEIF statement. If this condition
is met, it’ll perform task B. If it is not, it’ll move down the ELSEIF statements

until it finds a condition that is met. If no conditions are met, it’ll perform
task Z.

There can be as many ELSEIF statements as needed.

In addition, both the ELSEIF and ELSE statements are optional. You do not
need to include them if there are no other conditions to check.

However, if you omit the ELSE statement and there exists a case that is not
fulfilled by any of the IF and ELSEIF statements, MySQL will give you an
error.

Let’s look at some examples of the IF statement now.

Example 1

DELIMITER $$

CREATE FUNCTION if_demo_A(x INT) RETURNS VARCHAR(255)

DETERMINISTIC

BEGIN

IF x > 0 THEN RETURN 'x is positive';

 ELSEIF x = 0 THEN RETURN 'x is zero';

 ELSE RETURN 'x is negative';

END IF;

END $$

DELIMITER ;

This IF statement first checks if the input (x) is greater than zero. If it is, it
returns 'x is positive'.

If it is not, it checks if x equals zero. If it is, it returns 'x is zero'.

If both the first two conditions are not met, it moves on to the ELSE statement
and returns 'x is negative'.

To run this function, we write

SELECT if_demo_A(2);

We’ll get 'x is positive'.

If we change the input from 2 to 0 or -1, we’ll get 'x is zero' and 'x is
negative' respectively.

Example 2

DELIMITER $$

CREATE FUNCTION if_demo_B(x INT) RETURNS VARCHAR(255)

DETERMINISTIC

BEGIN

IF x > 0 THEN RETURN 'x is positive';

 ELSEIF x = 0 THEN RETURN 'x is zero';

END IF;

END $$

DELIMITER ;

This example is similar to the previous one except that we omitted the ELSE
statement. If we run the function now, we’ll get the following outputs:

SELECT if_demo_B(2);

Output:
x is positive

SELECT if_demo_B(-1);

Output:
Error Code: 1321. FUNCTION if_demo_B ended without RETURN

You can see that if we pass a value to the function that it is unable to process
(a negative number in this case), the function returns an error.

CASE statement

Next, let’s move on to CASE statements.

The CASE statement is very similar to the IF statement and can often be used
interchangeably. In most cases, choosing between IF and CASE is a matter of
personal preference.

The syntax is:

CASE case_variable

WHEN value_1 THEN do task A;

WHEN value_2 THEN do task B;

...

ELSE do task Z;

END CASE;

Or

CASE

WHEN condition 1 is met THEN do task A;

WHEN condition 2 is met THEN do task B;

...

ELSE do task Z;

END CASE;

The first syntax allows you to match the value of a variable against a set of
distinct values. The second syntax allows you to perform more complex
matches such as matching using ranges.

Let’s look at some examples.

Example 1

DELIMITER $$

CREATE FUNCTION case_demo_A(x INT) RETURNS VARCHAR(255)

DETERMINISTIC

BEGIN

CASE x

 WHEN 1 THEN RETURN 'x is 1';

 WHEN 2 THEN RETURN 'x is 2';

 ELSE RETURN 'x is neither 1 nor 2';

END CASE;

END $$

DELIMITER ;

Calling the function:

SELECT case_demo_A(1);

Output:
x is 1

SELECT case_demo_A(5);

Output:
x is neither 1 nor 2

Example 2

DELIMITER $$

CREATE FUNCTION case_demo_B(x INT) RETURNS VARCHAR(255)

DETERMINISTIC

BEGIN

CASE

 WHEN x > 0 THEN RETURN 'x is positive';

 WHEN x = 0 THEN RETURN 'x is zero';

 ELSE RETURN 'x is negative';

END CASE;

END $$

DELIMITER ;

This second example uses the second syntax and tests x for a range instead of
a single value.

Calling the function:

SELECT case_demo_B(1);

Output:
x is positive

SELECT case_demo_B(-1);

Output
x is negative

WHILE statement

The next control flow statement is the WHILE statement. This statement allows
us to specify a task to be done repeatedly while a certain condition is valid.

The syntax is:

[name of while statement :] WHILE condition is true DO

-- some tasks

END WHILE;

Example

DELIMITER $$

CREATE FUNCTION while_demo(x INT, y INT) RETURNS VARCHAR(255)

DETERMINISTIC

BEGIN

DECLARE z VARCHAR(255);

SET z = '';

while_example: WHILE x<y DO

 SET x = x + 1;

 SET z = concat(z, x);

END WHILE;

RETURN z;

END $$

DELIMITER ;

Here, we first declare a local variable z and initialize it to an empty string (an
empty string is a string with no content).

Next, we declare a WHILE statement. A WHILE statement can be labelled (but
labelling it is optional). Here we label it while_example.

Next, the WHILE condition checks if x is smaller than y. (Both x and y are

input parameters to the function.)

While x is smaller than y, the WHILE statement does the following:

First, it increases x by 1.
Next, it uses the concat() function to concatenate z with the new value of x.
Finally, it assigns the result back to z.

Recall that concat() is a built-in MySQL function that joins two strings
together. If one (or both) of the values is a number (like in our example), it
converts them to strings before joining them together.

After the WHILE statement, we simply return the value of z.

If you run the function using the following statement:

SELECT while_demo(1, 5);

you’ll get
2345

as the output.

This is because when the loop starts, x = 1 and y = 5. As x is smaller than 5,
the WHILE statement increases x by 1 (x = 2 now) and concatenates the result
with z. Hence, z = '2'.

Next, the loop repeats itself. It increases x by 1 again (x = 3 now) and
concatenates the result with z.

z becomes '23'.

These tasks of increasing x by 1 and concatenating the result with z are
performed repetitively until the condition x < y is no longer true.

REPEAT statement

Next, let’s look at the REPEAT statement. A REPEAT statement is also used to
perform repetitive tasks.

It repeatedly performs some tasks until the UNTIL condition is met. The
syntax of a REPEAT statement is:

[name of repeat statement :] REPEAT

-- do some tasks

UNTIL stop condition is met

END REPEAT;

Example

DELIMITER $$

CREATE FUNCTION repeat_demo(x INT, y INT) RETURNS VARCHAR(255)

DETERMINISTIC

BEGIN

DECLARE z VARCHAR(255);

SET z = '';

REPEAT

 SET x = x + 1;

 SET z = concat(z, x);

 UNTIL x>=y

END REPEAT;

RETURN z;

END $$

DELIMITER ;

This REPEAT statement repeats two tasks (SET x = x + 1 and SET z =
concat(z, x)) until the x >= y condition is met.

If you run the function with the following statement

SELECT repeat_demo(1, 5);

You’ll get the same output as the previous WHILE statement:
2345

As you can see, a REPEAT statement is very similar to a WHILE statement.

The main difference is that a REPEAT statement performs some tasks while a
specified condition (in the UNTIL clause) is not met. On the other hand, a
WHILE statement performs some tasks while a specified condition is met.

In addition, another important difference is that a REPEAT statement will
always perform the tasks at least once. This is because the check (e.g. UNTIL
x>=y) is done AFTER the tasks are completed.

Hence, if you run the following statement

SELECT repeat_demo(5, 1);

you’ll get 6 as the result because even though the REPEAT condition (UNTIL
x>=y) is already met, the two tasks inside the REPEAT statement are executed
at least once since the check is done after the tasks are completed.

Clear?

LOOP statement

Last but not least, let’s move on to the LOOP statement. This statement is very
similar to the WHILE and REPEAT statements, except that it does not come with
a condition to exit the loop.

Instead, we use the ITERATE or LEAVE keywords to exit it.

The syntax of a LOOP statement is:

[name of loop statement :] LOOP

-- some tasks

END LOOP;

Let’s look at a few examples.

Example 1

DELIMITER $$

CREATE FUNCTION loop_demo_A(x INT, y INT) RETURNS VARCHAR(255)

DETERMINISTIC

BEGIN

DECLARE z VARCHAR(255);

SET z = '';

simple_loop: LOOP

 SET x = x + 1;

 IF x > y THEN

 LEAVE simple_loop;

 END IF;

 SET z = concat(z, x);

END LOOP;

RETURN z;

END $$

DELIMITER ;

Here, we declare a loop called simple_loop. Providing a name for a LOOP
statement is often necessary as we need the name to use the LEAVE or ITERATE
statements later.

Within the loop, we do the following:

First, we increase the value of x by 1.

Next, we check if x is greater than y. If it is, we leave the loop.

To leave the loop, we write

LEAVE simple_loop;

LEAVE is a keyword in MySQL to indicate that we want to exit the loop. We
must provide the name of the loop to exit. In our example, we are exiting
simple_loop.

If the LEAVE condition is not met, we remain in the loop and concatenate z
with x.

If you run the function now with the following statement

SELECT loop_demo_A(1, 5);

you’ll get
2345

as the output.

Example 2

Besides using the LEAVE keyword, we can also use the ITERATE keyword. In
contrast to the LEAVE keyword that exits the loop completely, the ITERATE
keyword only skips one iteration of the loop.

Let’s look at an example:

DELIMITER $$

CREATE FUNCTION loop_demo_B(x INT, y INT) RETURNS VARCHAR(255)

DETERMINISTIC

BEGIN

DECLARE z VARCHAR(255);

SET z = '';

simple_loop: LOOP

 SET x = x + 1;

 IF x = 3 THEN ITERATE simple_loop;

 ELSEIF x > y THEN LEAVE simple_loop;

 END IF;

 SET z = concat(z, x);

END LOOP;

RETURN z;

END $$

DELIMITER ;

Here, we added one more IF condition to our LOOP statement. This IF
condition uses the ITERATE keyword.

If you run the function using the following statement,

SELECT loop_demo_B(1, 5);

you’ll get

245

as the output.

The iteration x = 3 is skipped because of the condition

IF x = 3 THEN ITERATE simple_loop;

Clear?

Good!

With this example, we’ve come to the end of the chapter.

We’ll be exploring one of the major uses of the LOOP statement in the next
chapter.

Chapter 12: Cursors
Cool! We’ve come to the final chapter before the project.

In this chapter, we are going to look at a major use of the LOOP statement that
we learned in the previous chapter.

Specifically, we’ll be looking at cursors.

What is a Cursor?

First off, what is a cursor?

A cursor is a mechanism that allows us to step through the rows returned by a
SQL statement.

So far, we have been learning to use SELECT statements to retrieve
information from our tables. These statements return all the rows that match
the stated criteria. However, there is no way for us to step through the rows
one at a time.

If we want to do that, we have to use cursors.

The syntax for declaring a cursor is:

DECLARE cursor_name CURSOR FOR

SELECT statement

This cursor declaration must be done after any variable declaration.

After declaring the cursor, we also need to declare a handler that defines what
the cursor should do when it reaches the last row of the results returned by
the SELECT statement. Normally, we want the cursor to set a variable to a
certain value. For instance, we may want it to set a variable called v_done to
1.

The syntax is:

DECLARE CONTINUE HANDLER FOR NOT FOUND SET variable_name = value;

Next, we need to open the cursor using the statement:

OPEN cursor_name;

Once the cursor is open, we can use a loop to step through the rows. Within
the loop, we need to retrieve the row that the cursor is currently pointing at
and store the data into variables. The syntax for retrieving the row is:

FETCH cursor_name INTO variable_names;

After the row is retrieved, the cursor will automatically move to the next row.
The LOOP statement will repeatedly fetch each row into the variables and
process those variables until it reaches the end of the results.

When that happens, we leave the loop and close the cursor. The syntax for
closing the cursor is:

CLOSE cursor_name;

Clear so far?

Example

Let’s look at an example:

Suppose we want to get the names and genders of all employees in our
employees table and combine them into a single line of text, here’s how we
do it:

DELIMITER $$

CREATE FUNCTION get_employees () RETURNS VARCHAR(255)

DETERMINISTIC

BEGIN

DECLARE v_employees VARCHAR(255) DEFAULT '';

DECLARE v_name VARCHAR(255);

DECLARE v_gender CHAR(1);

DECLARE v_done INT DEFAULT 0;

DECLARE cur CURSOR FOR

 SELECT em_name, gender FROM employees;

DECLARE CONTINUE HANDLER FOR NOT FOUND SET v_done = 1;

OPEN cur;

employees_loop: LOOP

 FETCH cur INTO v_name, v_gender;

 IF v_done = 1 THEN LEAVE employees_loop;

 ELSE SET v_employees = concat(v_employees, ', ',

v_name, ': ', v_gender);

 END IF;

END LOOP;

CLOSE cur;

RETURN substring(v_employees, 3);

END $$

DELIMITER ;

First, we declare a function called get_employees.

Within the function, we declare four local variables: v_employees, v_name,
v_gender and v_done and set the default values of v_employees and v_done
to '' and 0 respectively (using the DEFAULT keyword).

Next, we declare a cursor called cur for the following SELECT statement:
SELECT em_name, gender FROM employees;

We also declare a handler called v_done for this cursor.

After that, we open the cursor and declare a loop called employees_loop to
work with the cursor.

Within the loop, we fetch the row that cur is currently pointing at and store
the results into the v_name and v_gender variables. We need to store the

results into two variables as we selected two columns from the employees
table.

Next, we check if v_done equals 1.

v_done equals 1 when the cursor reaches the end of the table (i.e. when there
is no more data for the cursor to fetch).

If v_done equals 1, we exit the loop. Else, we use the concat() function to
concatenate v_employees with v_name and v_gender, separated by a colon
and comma.

The initial value of v_employees is an empty string (denoted by ''). When we
first concatenate v_employees with ', ', v_name, ': ' and v_gender, we’ll
get

, James Lee: M

as James Lee and M is the name and gender of the first employee.

After we do this concatenation, we assign the concatenated result back to the
v_employees variable.

The LOOP statement then repeats the same process for all the other rows in the
table.

After looping, we close the cursor and return the value of v_employees.
However, before we do that, we use the substring() function to remove the
first comma from the string.

With that, the function is complete.

If you call this function using the statement

SELECT get_employees();

you’ll get

James Lee: M, Peter Pasternak: M, Clara Couto: F, Joyce Jones: F,

Jason Cerrone: M, Prudence Phelps: F, Larry Zucker: M, Walker

Welch: M

as the result.

Chapter 13: Project
Great! We’ve covered all the fundamental concepts of MySQL. We are now
ready to start working on our project. You are strongly encouraged to work
through this project to help you gain a stronger grasp of the concepts covered.

The source code for the project can be downloaded at
http://www.learncodingfast.com/sql.

Ready? Let’s do it!

About the Project

This project requires us to build a simple database to help us manage the
booking process of a sports complex. The sports complex has the following
facilities: 2 tennis courts, 2 badminton courts, 2 multi-purpose fields and 1
archery range. Each facility can be booked for a duration of one hour.

Only registered users are allowed to make a booking. After booking, the
complex allows users to cancel their bookings latest by the day prior to the
booked date. Cancellation is free. However, if this is the third (or more)
consecutive cancellations, the complex imposes a $10 fine.

The database that we build should have the following elements:

Tables

members
pending_terminations
rooms
bookings

View

member_bookings

Stored Procedures

insert_new_member
delete_member
update_member_password
update_member_email
make_booking
update_payment
view_bookings
search_room
cancel_booking

Trigger

payment_check

Stored Function

check_cancellation

We’ll discuss the purpose of each as we go along.

Let’s get started!

Creating the Database

The first thing that we need to do is create a database for our project.

Launch MySQL Workbench and create a new file by clicking on File > New
Query Tab. Save this file as sportsDB.sql (File > Save Script As...).

We are going to create a database called sports_booking.

Enter the line

CREATE DATABASE sports_booking;

into sportsDB.sql and execute it.

If all goes well, you should see the message

1 row (s) affected

in the output window.

As we move forward with the project, you’ll be asked to perform various
SQL tasks. Do remember to click on the ‘Execute Statement' button to
execute your SQL statements after each task. This will allow you to check
and correct any mistake as you go along.

In addition, you can also create another SQL file called drop.sql. If you make
any mistake in your SQL code and need to make amendments, you can drop
the object that you created using the drop.sql file.

For instance, if you named the database wrongly as sports_bookingg, you
can add the following code to drop.sql to delete the database:

DROP DATABASE sports_bookingg;

After deleting, you can return to sportsDB.sql to recreate the database. Clear?

Let's move on.

Using the Database

Once you have created the sports_booking database, you need to tell
MySQL that you want to use this database. Try doing that yourself (Hint:
Refer to Chapter 2).

Adding Tables

Now, we are ready to add tables to our database. We need to add four tables:

members, pending_terminations, rooms and bookings.

members

The members table has five columns:

id

This column stores the id of each member. The id is alphanumeric
(VARCHAR(255) will be a good choice) and uniquely identifies each member
(in other words, it is a primary key).

password

This column stores the password of each member. It is alphanumeric and
cannot be null.

email

This column stores the email of each member. It is also alphanumeric and
cannot be null.

member_since

This column stores the timestamp (consisting of the date and time) that a
particular member is added to the table. It cannot be null and uses the NOW()
function to get the current date and time as the DEFAULT value.

payment_due

This column stores the amount of balance that a member has to pay. The
amount is in dollars and cents (e.g. 12.50). The column cannot be null and
has a default value of 0.

Try creating this table yourself. You’ll need to decide on the appropriate data
type to use for each column and add the necessary restrictions (e.g. NOT
NULL) yourself. You can refer to Chapter 3 for more information on creating
tables.

Done?

The suggested code for this project can be found in Appendix C for reference
if you run into any problems.

pending_terminations

Next, let’s create the pending_terminations table. Records from the
members table will be transferred here under certain circumstances.

The pending_terminations table has four columns: id, email, request_date
and payment_due.

The data types and constraints of the id, password and payment_due columns
match that of the same columns in the members table.

The remaining column, request_date, stores the timestamp that a particular
member is added to the table. It cannot be null and uses the NOW() function to
get the current date and time as the DEFAULT value.

Try creating this table yourself.

rooms

Now, let’s move on to the rooms table. This table has three columns:

id

This column stores the id of each room. It is alphanumeric and uniquely
identifies each room.

room_type

This column stores a short description of each room. It is also alphanumeric
and cannot be null.

price

This column stores the price of each room. Prices are stored up to 2 decimal
places. It cannot be null.

Try creating the rooms table.

Once you are done, we can move on to the hardest table - the bookings table.

bookings

The bookings table has 7 columns:

id

This column stores the id of each booking. It is numeric, auto incremented
and uniquely identifies each booking.

room_id

This column has the same data type as the id column in the rooms table and
cannot be null.

booked_date

This column stores a date in the YYYY-MM-DD format (e.g. '2017-10-18') and
cannot be null.

booked_time

This column stores time in the HH:MM:SS format and cannot be null.

member_id

This column has the same data type as the id column in the members table
and cannot be null.

datetime_of_booking

This column stores the timestamp that a particular booking is added to the
table. It cannot be null and uses the NOW() function to get the current date and
time as the DEFAULT value.

payment_status

This column stores the status of the booking. It is alphanumeric, cannot be
null and has a default value of 'Unpaid'.

Besides the 7 columns stated above, the bookings table also has a UNIQUE
constraint called uc1. This constraint states that the room_id, booked_date
and booked_time columns must be unique. In other words, if one row has the
values

room_id = 'AR', booked_date = '2017-10-18', booked_time =

'11:00:00'

no other rows can have the same combination of values for these three
columns.

Try creating this table yourself.

Next, we need to alter our table to add two foreign keys:

The first foreign key is called fk1 and links the member_id column with the
id column in the members table. In addition, if the record in the parent table
is updated or deleted, the record in the child table will also be updated or
deleted accordingly.

The second foreign key is called fk2 and links the room_id column with the
id column in the rooms table. If the record in the parent table is updated or
deleted, the record in the child table will also be updated or deleted
accordingly.

Try updating the bookings table to add these two foreign keys.

Once you are done, our table creation is complete.

Inserting Data

Now, we need to add some values to our tables so that we have data to work
with in the project later.

A PDF file containing data for these tables can be downloaded at
http://www.learncodingfast.com/sql. The tables can also be found in
Appendix B for easy reference.

members

For the members table, we have the following set of data:

Try inserting these data yourself. For instance, for the first row, the code
would be

INSERT INTO members (id, password, email, member_since,

payment_due) VALUES

('afeil', 'feil1988<3', 'Abdul.Feil@hotmail.com', '2017-04-15

12:10:13', 0);

Although member_since and payment_due both have default values, we’ll
overwrite them here so that we have some variety in our data to play with
later. In addition, note that we enclosed the member_since value in quotation
marks. In general, we need to do that for TIMESTAMP, DATETIME, DATE and
TIME values.

Try modifying the code above to insert all the rows yourself.

Once you are done, you can move on to the rooms and bookings tables.

rooms

bookings

Try inserting data for these two tables yourself. These tables can be found in
Appendix B for easy reference.

Done? Good!

View

Now that we have created the tables and inserted some data, we are ready to
select data from our tables.

Specifically, we’ll create a view that shows us all the booking details of a
booking.

If you refer to the bookings table created previously, you can see that it lists
the id, room_id, booked_date, booked_time, member_id,
datetime_of_booking and payment_status of each booking.

What if in addition to the information above, we are also interested to know
what each of the room ids stand for? For instance, we may want to know
what AR stands for. In addition, what if we also want to know the price of
each room?

In order to obtain these information, we have to refer to the rooms table.

To simplify this process, we are now going to write a SELECT statement to
combine the two tables into a single view. This view displays the id (from
the bookings table), room_id, room_type, booked_date, booked_time,
member_id, datetime_of_booking, price and payment_status of each
booking.

The room_type and price columns are from the rooms table while the
remaining columns are from the bookings table.

In order to combine these two tables, we need a SELECT statement that joins
the rooms and bookings tables. In addition, we also want to sort the results
by the id column of the bookings table.

Try coding this statement yourself.

Hint: You need to join the two tables using bookings.room_id = rooms.id.

You can refer to Chapter 7 for reference on doing joins in SELECT statements.

Clear?

If you execute the SELECT statement, you should get the following table:

Got it? Good!

Now, let’s create a view for this SELECT statement. We’ll call this view
member_bookings. Try doing this yourself. You can refer to Chapter 8 for
reference on creating views.

Once you are done, we can move on to create some stored procedures for our
database.

Stored Procedures

In this exercise, we will create a total of nine stored procedures. Before we
start coding them, let’s first change the delimiter by adding the line

DELIMITER $$

to our sportsDB.sql file.

We’ll code all the stored procedures after this line; there is no need to change
the delimiter back to a semi-colon after each procedure. We’ll change the

delimiter back after we finish coding all the procedures and functions.

Ready?

insert_new_member

The first stored procedure is for inserting a new member into the members
table.

If you study the structure of the members table, you can see that it has a total
of 5 columns: id, password, email, member_since and payment_due.

As the last two columns have default values, we only need to provide values
for the first three columns when inserting a new member.

To do that, let’s create a stored procedure called insert_new_member that has
three IN parameters, p_id, p_password and p_email. The data types for these
parameters should match the data types that you selected for the id, password
and email columns of the members table. Try declaring this stored
procedure yourself. You can refer to Chapter 10 for reference.

Next, let’s add the BEGIN and END $$ markers to our stored procedure to
define the start and end of this procedure.

Between the BEGIN and END $$ markers, we need to add an INSERT statement
to insert the values of p_id, p_password and p_email to our table. These
values will be inserted into the id, password and email columns of the
members table respectively.

A bit lost? Let’s start with a hint for the first stored procedure.

Suppose we have a table called demo_table and we want to insert the value
of a parameter called p_age to the age column of the table. Here’s how we do
it:

INSERT INTO demo_table (age) VALUES (p_age);

Try modifying the statement above and code the insert_new_member stored
procedure yourself.

If you need help, you can refer to Chapter 4 and 10 for reference on writing
an INSERT statement and a stored procedure respectively.

Once you have coded the stored procedure, you can place your cursor
anywhere between the BEGIN and END $$ markers and click on the ‘Execute
Statement’ button to execute this procedure. (Remember to do so for all
subsequent stored procedures and functions.)

If all goes well, you should get a green tick in the output window.

The suggested solution is provided in Appendix C and can be downloaded
from http://www.learncodingfast.com/sql.

delete_member

Next, let’s move on to the delete_member procedure. As the name suggests,
this procedure is for deleting a member from the members table.

This stored procedure only has one IN parameter, p_id. Its data type matches
that of the id column in the members table.

Within the procedure, we have a DELETE statement that deletes the member
whose id equals p_id. Try coding this procedure yourself.

update_member_password and update_member_email

Next, we’ll code two stored procedures to help us update data in the
members table.

The first stored procedure is called update_member_password and has two IN
parameters, p_id and p_password.

The second procedure is called update_member_email and has two IN
parameters, p_id and p_email.

The data types of all parameters match the data types of the corresponding
columns in the members table.

Both procedures use the UPDATE statement to update the password and email
of a member with id = p_id. Try coding them yourself.

Once you are done, we can move on to the make_booking procedure.

make_booking

The make_booking procedure is for making a new booking. We need to insert
the booking into the bookings table and update the members table to reflect
the charges that the member making the booking needs to pay.

The procedure has four IN parameters, p_room_id, p_booked_date,
p_booked_time and p_member_id.

The data types of the parameters match the data types of the room_id,
booked_date, booked_time and member_id columns of the bookings table.

Within the procedure, we first declare two local variables v_price and
v_payment_due. The data type of v_price matches the data type of the price
column in the rooms table while that of v_payment_due matches the data
type of the payment_due column in the members table.

Try declaring these variables yourself. Refer to Chapter 10 (under Stored
Functions) if you have forgotten how to declare a local variable.

After declaring the variables, we have the following SELECT statement:

SELECT price INTO v_price FROM rooms WHERE id = p_room_id;

This statement selects the price of the room with id = p_room_id. This price
is then stored into the local variable v_price using the INTO keyword.

Next, we need an INSERT statement to insert the values of p_room_id,

p_booked_date, p_booked_time and p_member_id into the room_id,
booked_date, booked_time and member_id columns of the bookings table
respectively.

Try coding this INSERT statement yourself.

After updating the bookings table, we need to update the payment_due
column of the members table.

To do that, we need to first get the payment_due value for the member
making the booking. We get that from the members table (WHERE id =
p_member_id) and store the information into the v_payment_due variable.

Next, we update the members table and set the payment_due column to
v_payment_due + v_price for this particular member (WHERE id =
p_member_id).

Try writing the SELECT and UPDATE statements yourself.

Once that is done, the make_booking procedure is complete.

update_payment

Now, let’s move on to the update_payment procedure.

This procedure is for updating the bookings and members tables after a
member makes payment for his/her booking.

By default, the payment_status column in the bookings table is 'Unpaid'.
Once the member makes payment, this status will be updated to 'Paid'.

After updating the bookings table, the members table will also be updated to
reflect the new amount of money (if any) the member has to pay.

The update_payment procedure has one IN parameter called p_id, whose
data type matches the id column of the bookings table.

Within the procedure, we need to first declare three local variables,
v_member_id, v_payment_due and v_price.

The data types of v_member_id and v_payment_due match the data types of
the id and payment_due columns in the members table while the data type of
v_price matches the data type of the price column in the rooms table.

Try declaring these variables yourself.

Next, we need to use an UPDATE statement to update the bookings table.
Specifically, we need to change the payment_status of the specified booking
(whose id corresponds to the input parameter p_id) to 'Paid'.

Try doing it yourself.

After updating the bookings table, we need to update the payment_due
column of the members table for the member who made the booking.

To do that, we need to first select the member_id and price columns from the
member_bookings view for this particular booking (WHERE id = p_id) and
store the information into the v_member_id and v_price variables
respectively.

In addition, we need to select the payment_due column from the members
table for the member who made the booking and store the information into
the v_payment_due variable. Note that the local variable v_member_id stores
the id of the member who made the booking.

Try coding these two SELECT statements yourself.

After gathering the information that we need, we are now ready to update the
members table. We’ll use the UPDATE statement to set the payment_due
column to v_payment_due - v_price for the member who made the booking
(WHERE id = v_member_id).

Try coding this UPDATE statement yourself. Once that is done, the procedure is
complete.

view_bookings

Next, let’s move on to the view_bookings procedure.

This procedure allows us to view all the bookings made by a particular
member and has one IN parameter called p_id that identifies the member.
Decide on the appropriate data type for this parameter and declare the
procedure yourself.

Within the procedure, we have a simple SELECT statement that selects
everything from the member_bookings view for that particular member.

Try doing it yourself.

search_room

Now, let's move on to the seach_room procedure. This procedure allows us to
search for available rooms.

It has three IN parameters, p_room_type, p_booked_date and
p_booked_time. Choose an appropriate data type for each parameter based on
the room_type column in the rooms table (for p_room_type) and the
booked_date and booked_time columns in bookings table (for
p_booked_date and p_booked_time respectively).

Within the procedure, we have a single SELECT statement to check if a certain
room is available for booking on a specific date and time. Let’s work on this
SELECT statement now.

As this statement is relatively complex, let us work on a separate SQL file
first. Create a new SQL file in MySQL Workbench and save it as trial.sql.

Now, in trial.sql, try writing a SELECT statement to select all the information
from the bookings table and execute that statement.

Done? Good.

Now, let’s do some filtering. Suppose we are only interested in bookings
where

booked_date = '2017-12-26' AND booked_time = '13:00:00' AND

payment_status != 'Cancelled'

Try to modify your SELECT statement such that it only shows these rooms.

You should get the following result:

Finally, modify the statement such that only the room_id column is
displayed.

If you execute the statement, you should just get AR as the result.

Got it? Now we have the ids of all the rooms that have been booked on 2017-
12-26 at 1pm and have not been cancelled.

Suppose we want to book a tennis court on 2017-12-26 at 1pm, all we need to
do is select rooms from the rooms table whose ids are not in the results above
AND are of the room type that we want (i.e. room_type = 'Tennis Court').

Try to write a SELECT statement to achieve that. (Hint: You need to use the
previous SELECT statement as a subquery.)

Manage to do it? You should get the following results:

Once you get the correct result, you are ready to get back to the search_room
stored procedure.

For this stored procedure, you simply need to paste the previous SELECT
statement into the procedure (between the BEGIN and END $$ markers) and
change

'Tennis Court' to p_room_type,
'2017-12-26' to p_booked_date, and
'13:00:00' to p_booked_time.

With that, the stored procedure is complete. You can refer to the suggested
solution in Appendix C if you are stuck.

Once you are done, we can move on to the most complicated procedure.

cancel_booking

This last procedure is for making a booking cancellation. This procedure
requires the use of an IF statement.

First, let’s name the procedure cancel_booking. This procedure has an IN
parameter called p_booking_id (whose data type corresponds to the data type
of the id column in the bookings table) and an OUT parameter called
p_message (that is of VARCHAR(255) type).

Within the procedure, we need to declare 6 local variables - v_cancellation,
v_member_id, v_payment_status, v_booked_date, v_price and
v_payment_due.

The data type of v_cancellation is INT while those of v_member_id,
v_payment_status and v_booked_date match the data types of the
member_id, payment_status and booked_date columns in the bookings table
respectively.

In addition, the data type of v_price matches the data type of the price
column in the rooms table and the data type of v_payment_due matches the
data type of the payment_due column in the members table.

Try declaring the variables yourself.

Next, let’s set the value of v_cancellation to 0 using the SET keyword.

Done?

Now, we need to select the member_id, booked_date, price and
payment_status columns from the member_bookings view where id =
p_booking_id and store them into the v_member_id, v_booked_date,
v_price and v_payment_status variables respectively.

In addition, we need to select the payment_due column from the members
table for the member making the cancellation (WHERE id = v_member_id)
and store the result into the v_payment_due variable.

Try doing these yourself.

Once you are done, we are ready to work on the IF statement.

The sports complex allows members to cancel their bookings latest by the
day prior to the booked date.

For instance, if the booked date is 17th Sep 2018 and the current date is 16th
Sep 2018, members will be allowed to cancel their booking. However, if the
current date is 17th Sep 2018 or later, members will not be allowed to cancel
the booking.

In addition, members are not allowed to cancel bookings that have already

been cancelled or paid for.

To enforce these rules, we’ll use the following IF statement:

IF curdate() >= v_booked_date THEN

SELECT 'Cancellation cannot be done on/after the booked

date' INTO p_message;

ELSEIF v_payment_status = 'Cancelled' OR v_payment_status =

'Paid' THEN

 SELECT 'Booking has already been cancelled or paid'

INTO p_message;

ELSE

 -- Code to handle cancellation

END IF;

Let’s analyze this IF statement.

In the IF clause, we first use the built-in CURDATE() function to get the
current date.

If the current date is greater than or equal to the booked date, we use a
SELECT statement to store the message

'Cancellation cannot be done on/after the booked date'

into the OUT parameter p_message.

Next, we proceed to the ELSEIF clause. Here, we use the v_payment_status
variable to check if the booking has already been cancelled or paid for. If it
has, we store the message

'Booking has already been cancelled or paid'

into the OUT parameter.

Finally, we proceed to the ELSE clause. This is where we handle the actual
cancellation.

Clear? Good!

Now that we are clear about the IF statement, let’s work on the cancellation
code for the ELSE clause. You can replace the comment

-- Code to handle cancellation

with code that we’ll be writing next.

To handle the cancellation, we need to do a couple of steps:

First, we need to update the bookings table to change the payment_status
column to 'Cancelled' for this particular booking.

Next, we need to calculate the new amount that the member who made this
booking has to pay and update the payment_due column for this member in
the members table.

Finally, we need to store the message 'Booking Cancelled' into the OUT
parameter to indicate that the booking has been cancelled.

Step 1

To update the bookings table, we simply need to write an UPDATE statement
to change the payment_status column to 'Cancelled' for this particular
booking (WHERE id = p_booking_id).

Try doing this yourself.

Step 2

Next, we need to calculate how much the member owes the sports complex
now.

As the booking has been cancelled, the member no longer needs to pay for
the booking. Hence, we need to first set the value of v_payment_due to
v_payment_due - v_price using a SET statement.

Try doing this yourself.

Next, we need to check if this is the third consecutive cancellation by the
member. If it is, we’ll impose a $10 fine on the member.

To do that, we’ll use a function called check_cancellation. We’ll code this
function later. For now, we simply need to use the function in our stored
procedure.

This function takes in one value - the booking id.

Try calling the function, passing in the booking id (p_booking_id) and
assigning the result of the function to the local variable v_cancellation.
(Recall: You need to use the SET keyword to assign the result of the function
to the variable.)

Done?

Next, we need another IF statement. This inner IF statement checks if
v_cancellation is greater than or equal to 2. If it is, we have to add 10 to
v_payment_due and assign it back to v_payment_due.

Try coding the IF statement yourself.

v_payment_due now stores the final updated amount that the member has to
pay the complex.

Now, we simply need to use an UPDATE statement to update the value of
payment_due in the members table for this particular member (WHERE id =
v_member_id).

Clear? Try doing this yourself.

Step 3

For the last step, we simply need to use a SELECT statement to store the
message 'Booking Cancelled' into the OUT parameter.

Try doing it yourself. Once you are done, the ELSE clause is complete and so
is the stored procedure.

Trigger

Now that we have finished coding our stored procedures, let’s move on to
triggers. We’ll only be coding one trigger - payment_check.

This trigger checks the outstanding balance of a member, which is recorded
in the payment_due column of the members table.

If payment_due is more than $0 and the member terminates his/her account,
we’ll transfer the data to the pending_terminations table. This table records
all the termination requests that are pending due to an outstanding payment.

Let’s first declare the trigger as follows:

CREATE TRIGGER payment_check BEFORE DELETE ON members FOR EACH

ROW

As you can see, this trigger is activated when we try to delete a record from
the members table.

Next, between the BEGIN and END $$ markers, we need to do a few things:

First, we need to declare a local variable called v_payment_due. The data
type of v_payment_due matches that of the payment_due column in the
members table.

Next, we need to select the payment_due column from the members table for
the member that we are trying to delete and store that data into the
v_payment_due variable. (Hint: As this trigger is activated by a DELETE event,
we need to use OLD.id to retrieve his/her id.)

After getting the v_payment_due value, we’ll use an IF statement to check if
v_payment_due is greater than 0.

If it is, we’ll use an INSERT statement to insert a new record into the
pending_terminations table. This new record contains the id, email and
payment_due values of the member that we are trying to delete.

Once that is done, the trigger is complete.

Try coding this trigger yourself. You can refer to Chapter 9 for reference if
you have forgotten how to code a trigger.

Stored Function

The final thing that we need to code is the check_cancellation function.

This function checks the number of consecutive cancellations made by the
member who's trying to cancel a booking. It has one parameter p_booking_id
whose data type matches that of the id column in the bookings table. In
addition, it returns an integer and is deterministic.

Try declaring this function yourself. You can refer to Chapter 10 for
reference on declaring a function.

Within the function (between the BEGIN and END $$ markers), we need to use
a cursor to loop through the bookings table vertically. To begin, let’s first
declare three local variables called v_done, v_cancellation and
v_current_payment_status.

Both v_done and v_cancellation are of INT type.

v_current_payment_status, on the other hand, has a data type that matches
the data type of the payment_status column in the bookings table.

Next, we need to use a SELECT statement to select the payment_status
column (from the bookings table) of the member who’s trying to do a
cancellation.

This is a relatively complex statement, so we’ll do it in trial.sql first.

Suppose we are trying to do a cancellation of the booking with id = 5. We
need to first get the member_id of the member who made this booking. Try
writing a SELECT statement to get the member_id from the bookings table.

Next, using this member_id, we need to get the payment_status of all the
bookings made by this member.

To do that, you need to select the payment_status column from the
bookings table, using the previous SELECT statement as a subquery. Try
doing it yourself.

Finally, we need to order the results by datetime_of_booking in descending
order so that we get the latest payment_status first.

Got it?

Once you are done, execute the statement. You should get the following
results:

Unpaid

Paid

Paid

With that, you can return to the sportsDB.sql fie and continue working on the
check_cancellation function.

Copy and paste the query you just wrote into the function and change the
WHERE clause in the subquery from

WHERE id = 5

to

WHERE id = p_booking_id

We need to declare a cursor for this SELECT statement.

Let's name this cursor cur and try declaring it yourself. You can refer to
Chapter 12 if you need help on declaring a cursor.

Done?

Once you have declared the cursor, you need to declare a CONTINUE HANDLER
for this cursor. This can be done using the statement below:

DECLARE CONTINUE HANDLER FOR NOT FOUND SET v_done = 1;

So far so good?

Great! Let’s move on.

Now, we need to set the values of v_done and v_cancellation to 0 using the
SET keyword.

Try doing it yourself.

Once we have declared and set everything that we need, we are ready to start
looping through the payment_status column.

We need to do the following 4 things:
1. Open the cursor
2. Use the cursor to loop through the payment_status column and increment
v_cancellation by 1 for each consecutive cancellation
3. Close the cursor
4. Return the value of v_cancellation

Step 1 should be quite straightforward. Try doing it yourself.

Next, we need to work on the loop for the cursor.

Let’s call this loop cancellation_loop.

Within the loop, we need to use the FETCH statement to fetch the value that
the cursor is currently pointing at into the v_current_payment_status

variable.

Try doing this yourself.

After fetching the value, we’ll use an IF statement to check the values of
v_current_payment_status and v_done.

If v_current_payment_status does not equal 'Cancelled' or v_done equals
1, we can leave the loop. This is because once we find a
v_current_payment_status that is not equal to 'Cancelled', the string of
consecutive cancellations (if any) has ended.

In addition, if v_done equals 1, we have come to the end of the result set from
the SELECT statement and can also leave the loop.

Clear? Try coding the IF clause yourself.

Once you are done with the IF clause, you can work on the ELSE clause.

Within the ELSE clause, we simply increment the value of v_cancellation
by 1 using the SET keyword.

Try coding this ELSE clause yourself.

Once you are done, you can end the IF statement, end the loop, close the
cursor and return the value of v_cancellation. Try doing these yourself.

Chapter 12 provides an example on coding a similar loop. Do check it out if
you are stuck.

Once that is complete, we have finished coding our stored routines. We can
now change the delimiter back to a semi-colon using the statement below:

DELIMITER ;

With that, we have come to the end of our project coding.

Congratulations!

We are now ready to try out some of its features.

Excited? Let's do it!

Testing the Database

To test our database, let’s create a new SQL file called test.sql. We’ll do all
our testing on this file.

First, we’ll check if our tables are created correctly. Try executing the
following statements to check if the tables are correct:

SELECT * FROM members;

SELECT * FROM pending_terminations;

SELECT * FROM bookings;

SELECT * FROM rooms;

members, bookings and rooms should contain the same information as the
respective tables shown in Appendix B.

pending_terminations, on the other hand, should be empty.

Got it? Good!

Next, let’s try the insert_new_member procedure. Try executing the
following statements:

CALL insert_new_member ('angelolott', '1234abcd',

'AngeloNLott@gmail.com');

SELECT * FROM members ORDER BY member_since DESC;

You should get the table below. The new member added is shown on the first
row of the table.

Got it?

Now we’ll delete two members from this table. The two members that we’ll
delete are little31 and afeil. Note that little31 has an outstanding
payment of $10.

Try executing the following statements:

CALL delete_member ('afeil');

CALL delete_member ('little31');

SELECT * FROM members;

SELECT * FROM pending_terminations;

You should see that both afeil and little31 are deleted from the members

table. However, as little31 has an outstanding payment of $10, a new
record is added to the pending_terminations table. This is due to the
payment_check trigger that we wrote.

Got it? Cool!

Next, let’s try updating a member’s password and email. Try executing the
following statements:

CALL update_member_password ('noah51', '18Oct1976');

CALL update_member_email ('noah51', 'noah51@hotmail.com');

SELECT * FROM members;

You should see the password and email address of noah51 updated to
18Oct1976 and noah51@hotmail.com respectively.

Next, we’ll test the update_payment procedure. Before we do that, let’s first
run the following two statements:

SELECT * FROM members WHERE id = 'marvin1';

SELECT * FROM bookings WHERE member_id = 'marvin1';

You should see that marvin1 has an outstanding payment of 10.00 in the
members table and an unpaid booking (id = 9) in the bookings table.

We’ll update the payment status (from 'Paid' to 'UnPaid') for this booking.

Try executing the following statements:

CALL update_payment (9);

SELECT * FROM members WHERE id = 'marvin1';

SELECT * FROM bookings WHERE member_id = 'marvin1';

The payment_due column for marvin1 in the members table should now
show 0.00 and the payment_status column in the bookings table should be
updated to Paid.

Next, let’s try the search_room procedure. Try executing the following
statement:

CALL search_room('Archery Range', '2017-12-26', '13:00:00');

You should see no results in the “Result Grid”.

This is because the “Archery Range” room is already booked on 2017-12-26
at 1pm.

Next, try executing

CALL search_room('Badminton Court', '2018-04-15', '14:00:00');

You should get two rows returned as both badminton courts (B1 and B2) are
available on 2018-04-15 at 2pm.

Note that B1 has previously been booked by macejkovic73 (id = 7 in the
bookings table).

However, the booking was eventually cancelled. Hence, it shows up as
available when we do a search.

Finally, try executing

CALL search_room('Badminton Court', '2018-06-12', '15:00:00');

You should only get one row returned (B1). This is because B2 has already
been booked for the specified date and time (id = 10 in the bookings table).

Next, let’s try to make a booking. Try executing the following statement:

CALL make_booking ('AR', '2017-12-26', '13:00:00', 'noah51');

You should get the following error message:

Error Code: 1062. Duplicate entry 'AR-2017-12-26-13:00:00' for

key 'uc1'

This is due to the unique key constraint (uc1) that we added to the bookings

table.

As we already have a row with room_id = 'AR', booked_date = '2017-
12-26' and booked_time = '13:00:00' (id = 1 in the bookings table), we
are not allowed to add another entry with the same values.

Next, try executing the following statements:

CALL make_booking ('T1', CURDATE() + INTERVAL 2 WEEK,

'11:00:00', 'noah51');

CALL make_booking ('AR', CURDATE() + INTERVAL 2 WEEK,

'11:00:00', 'macejkovic73');

SELECT * FROM bookings;

You should see two new bookings added to the bookings table. Take note of
the booking ids for these bookings. We’ll need them later.

If you study the code above, you may notice something new. For the two
CALL statements, instead of providing the make_booking procedure with a
date (such as '2017-12-26'), we provided it with

CURDATE() + INTERVAL 2 WEEK

Here, we use the built-in CURDATE() function to get the current date. Next, we
use the INTERVAL keyword to add an interval of 2 weeks to the current date.

The INTERVAL keyword can be used to add or subtract intervals (such as 1
DAY, 2 MONTH etc) from a specified date.

The code above allows us to make bookings two weeks from the current date.
For instance, if the current date is 1st Oct, the bookings will be for 15th Oct.

Clear? Great! Let’s move on to test the final procedure - cancel_booking.

Try executing the following statements:

CALL cancel_booking(1, @message);

SELECT @message;

You should get the message

Cancellation cannot be done on/after the booked date

in the "Result Grid". This is because the booked date for booking 1 is 2017-
12-26, which is already over.

Next, replace *** in the statement below with the booking id of the new
booking made by noah51 and execute the two statements:

CALL cancel_booking(***, @message);

SELECT @message;

You should get the message

Booking Cancelled

indicating that the cancellation is successful.

Finally, execute the following statements, replacing ^^^ with the booking id
of the new booking made by macejkovic73:

CALL cancel_booking(^^^, @message);

SELECT @message;

You should also get the message

Booking Cancelled

However, if you execute the following statement now

SELECT * FROM members;

You should notice that the payment_due value of noah51 is 0 while that of
macejkovic73 is 10.

macejkovic73 has a payment_due of $10 because the most recent
cancellation is the 3rd consecutive cancellation. Hence, a $10 fine is imposed.
This is due to the

IF v_cancellation >= 2 THEN

SET v_payment_due = v_payment_due + 10;

END IF;

code that we wrote in the cancel_booking procedure.

Clear?

With this, we’ve come to the end of the book!

Congratulations and give yourself a pat on the shoulder!

I sincerely hope you’ve found this book useful and that you've enjoyed the
course.

If you run into any problems with the project, do not be discouraged. I
strongly encourage you to download the source code from
http://www.learncodingfast.com/sql and compare your code with the
suggested solution. Finding errors and amending your code is one of the best
way to learn.

Have fun learning and thank you once again!

Appendix A: Tables for companyHR
employees

mentorships

Appendix B: Tables for sportsDB

members

bookings

rooms

Appendix C: Suggested Solution for Project
sportsDB.sql

CREATE DATABASE sports_booking;

USE sports_booking;

-- ********************* CREATE TABLES

CREATE TABLE members (

id VARCHAR(255) PRIMARY KEY,

password VARCHAR(255) NOT NULL,

email VARCHAR(255) NOT NULL,

member_since TIMESTAMP DEFAULT NOW() NOT NULL,

payment_due DECIMAL(6, 2) NOT NULL DEFAULT 0

);

CREATE TABLE pending_terminations (

id VARCHAR(255) PRIMARY KEY,

email VARCHAR(255) NOT NULL,

request_date TIMESTAMP DEFAULT NOW() NOT NULL,

payment_due DECIMAL(6, 2) NOT NULL DEFAULT 0

);

CREATE TABLE rooms (

id VARCHAR(255) PRIMARY KEY,

room_type VARCHAR(255) NOT NULL,

price DECIMAL(6, 2) NOT NULL

);

CREATE TABLE bookings (

id INT AUTO_INCREMENT PRIMARY KEY,

room_id VARCHAR(255) NOT NULL,

booked_date DATE NOT NULL,

booked_time TIME NOT NULL,

member_id VARCHAR(255) NOT NULL,

datetime_of_booking TIMESTAMP DEFAULT NOW() NOT NULL,

payment_status VARCHAR(255) NOT NULL DEFAULT 'Unpaid',

CONSTRAINT uc1 UNIQUE (room_id, booked_date, booked_time)

);

ALTER TABLE bookings

ADD CONSTRAINT fk1 FOREIGN KEY (member_id) REFERENCES

members (id) ON DELETE CASCADE ON UPDATE CASCADE,

ADD CONSTRAINT fk2 FOREIGN KEY (room_id) REFERENCES rooms

(id) ON DELETE CASCADE ON UPDATE CASCADE;

-- ********************* INSERT DATA

INSERT INTO members (id, password, email, member_since,

payment_due) VALUES

('afeil', 'feil1988<3', 'Abdul.Feil@hotmail.com', '2017-04-15

12:10:13', 0),

('amely_18', 'loseweightin18', 'Amely.Bauch91@yahoo.com', '2018-

02-06 16:48:43', 0),

('bbahringer', 'iambeau17', 'Beaulah_Bahringer@yahoo.com', '2017-

12-28 05:36:50', 0),

('little31', 'whocares31', 'Anthony_Little31@gmail.com', '2017-

06-01 21:12:11', 10),

('macejkovic73', 'jadajeda12', 'Jada.Macejkovic73@gmail.com',

'2017-05-30 17:30:22', 0),

('marvin1', 'if0909mar', 'Marvin_Schulist@gmail.com', '2017-09-09

02:30:49', 10),

('nitzsche77', 'bret77@#', 'Bret_Nitzsche77@gmail.com', '2018-01-

09 17:36:49', 0),

('noah51', '18Oct1976#51', 'Noah51@gmail.com', '2017-12-16

22:59:46', 0),

('oreillys', 'reallycool#1', 'Martine_OReilly@yahoo.com', '2017-

10-12 05:39:20', 0),

('wyattgreat', 'wyatt111', 'Wyatt_Wisozk2@gmail.com', '2017-07-18

16:28:35', 0);

INSERT INTO rooms (id, room_type, price) VALUES

('AR', 'Archery Range', 120),

('B1', 'Badminton Court', 8),

('B2', 'Badminton Court', 8),

('MPF1', 'Multi Purpose Field', 50),

('MPF2', 'Multi Purpose Field', 60),

('T1', 'Tennis Court', 10),

('T2', 'Tennis Court', 10);

INSERT INTO bookings (id, room_id, booked_date, booked_time,

member_id, datetime_of_booking, payment_status) VALUES

(1, 'AR', '2017-12-26', '13:00:00', 'oreillys', '2017-12-20

20:31:27', 'Paid'),

(2, 'MPF1', '2017-12-30', '17:00:00', 'noah51', '2017-12-22

05:22:10', 'Paid'),

(3, 'T2', '2017-12-31', '16:00:00', 'macejkovic73', '2017-12-28

18:14:23', 'Paid'),

(4, 'T1', '2018-03-05', '08:00:00', 'little31', '2018-02-22

20:19:17', 'Unpaid'),

(5, 'MPF2', '2018-03-02', '11:00:00', 'marvin1', '2018-03-01

16:13:45', 'Paid'),

(6, 'B1', '2018-03-28', '16:00:00', 'marvin1', '2018-03-23

22:46:36', 'Paid'),

(7, 'B1', '2018-04-15', '14:00:00', 'macejkovic73', '2018-04-12

22:23:20', 'Cancelled'),

(8, 'T2', '2018-04-23', '13:00:00', 'macejkovic73', '2018-04-19

10:49:00', 'Cancelled'),

(9, 'T1', '2018-05-25', '10:00:00', 'marvin1', '2018-05-21

11:20:46', 'Unpaid'),

(10, 'B2', '2018-06-12', '15:00:00', 'bbahringer', '2018-05-30

14:40:23', 'Paid');

-- ********************* CREATE VIEW

CREATE VIEW member_bookings AS

SELECT bookings.id, room_id, room_type, booked_date, booked_time,

member_id, datetime_of_booking, price, payment_status

FROM

bookings JOIN rooms

ON

bookings.room_id = rooms.id

ORDER BY

bookings.id;

-- ********************* CREATE PROCEDURES

DELIMITER $$

CREATE PROCEDURE insert_new_member (IN p_id VARCHAR(255), IN

p_password VARCHAR(255), IN p_email VARCHAR(255))

BEGIN

INSERT INTO members (id, password, email) VALUES (p_id,

p_password, p_email);

END $$

CREATE PROCEDURE delete_member (IN p_id VARCHAR(255))

BEGIN

DELETE FROM members WHERE id = p_id;

END $$

CREATE PROCEDURE update_member_password (IN p_id VARCHAR(255), IN

p_password VARCHAR(255))

BEGIN

UPDATE members SET password = p_password WHERE id = p_id;

END $$

CREATE PROCEDURE update_member_email (IN p_id VARCHAR(255), IN

p_email VARCHAR(255))

BEGIN

UPDATE members SET email = p_email WHERE id = p_id;

END $$

CREATE PROCEDURE make_booking (IN p_room_id VARCHAR(255), IN

p_booked_date DATE, IN p_booked_time TIME, IN p_member_id

VARCHAR(255))

BEGIN

DECLARE v_price DECIMAL(6, 2);

DECLARE v_payment_due DECIMAL(6, 2);

SELECT price INTO v_price FROM rooms WHERE id =

p_room_id;

INSERT INTO bookings (room_id, booked_date, booked_time,

member_id) VALUES (p_room_id, p_booked_date, p_booked_time,

p_member_id);

SELECT payment_due INTO v_payment_due FROM members WHERE id

= p_member_id;

UPDATE members SET payment_due = v_payment_due + v_price

WHERE id = p_member_id;

END $$

CREATE PROCEDURE update_payment (IN p_id INT)

BEGIN

DECLARE v_member_id VARCHAR(255);

DECLARE v_payment_due DECIMAL(6, 2);

DECLARE v_price DECIMAL(6, 2);

UPDATE bookings SET payment_status = 'Paid' WHERE id =

p_id;

SELECT member_id, price INTO v_member_id, v_price FROM

member_bookings WHERE id = p_id;

SELECT payment_due INTO v_payment_due FROM members WHERE id

= v_member_id;

UPDATE members SET payment_due = v_payment_due - v_price

WHERE id = v_member_id;

END $$

CREATE PROCEDURE view_bookings (IN p_id VARCHAR(255))

BEGIN

SELECT * FROM member_bookings WHERE id = p_id;

END $$

CREATE PROCEDURE search_room (IN p_room_type VARCHAR(255), IN

p_booked_date DATE, IN p_booked_time TIME)

BEGIN

SELECT * FROM rooms WHERE id NOT IN (SELECT room_id FROM

bookings WHERE booked_date = p_booked_date AND booked_time =

p_booked_time AND payment_status != 'Cancelled') AND room_type =

p_room_type;

END $$

CREATE PROCEDURE cancel_booking (IN p_booking_id INT, OUT

p_message VARCHAR(255))

BEGIN

DECLARE v_cancellation INT;

DECLARE v_member_id VARCHAR(255);

DECLARE v_payment_status VARCHAR(255);

DECLARE v_booked_date DATE;

DECLARE v_price DECIMAL(6, 2);

DECLARE v_payment_due VARCHAR(255);

SET v_cancellation = 0;

SELECT member_id, booked_date, price, payment_status INTO

v_member_id, v_booked_date, v_price, v_payment_status FROM

member_bookings WHERE id = p_booking_id;

SELECT payment_due INTO v_payment_due FROM members WHERE id

= v_member_id;

IF curdate() >= v_booked_date THEN

 SELECT 'Cancellation cannot be done on/after the

booked date' INTO p_message;

 ELSEIF v_payment_status = 'Cancelled' OR

v_payment_status = 'Paid' THEN

 SELECT 'Booking has already been cancelled or

paid' INTO p_message;

 ELSE

 UPDATE bookings SET payment_status = 'Cancelled'

WHERE id = p_booking_id;

 SET v_payment_due = v_payment_due -

v_price;

 SET v_cancellation = check_cancellation

(p_booking_id);

 IF v_cancellation >= 2 THEN SET v_payment_due =

v_payment_due + 10;

 END IF;

 UPDATE members SET payment_due = v_payment_due

WHERE id = v_member_id;

 SELECT 'Booking Cancelled' INTO p_message;

END IF;

END $$

-- ********************* CREATE TRIGGER

CREATE TRIGGER payment_check BEFORE DELETE ON members FOR EACH

ROW

BEGIN

DECLARE v_payment_due DECIMAL(6, 2);

SELECT payment_due INTO v_payment_due FROM members WHERE id

= OLD.id;

IF v_payment_due > 0 THEN

 INSERT INTO pending_terminations (id, email,

payment_due) VALUES (OLD.id, OLD.email, OLD.payment_due);

END IF;

END $$

-- ********************* CREATE FUNCTION

CREATE FUNCTION check_cancellation (p_booking_id INT) RETURNS INT

DETERMINISTIC

BEGIN

DECLARE v_done INT;

DECLARE v_cancellation INT;

DECLARE v_current_payment_status VARCHAR(255);

DECLARE cur CURSOR FOR

 SELECT payment_status FROM bookings WHERE member_id =

(SELECT member_id FROM bookings WHERE id = p_booking_id) ORDER BY

datetime_of_booking DESC;

DECLARE CONTINUE HANDLER FOR NOT FOUND SET v_done = 1;

SET v_done = 0;

SET v_cancellation = 0;

OPEN cur;

cancellation_loop : LOOP

 FETCH cur INTO v_current_payment_status;

 IF v_current_payment_status != 'Cancelled' OR v_done =

1 THEN LEAVE cancellation_loop;

 ELSE SET v_cancellation = v_cancellation + 1;

 END IF;

END LOOP;

CLOSE cur;

RETURN v_cancellation;

END $$

DELIMITER ;

test.sql

SELECT * FROM members;

SELECT * FROM pending_terminations;

SELECT * FROM bookings;

SELECT * FROM rooms;

CALL insert_new_member ('angelolott', '1234abcd',

'AngeloNLott@gmail.com');

SELECT * FROM members ORDER BY member_since DESC;

CALL delete_member ('afeil');

CALL delete_member ('little31');

SELECT * FROM members;

SELECT * FROM pending_terminations;

CALL update_member_password ('noah51', '18Oct1976');

CALL update_member_email ('noah51', 'noah51@hotmail.com');

SELECT * FROM members;

SELECT * FROM members WHERE id = 'marvin1';

SELECT * FROM bookings WHERE member_id = 'marvin1';

CALL update_payment (9);

SELECT * FROM members WHERE id = 'marvin1';

SELECT * FROM bookings WHERE member_id = 'marvin1';

CALL search_room('Archery Range', '2017-12-26', '13:00:00');

CALL search_room('Badminton Court', '2018-04-15', '14:00:00');

CALL search_room('Badminton Court', '2018-06-12', '15:00:00');

CALL make_booking ('AR', '2017-12-26', '13:00:00', 'noah51');

CALL make_booking ('T1', CURDATE() + INTERVAL 2 WEEK,

'11:00:00', 'noah51');

CALL make_booking ('AR', CURDATE() + INTERVAL 2 WEEK,

'11:00:00', 'macejkovic73');

SELECT * FROM bookings;

SELECT * FROM members;

CALL cancel_booking(1, @message);

SELECT @message;

CALL cancel_booking(12, @message);

SELECT @message;

CALL cancel_booking(13, @message);

SELECT @message;

SELECT * FROM members;

	Chapter 1: Introduction
	What is SQL?
	Getting Ready to Code
	Installing MySQL applications
	Launching MySQL Workbench
	Writing our first MySQL code
	Comments
	Chapter 2: Defining the Database
	How to Use this Book
	Creating the Database
	Using the Database
	Deleting the Database
	Chapter 3: Defining Tables
	Creating Tables
	Specifying Columns
	Specifying Table Constraints
	Altering Tables
	Table Names
	Columns and Table Constraints
	Deleting Tables
	Chapter 4: Inserting, Updating and Deleting Data
	Inserting Data
	Updating Data
	Deleting Data
	Constraints
	Chapter 5: Selecting Data Part 1
	Basic Select Syntax
	Selecting Everything
	Filtering Columns
	Using Aliases
	Filtering Rows
	LIMIT
	DISTINCT
	WHERE clause
	Subqueries
	Sorting Rows
	Chapter 6: Selecting Data Part 2
	What is a Function?
	MySQL Functions
	Aggregate Functions
	GROUP BY
	HAVING
	Chapter 7: Selecting Data Part 3
	Joins
	Unions
	Chapter 8: Views
	What is a view?
	Creating a View
	Altering a View
	Deleting a View

